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A B S T R A C T

Monozygotic (MZ) twins are considered being genetically identical, therefore they cannot be

differentiated using standard forensic DNA testing. Here we describe how identification of extremely

rare mutations by ultra-deep next generation sequencing can solve such cases. We sequenced DNA from

sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis

revealed five single nucleotide polymorphisms (SNPs) present in the twin father and the child, but not in

the twin uncle. The SNPs were confirmed by classical Sanger sequencing. Our results give experimental

evidence for the hypothesis that rare mutations will occur early after the human blastocyst has split into

two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germline.

The method provides a solution to solve paternity and forensic cases involving monozygotic twins as

alleged fathers or originators of DNA traces.

� 2013 The Authors. Published by Elsevier Ireland Ltd. 
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1. Introduction

Today, paternity testing and genetic identification in forensic
casework is carried out by testing a set of 16–24 short tandem
repeat (STR) markers [1]. However, monozygotic ‘‘identical’’ twins
have identical microsatellite profiles. Thus they cannot be
distinguished e.g. as alleged fathers or as sources of DNA traces
at crime scenes using the current technology. This inability causes
problems in criminal or paternity cases with a MZ twin as suspect,
or as alleged father. With a probability for MZ twins of about 3 in
1000 births [2], around 6 of 1000 males are identical twins.
Therefore, crime or paternity cases with MZ twins are not
infrequent and sometimes receive a high level of attention. Small
genetic or epigenetic differences between twins have been
described [3–5] however, these studies had a medical genetic
focus and the results are not applicable in forensic genetic
fingerprinting.

In a theoretical paper dealing with this problem, Krawczak et al.
[6] states ‘‘that >80% of the offspring of one twin brother would
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carry at least one germline mutation that would be detectable in
the sperm of their father, but not in that of the other twin’’. The
authors strongly suggest to conduct paternity testing in the
context of MZ twins by whole genome sequencing and identifica-
tion of rare de novo mutations. Studies to differentiate twins
genetically have been carried out earlier, e.g. Bruder et al., but
these studies had no forensic objective [7]. Berglund et al. [8]
suggest to utilize next generation sequencing of Y-chromosomal
DNA in forensic cases to detect rare differences between closely
related men. However, looking for these differences is equivalent
to chasing a tiny needle in a huge haystack.

In some recent articles, the application of next generation
sequencing to forensic mtDNA testing has been described [9–12].
Brenig et al. [13] have been shown that shotgun next generation
sequencing of DNA from stain samples can give insight in the
metagenomic composition of the stain.

2. Methods

We recruited a pair of identical male twins as well as the wife
and the child of one twin as volunteers. Informed consent
according to the requirements of the German Gene Diagnostic
Act was obtained from all participants. To avoid any intentional or
unintentional bias, the laboratory team was not informed which
one of the two twins was the real father, before they had solved the
 license.Y
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case analytically. DNA was extracted from blood samples (mother
and child) and from blood, buccal mucosa and sperm samples
(twins) using the QIAsymphony DNA Investigator Kit (Qiagen,
Hilden, Germany) and a QIAsymphony extraction robot. Paternity
and monozygosity of the twins was confirmed by typing all
individuals with the PowerPlex 21 PCR Kit (Promega, Mannheim,
Germany). PCR products were separated on an ABI3130xl capillary
sequencer and evaluated using Genemapper 3.7 (Applied Biosys-
tems Division of Life Technologies GmbH, Darmstadt, Germany).
NGS libraries were prepared from blood of the child and sperm
samples of the twins according to the common guidelines for
shotgun library preparation. Briefly, genomic DNA (from sperm of
the twins and blood of the child) was fragmented to an average size
of 300 bp using a Covaris ultra sonication device (Covaris, Woburn,
MA, USA). Subsequently, the shotgun libraries were prepared using
commercially available chemistry from NEB (New England Biolabs,
Ipswich, MA, USA). Sequencing was performed on the Illumina
HiSeq 2000 with chemistry v3.0 and using the 2 � 100 bp paired-
end read mode and original chemistry from Illumina according to
the manufacturer’s instructions. The initial data analysis was
started directly on the HiSeq 2000 System during the run. The
HiSeq Control Software 2.0.5 in combination with RTA 1.17.20.0
(real time analysis) performed the initial image analysis and base
calling. In addition, CASAVA-1.8.2 generated and reported run
statistics and the final FASTQ files comprising the sequence
information which was used for all subsequent bioinformatics
analyses. Sequences were de-multiplexed according to the 6 bp
index code with 1 mismatch allowed.

For both of the twins, as well as for the child all corresponding
Illumina read data were mapped to the human reference genome
sequence (GRCh37.p10). The mapping has been conducted using
the Eurofins in-house mapping pipeline based on the Convey FPGA
hardware architecture (http://www.conveycomputer.com) and
Convey software tools that mimic a standard mapping using the
Burrows-Wheeler Alignment software (BWA [14]). The hardware
accelerated pipeline includes the software tools cnybwa (v0.6.2)
and BWA (v0.6.2). Using SAMtools software package v0.1.18 [15]
the mapping results were sorted according to reference sequences
and coordinates and filtered by applying a mapping quality
threshold of 20. After this procedure a single BAM file containing
only good quality unique mapping reads was obtained for each of
Fig. 1. Reads per chromosome for twins A and B and the child. For each chromo
the twins and the child. The mapping result for each individual was
separated according to chromosomes. Duplicates were removed
from the chromosome specific BAM files by applying Picard v1.87
[16]. For each chromosome VarScan2 software [17] was used to
identify somatic mutations. Positions with the highest VarScan
scores were compared to the inherited mutations and visually
inspected using IGV [18,19]. Potential somatic mutations were
screened and compared to the mapping results of the child.

The identified SNPs were confirmed by Sanger sequencing
according to standard methods and in compliance with the NCCLS
guideline [20]. Primers located 50–100 bp upstream and down-
stream were used to amplify the regions of interest. All sequences
were generated using BigDye terminator chemistry (version 3.1) of
Applied Biosystems (Foster City CA, US) following standard
protocols. For sequencing reactions Primus 96 HPL Thermal
Cyclers (MWG AG, Ebersberg, Germany), peqStar 96 HPL (PEQLAB
Biotechnologie GmbH, Erlangen, Germany) or DNA engine Tetrad 2
cyclers (Bio-Rad, Munich, Germany) were used. Sequencing
reaction clean-up was done on a Hamilton Starlet robotic
workstation (Hamilton Robotics GmbH, Martinsried, Germany)
by gel filtration through a hydrated Sephadex matrix filled into
appropriate 96 well filter plates followed by a subsequent
centrifugation step. Finally all reactions were run on ABI3730xl
capillary sequencers equipped with 50 cm capillaries and POP7
polymer.

3. Results

The paternity and the monozygosity of the twins were
confirmed using standard forensic STR typing with PowerPlex
21 PCR Kit (data not shown). Next, DNA obtained from sperm
samples of the twins and from the child’s blood was used for ultra-
deep next generation sequencing to identify inherited germline/
somatic mutation events that occurred after twinning and are
therefore only present in the twin father and not in the twin uncle.

Samples were sequenced using Illumina HiSeq 2000 technolo-
gy. In total, 600 Giga-bytes of raw sequencing data were generated.
For twin A, 283 Giga-base-pairs were sequenced which corre-
sponds to a mean genome coverage of 91 fold. For twin B 292 Giga-
base-pairs were generated which corresponds to a mean genome
coverage of 94 fold. The child was sequenced with an amount of
some, the number of non-redundant and uniquely mapped reads is shown.
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Fig. 2. NGS results of the SNP on chromosome 4. Results for child, twin uncle and twin father are visualized with the IGV Viewer [11,12]. The SNP is in the middle of the panel

(color code: C blue, T red, A green, G brown) and is highlighted with a red arrow.
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175 Giga-base-pairs (mean genome coverage of 56 fold). Fig. 1
shows the number of non-redundant and uniquely mapped reads
for each chromosome. Electronic supplement Table 1 lists the
number of reference bases covered for each chromosome and for
each sample.

Supplementary material related to this article can be found, in
the online version, at doi:10.1016/j.fsigen.2013.10.015.

The production of the overall raw sequence data generated
required a timeframe of approximately three to four weeks. This
includes DNA isolation, library preparation as well as sequencing
and initial data analysis. The time for all subsequent analysis steps
strongly depend on the available computational IT infrastructure.
Using a highly parallelized mapping server (Convey FPGA
hardware architecture) the mapping step of all three samples
itself took 72.5 h of computing time which is equivalent to a mean
of 28,751 mapped reads per second. However, it is noteworthy that
this step represents only a small proportion of the entire analysis
pipeline. Due to additional numerous manual investigations
(including the validation of the findings using independent
approaches) the whole procedure can take up to weeks.

Storing of the raw and analysis data is another aspect.
Approximately 2.8 Tera-bytes of disk space was utilized for storing
all mapping and analysis data files.

After mapping [14,15] the resulting read sequences to the
human genome sequence (GRCh37.p10), the VarScan2 software
[17] was used to determine potential mutations. VarScan2
includes the ability to identify somatic mutations in tumors, but
also supports the detection of germline mutations. Paternal
inheritable de novo mutations appear like somatic mutations
when comparing both twins. Therefore we assigned twin A to be
‘‘normal’’ and twin B to be ‘‘tumor’’ and vice versa and ascertained a
Table 1
Genotypes of the identified SNPs in mother, child and twins. The SNP number refers to an

brackets next to the genotypes are the mixture ratios in % and were estimated from th

Chromosome

04 snp188267982

Chromosome

06 snp41885722

Mother buccal mucosa C/C A/A 

Child blood C/T (50/50) G/A (50/50) 

Twin uncle sperm C/C A/A 

Twin uncle buccal mucosa C/C A/A 

Twin uncle blood C/C A/A 

Twin father sperm C/T (80/20) G/A (70/30) 

Twin father buccal mucosa C/T (80/20) G/A (75/25) 

Twin father blood C/C A/A 
set of potential somatic mutations. Mutations inherited to the
offspring were detected by presuming twin A or twin B to be
‘‘normal’’ and the child to be ‘‘tumor’’. Using the integrative
genomics viewer (IGV) [18,19] the potential somatic mutations
were visually inspected and compared with the potential inherited
mutations in the child starting with the highest scores provided by
Varscan2 scoring scheme for somatic mutations. With this
approach, we identified 12 potential somatic SNP candidates
present in both the twin father and the child, but not in the twin
uncle. SNPs including 100 bp downstream and upstream flanking
sequencing information were compared with the human genome
reference (using BLASTN). Seven SNP candidates were discarded
after the BLAST search, because the surrounding sequence showed
more than one significant hit on the genome. The remaining five
SNP candidates are located on chromosome 4 (pos 188,267,982,
snp C/T), 6 (pos 41,885,722, snp A/G), 11 (pos 68,781,324, snp C/T),
14 (pos 103,545,720, snp G/A) and 15 (pos 57,884,799, snp G/A)
(see Table 1). Fig. 2 is showing one of the SNPs observed in the NGS
data visualized by IGV [18,19]. None of the five SNP candidates is
related to SNPs annotated in dbSNP. The NGS findings were clearly
confirmed by PCR and double-stranded Sanger sequencing of the
respective positions for the five SNP candidates in the twins’
sperm-derived DNA. PCR and Sanger sequencing was also used to
investigate the respective positions of the mother’s DNA as well as
blood and buccal mucosa DNA of the twins together with the
child’s blood DNA. Corresponding Sanger results for the SNP NGS
data from Fig. 2 are shown in Fig. 3, excluding the theoretical
possibility that the mother inherited the SNPs to the child.
Interestingly, four of the five mutations seen in the sperm DNA of
the twin father are also present in his buccal mucosa DNA. Only
one of those four mutations is also seen in the blood DNA. One
 alignment to the human genome sequence build GRCh37.p10. The figures given in

e Sanger sequencing results.

Chromosome

11 snp68781324

Chromosome

14 snp103545720

Chromosome

15 cnp57884799

C/C G/G C/C

C/T (50/50) A/G (50/50) C/T (50/50)

C/C G/G C/C

C/C G/G C/C

C/C G/G C/C

C/T (80/20) A/G (50/50) C/T (50/50)

C/C A/G (60/40) C/T (50/50)

C/C G/G C/T (80/20)
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Fig. 3. Sequence of the SNP on chromosome 04. The SNP has position

snp188,267,982. The affected position is highlighted with a red arrow.
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mutation is exclusively present in the sperm sample (Table 1). The
ratio between the original base and the mutated base was between
50% to 50% and 80% to 20%, with identical ratios in sperm and
buccal mucosa DNA, and a deviation in the SNP found in the blood-
derived DNA (Table 1). The mosaicism is therefore not only present
in the sperm of the twin father, where we initially queried, but also
in other tissues with strong similarity between sperm and buccal
mucosa.

4. Discussion

The differentiation between MZ twins has been a limitation in
forensic genetics, since ‘‘identical’’ twins were found to exhibit
identical STR profiles. We have developed a new method to
identify SNPs caused by de novo mutations that occurred in only
one twin using ultra-deep next generation sequencing. Such SNPs
allow distinguishing MZ twins. The approach can be used to shed
light on so far unsolvable forensic paternity and criminal cases that
involve identical twins.

Krawczak et al. [6] predicted such a result, he expected an
average of >1.3 SNPs discriminating the germline DNA of MZ
twins. However, others failed to find such SNPs [21,22], presum-
ably because the coverage during NGS was too low to distinguish
real SNPs from sequencing artifacts or they screened with SNP
chips. Our approach was to overcome such problems and reveal
mosaicistic de novo mutations by using a very high coverage of
more than 90fold for the twins and more than 50fold for the child,
followed by adjusted bioinformatics filters. Generally, without
involving identical twins, the estimated number of SNP substitu-
tion rates per generation ranges from 1 to 3 � 10�8 per human
single base-pair, equal to approximately 10–40 expected SNPs per
paternal generation [6,23]. The number of five inherited SNPs we
found from post-split of the early embryonic stage corresponds
reasonably well with such estimations. Our initial comparison of
the twins revealed more SNPs, but we focused on those present in
the child as well. Krawczak et al. [6] expect lesions (deletions,
insertions, indels) to occur at a ratio of approximately one in three
relative to SNPs. We have not been able to clearly verify such
mutations in our NGS sequence datasets. We consider this to be a
stochastic effect based on the relative infrequency of these events,
or reflecting that such mutated DNA fragments do not fulfill the
alignment criteria, or both.

Monozygotic twins are the result of a separation of the morula
during early embryotic development. In one third of all cases the
morula divides before day 5 after fertilization in the 16–32 cell
stage. Approximately two thirds of the monozygotic twinnings
occur after the separation of the morula between day 5 and day 9
(40–150 cells). Rare exceptions are twins that are formed after day
9, sharing one placenta. Mutations which can be used to identify a
specific twin must have occurred after separation of the morula, or
early before separation with exclusive presence in the cells
belonging later to only one of the twins. In general, only mutations
present in the germline are inheritable. Mutation events occurring
later in the somatic lineages will not be transmitted to any
potential offspring [24]. During embryogenesis, germ cells enter a
complex series of events that ends with the formation of ova and
sperm. Due to the inaccessibility of the human embryo to
experimental investigations at these early stages, there is still
little knowledge about the precise development of human
primordial germ cells (PGCs). According to the summary of De
Felici [25] the combination of data from human studies and most
recent results obtained in mouse support the following scenario.
Briefly, PGCs are early committed and specified in the epiblast.
Prior to gastrulation they rapidly move into an extra-embryonic
region. Subsequently PGCs are determined and re-enter into the
embryo proper during early gastrulation to reach the developing
gonads [25]. In addition, similar findings confirm the common
phylogenetic history of buccal mucosa and sperm cells, both
belong to the ectoderm germ layer [24] and help to narrow down
the history of the somatic mutation event: mutations that are
present in one twins’ sperm and buccal mucosa, but not in blood,
will have occurred after gastrulation, but before the separation of
the buccal mucosa and the precursors of the sperms. A mutation
event present in all three tested tissues must have occurred earlier,
before the separation of the germ layers. Therefore the mutation
that is exclusively present in the sperms is the ‘‘latest’’ one.

The fact that most of the mutations we identified are present in
the two ectodermal tissues, buccal mucosa and sperm, suggests the
use of buccal mucosa as starting material for identification of
mutations between MZ twins. Sampling of buccal swabs in paternity
or crime scene cases is legally and ethically easier than sampling
sperm. The findings show that the described method for distinguish-
ing MZ twins is not only applicable to paternity cases, but also to
forensic cases with ectodermal traces such as contact stains, skin
scales, hair, buccal mucosa or semen stains found at crime scenes,
and very likely will also work with blood stains. Our analytical
methodology allows also re-analyzing cold cases of sufficient
relevance and approaching new cases involving MZ twins as donors
of stain material. Only the reference samples for the MZ twin
suspects need to be analyzed by NGS in all cases. The DNA from the
stain itself, which might be of lower quantity and quality, can be
analyzed using sensitive and specific PCR based standard SNP
detection assays developed according to the NGS findings.
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U. Menzel, J. Sandgren, D. von Tell, A. Poplawski, M. Crowley, C. Crasto, E.C.
Partridge, H. Tiwari, D.B. Allison, J. Komorowski, G.J. van Ommen, D.I. Boomsma,
N.L. Pedersen, J.T. den Dunnen, K. Wirdefeldt, J.P. Dumanski, Phenotypically
concordant and discordant monozygotic twins display different DNA copy-num-
ber-variation profiles, Am. J. Hum. Genet. 82 (2008) 763–771.

[8] E.C. Berglund, A. Kiialainen, A.C. Syvänen, Next-generation sequencing technolo-
gies and applications for human genetic history and forensics, Invest. Genet. 2
(2011) 23.

[9] W. Parson, C. Strobl, G. Huber, B. Zimmermann, S.M. Gomes, L. Souto, L. Fendt, R.
Delport, R. Langit, S. Wootton, R. Lagacé, J. Irwin, Evaluation of next generation
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[18] J.T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E.S. Lander, G. Getz,
J.P. Mesirov, Integrative genomics viewer, Nat. Biotechnol. 29 (2011) 24–26.

[19] H. Thorvaldsdóttir, J.T. Robinson, J.P. Mesirov, Integrative Genomics Viewer (IGV):
high-performance genomics data visualization and exploration, Brief Bioinform.
14 (2013) 178–192.

[20] M.A. Zoccoli, Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medi-
cine: Approved Guideline, NCCLS, 2004.

[21] K. Miyake, C. Yang, Y. Minakuchi, K. Ohori, M. Soutome, T. Hirasawa, Y. Kazuki, N.
Adachi, S. Suzuki, M. Itoh, Y.I. Goto, T. Andoh, H. Kurosawa, M. Oshimura, M.
Sasaki, A. Toyoda, T. Kubota, Comparison of genomic and epigenomic expression
in monozygotic twins discordant for Rett syndrome, PLoS ONE 8 (2013) e66729.

[22] S.E. Baranzini, J. Mudge, J.C. van Velkinburgh, P. Khankhanian, I. Khrebtukova, N.A.
Miller, L. Zhang, A.D. Farmer, C.J. Bell, R.W. Kim, G.D. May, J.E. Woodward, S.J.
Caillier, J.P. McElroy, R. Gomez, M.J. Pando, L.E. Clendenen, E.E. Ganusova, F.D.
Schilkey, T. Ramaraj, O.A. Khan, J.J. Huntley, S. Luo, P.Y. Kwok, T.D. Wu, G.P.
Schroth, J.R. Oksenberg, S.L. Hauser, S.F. Kingsmore, Genome, epigenome and RNA
sequences of monozygotic twins discordant for multiple sclerosis, Nature 464
(2010) 1351–1356.

[23] Y. Xue, Q. Wang, Q. Long, B.L. Ng, H. Swerdlow, J. Burton, C. Skuce, R. Taylor, Z.
Abdellah, Y. Zhao, Asan, D.G. MacArthur, M.A. Quail, N.P. Carter, H. Yang, C. Tyler-
Smith, Human Y chromosome base-substitution mutation rate measured by
direct sequencing in a deep-rooting pedigree, Curr. Biol. 17 (2009) 1453–1457.

[24] F. Gilbert Scott, Developmental Biology, 9th edition, Sinauer Associates Inc., 2003.
[25] M. De Felici, Origin, migration, and proliferation of human primordial germ cells,

in: G. Coticchio, D.F. Albertine, L. De Santis (Eds.), Oogenesis, 19, Springer-Verlag,
London, 2013.

http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0015
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0015
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0015
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0015
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0015
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0020
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0025
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0025
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0025
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0030
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0030
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0030
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0035
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0040
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0040
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0040
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0045
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0045
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0045
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0045
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0050
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0050
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0050
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0050
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0055
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0055
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0055
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0060
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0060
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0060
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0065
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0065
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0070
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0070
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0075
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0075
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0075
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0075
http://picard.sourceforge.net/
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0085
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0085
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0085
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0085
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0090
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0090
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0095
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0095
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0095
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0100
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0100
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0105
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0105
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0105
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0105
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0110
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0115
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0115
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0115
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0115
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0120
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0125
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0125
http://refhub.elsevier.com/S1872-4973(13)00227-5/sbref0125

	Finding the needle in the haystack: Differentiating ‘‘identical’’ twins in paternity testing and forensics by ultra-deep next generation sequencing
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	References


