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a b s t r a c t

It is well known that the linear extensionmajority relation of a partially ordered set (P,≤P )
can contain cycles when at least 9 elements are present in P . Computer experiments
have uncovered all posets with 9 elements containing such cycles and limited frequency
estimates for linear extensionmajority cycles (or LEMcycles) in posets onup to 12 elements
are available. In this contribution, we present an efficient approach which allows us to
count and store all posets containing LEM cycles on up to 13 elements.

© 2009 Elsevier Ltd. All rights reserved.

1. Preliminaries

A binary relation≤P on a set P is called an order relation if it is reflexive (x≤P x), antisymmetric (x≤P y and y≤P x imply
x=P y) and transitive (x≤P y and y≤P z imply x≤P z). A linear order relation ≤P is an order relation in which every two
elements are comparable (x≤P y or y≤P x). If x≤P y and x 6= y, we write x<P y. If neither x≤P y nor x≥P y, we say that
x and y are incomparable and write x ‖P y. A couple (P,≤P), where P is a set of objects and ≤P is an order relation on P , is
called a partially ordered set or poset for short. The size of the poset (P,≤P) is defined as the cardinality of P . In this paper,
we will denote the size of (P,≤P) as n and call a poset on n elements an n-element poset for short. A chain of a poset (P,≤P)
is a subset of P in which every two elements are comparable. Dually, an antichain of a poset (P,≤P) is a subset of P in which
every two elements are incomparable. Thewidth of a poset (P,≤P) is the size of the largest antichain of (P,≤P). Dually, the
height of a poset (P,≤P) is the size of the largest chain of (P,≤P). A poset (P,≤>P ) for which y≤>P x if and only if x≤P y for
all x, y ∈ P is called the dual poset of (P,≤P). We say that a poset (P,≤P) is a linear sum if there exist disjoint non-empty
subsets P1 and P2 of P such that P = P1 ∪ P2, and x<P y for any x ∈ P1 and any y ∈ P2.
The binary relation ≺P , for which it holds that (x, y) ∈ ≺P if and only if x<P y and there exists no z ∈ P such that

x<P z<P y, is called the covering relation of (P,≤P). A poset (P,≤P) can be conveniently represented by a covering graph or
so-called Hasse diagram, displaying the covering relation≺P . Note that x<P y if and only if there is a sequence of connected
lines upwards from x to y.
A binary relation on a set P is called a weak order relation on P if it is reflexive, transitive and complete, i.e. every two

elements are comparable. Moreover, if this relation is also antisymmetric, it is a linear order relation; in other words, a linear
order relation is a weak order relation in which every two elements are comparable. Let Q be a set and R and S two binary
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relations on Q . If R ⊂ S, then (Q , S) is called an extension of (Q , R). A linear extension of a poset (P,≤P) is an extension
(P,≤L) for which ≤L is a linear order relation. Let us denote the set of linear extensions of a poset (P,≤P) as E(P) and its
cardinality |E(P)| as e(P).
The mutual rank probability p(x > y) of two elements x and y of a poset (P,≤P) is defined as the probability that x>L y

in a linear extension (P,≤L) of (P,≤P) that has been sampled uniformly at random from E(P). Stated differently, it is the
number of linear extensions of (P,≤P) in which x>L y, divided by the number e(P) of linear extensions of (P,≤P). The
mutual rank probability relationMP is the [0, 1]-valued binary relation on P defined byMP [x, y] = p(x > y). Note thatMP
reciprocal, i.e. p(x > y)+ p(y > x) = 1.
The linear extension majority (LEM) relation of a poset P is the binary relation�LEM on P such that x�LEM y if p(x > y) >

p(y > x). Since the mutual rank probability relation is reciprocal, it is equivalent to define x�LEM y if p(x > y) > 1
2 .

A downset or ideal of a poset (P,≤P) is a subset D ⊆ P such that x ∈ D, y ∈ P and y≤P x imply y ∈ D. Dually, an upset
or filter of a poset (P,≤P) is a subset U ⊆ P such that x ∈ U, y ∈ P and x≤P y imply y ∈ U . Let us denote the set of all
ideals of a poset (P,≤P) as I(P). If we equip this set of ideals with the set inclusion ⊆, a new poset (I(P),⊆) is obtained.
Moreover, it is more than a poset: it is a distributive lattice [1]. The distributive lattice (I(P),⊆) is called the lattice of ideals
of (P,≤P) [2].
A directed weighted graph G = (V , A, w) is defined as a triplet comprising a set V of vertices, a set A of arcs and a weight

functionw : A→ R. Each arc a ∈ A has a weightw(a) attached to it. A directed walk in a graph G = (V , A, w) from a vertex
v ∈ V to a vertex w ∈ V is an alternating sequence of vertices and arcs (v0, a1, v1, a2, . . . , vl−1, al, vl) such that each ai is
the arc from vi−1 to vi. The number of arcs l in the walk is called the length of the walk. A directed walk where v0 = vl and
each arc and each vertex aside from v0 and vl are unique is called a directed cycle of length l. In the remainder of this paper,
the termwalk will be used instead of directed walk, and the term cycle instead of directed cycle. If a walk starts and ends in
the same vertex, we call it a closed walk.

2. Linear extension majority cycles

The linear extension majority relation �LEM first appeared in 1968 in the work of Kislitsyn [3], and it was
conjectured that �LEM is transitive, and thus cannot contain cycles, i.e. subsets {x1, x2, . . . , xm} of elements of P such that
x1�LEM x2�LEM · · · �LEM xm�LEM x1. However, in 1974 Fishburn [4] has shown that�LEM can contain cycles, and thus is not
transitive. These cycles are referred to as LEM cycles on m elements, or m-cycles for short. Since then, quite some attention
has been given to LEM cycles in the literature. Examples of posets with LEM cycles in different contexts are given in [5–11],
frequency estimates for LEM cycles have been reported in [12,13], and the occurrence of LEM cycles in certain subclasses of
posets has been studied in [14,15].
Aside from the fact that the existence of LEM cycles is an intriguing phenomenon in its own right, a better understanding

of LEM cycles might help in the ongoing quest to characterize the transitivity of mutual rank probabilities in posets [16,
7,17,18]. Furthermore, Gehrlein and Fishburn [13] discuss an interesting application of LEM cycles in which incomplete
information about a linear order ≤L on a set P is given in the form of a partial order ≤P . Assuming the partial information
is correct, they consider the problem of attempting to reconstruct the linear order ≤L. The choice of such a linear order
amounts to the selection of a single extension from the set of all linear extensions of the poset. This is a problem frequently
encountered in real world situations, e.g. when a decision maker insists on obtaining a linear order on all objects instead
of a partial order obtained by comparing the attribute vectors of the objects [19–26]. The approach Gehrlein and Fishburn
suggest assesses a conditional probability pi that the corresponding linear extension (P,≤Li) of the poset represents≤L given
the partial information contained in ≤P . Once these probabilities pi are obtained, it is possible to compute the probability
that x<L y as the sum of all probabilities pi corresponding to a linear extension for which it holds that x<Li y.
One model of interest describing the manner in which the partial order ≤P is obtained from ≤L implies that all of

these probabilities pi equal 1/e(P). In this case, the probability that x<L y is identical to the mutual rank probability
p(y > x) according to the partial order ≤P . Moreover, the maximum likelihood estimator ≺∗ of ≤L defined by x≺∗ y if
p(y > x) > p(x > y), is nothing else but the LEM relation, in the sense that x≺∗ y if and only if y�LEM x. Since posets exist
with LEM cycles, the maximum likelihood estimator≺∗ can be intransitive. This notion of a maximum likelihood estimator
of≤L being quite appealing, it would be interesting to obtain some measure of the propensity of this technique to produce
intransitive maximum likelihood estimators.
Gehrlein and Fishburn [11] conducted a computer search to find all non-isomorphic posets with LEM cycles for poset

cardinalities n ≤ 9 and showed that no cycles exist for n ≤ 8. Moreover, exactly 5 non-isomorphic posets for n = 9 are
found. In a later paper, Gehrlein [12] estimates the likelihood of LEM cycles up to n = 12 by generating random connected
posets.
In this paper, we count and store all posets that contain LEM cycles for n ≤ 13, using an algorithm developed by the

present authors [22,27]. Furthermore, the so-called worst balanced posets are found for n ≤ 13, and the smallest poset of
height one is shown to have 11 elements.
In Section 3 some algorithmic details are outlined, and in Section 4 the results are presented.
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Table 1
Number of posets for n = 9, 10, . . . , 16.

n Number of posets

9 183231
10 2567284
11 46749427
12 1104891746
13 33823827452
14 1338193159771
15 68275077901156
16 4483130665195087

3. Algorithm

Unless some direct method is invented to avoid explicit enumeration, counting all posets with LEM cycles requires at
least all posets to be enumerated and their mutual rank probability relations to be computed.
Brinkmann andMcKay [28] developed a very efficientmethod to construct pairwise non-isomorphic posets,which allows

them to enumerate posets on up to 16 elements. As an illustration of the size of the problem, the number of non-isomorphic
posets of sizes 9 to 16 are shown in Table 1.
In order to compute themutual rank probability relation for a given poset, a naïve approachwould consist of enumerating

all linear extensions. This would e.g. imply that only for the antichain of 13 elements, already more than 62 billion linear
extensions need to be enumerated,which is clearly undesirable. This computationally extremely intensive process combined
with the number of posets that grows quickly for increasing n, would make the counting procedure out of reach for n = 12,
let alone for n = 13.
However, as the present authors have shown in [27], a more direct way to compute the mutual rank probability relation

using the lattice of ideals representation of a poset could save considerable computing time. This approach no longer
necessitates the enumeration of all linear extensions, though requires additional memory for storing the lattice of ideals.
Since we are precisely interested in generating small posets, the lattice of ideals of such posets nicely fits into memory of
current computer architectures. The algorithm consists of two main parts. After the lattice of ideals of (P,≤P) has been
constructed, the first part traverses the lattice in a breadth-first as well as a depth-first manner as to attach counting
information to each ideal. The second part subsequently derives allmutual rank probabilities from this counting information
in one pass over the lattice. The time complexity of this algorithmcontains as a factor the number of ideals of the poset,which
can still be exponential in n. However, in posets of limited width, the number of ideals is much smaller than the number of
linear extensions allowing the computation of the mutual rank probability relation in a fraction of the time that would be
needed to enumerate all linear extensions and subsequently inferring the mutual rank probability relation.
We combined the poset generation algorithm of Brinkmann and McKay [28] and our algorithm [27] to compute the

mutual rank probability relation for each poset enumerated. This approach enabled us to obtain exact counts for posets on
up to 13 elements.
For each poset (P,≤P) generated by the algorithm of Brinkmann and McKay, Algorithm 1 is executed. This algorithm

checks whether a given poset (P,≤P) contains a LEM cycle of length l where l = 3, 4, . . . , k with k ≤ n. The result of the
check is returned as an array of booleans in which the element at index l is true if (P,≤P) contains a LEM cycle of length l
and false in the negative case.
On the first line of Algorithm1, the lattice of ideals (I(P),⊆) is constructed. Themost efficient algorithmcurrently known

for constructing (I(P),⊆) is the algorithm of Habib et al. [29], which has an optimal complexity up to a constant factor. In
line number 2 the algorithm suggested by the present authors [27] for computing the mutual rank probability relation MP
for whichMP [x, y] = p(x > y) for each x, y ∈ P is invoked.
Let us construct the rank probability graph G = (V , E, w) in which the vertices are the elements of our poset (P,≤P) and

the arcs the couples (x, y) ∈ P2 for whichMP [x, y] > 1/2. Furthermore, let us attribute a weightMP [x, y] to each arc (x, y).
Clearly, a cycle in G of length l is a LEM cycle of length l.
Once the relationMP is known, in order to knowwhether there is a closedwalk in the rank probability graph froma vertex

x ∈ V to the same vertex xwith l arcs, we calculateM lP , in which the matrix multiplicationM
l−1
P ×MP is defined as the usual

matrix multiplication where min is substituted for · and max for+. Remark that the first multiplicationMP ×MP assigned
toM2P takes place before the for-loop in line 3, since it is impossible for cycles of length 2 to occur due to the reciprocity of
the mutual rank probability relationMP . Each subsequent multiplication is executed inside the for-loop in line 6. If it holds
thatM lP [x, x] > 1/2 (line 9), there is a closed walk with l arcs. It is clear that, if there is no closed walk with l arcs, an l-cycle
is impossible, so no further check is needed. If there is a closed walk of length l and l < 6, there is an l-cycle (line 10). Indeed,
due to the fact that if an arc (x, y) is present in the rank probability graph, no arc (y, x) can be present, the smallest cycles
that can occur have length 3. For l = 6, a closedwalk of length 6 could arise from two cycles of length 3 sharing one common
vertex. Therefore it is clear that for l ≥ 6 a situation can occur in which a closed walk of length l is the composition of two
or more cycles.
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Algorithm 1 Checking whether a given poset (P,≤P) contains a LEM cycle of length lwhere l = 2, 3, . . . , kwith k ≤ n
1: construct the lattice of ideals (I(P),⊆) of (P,≤P)
2: compute the mutual rank probability relationMP using (I(P),⊆)
3: M2P ← MP ×MP
4: for each l = 3, 4, . . . , k do
5: cycle[l] ← false
6: M lP ← M l−1P ×MP
7: c ← 0
8: for each j = 1, . . . , n do
9: ifM lP [j, j] > 1/2 then
10: if l < 6 then
11: cycle[l] ← true
12: break for
13: c ← c + 1
14: elem[c] ← j
15: if c ≥ l then
16: for each i = 1, 2, . . . , c do
17: if there is an l-cycle starting in elem[i] then
18: cycle[l] ← true
19: break for
20: return cycle

Since we are searching for l-cycles, it is clear that, in order for such a cycle to occur, at least l elements should have a
closed walk of length l (line 15). Finally, an explicit depth-first search should be done for each candidate element (line 17),
i.e. each element x having M lP [x, x] > 1/2, to verify whether an l-cycle is present. For each such candidate, recursively all
possible successor arcs which have not yet been visited are selected until exactly l arcs have been chosen. Subsequently, if
the vertex at the last arc is the starting vertex, a cycle is detected.
The algorithmwe implemented is a slight variant of the above one, in the sense that we search for all possible LEM cycles

of length l instead of just returning whether P contains a LEM cycle of length l. Moreover, each poset in which a LEM cycle
occurs is stored in a database for future reference.

4. Results

When generating posets on n elements, the generation algorithm of Brinkmann and McKay [28] will, for arbitrary
r,m ∈ N, r < m, generate all posets on n − 4 elements and number them in the order they occur, while only generating
successors of those posets whose number equals r mod m. This option allowed us to split the generation process, and thus
the counting procedure. For n = 12, we divided the generation process into 100 parts and for n = 13 into 1000 parts.
Rescaled to a single 2.4 GHz processor the entire process for n = 13 would take around 4 computing years. Because of the
fact that the number of posets for n = 14 is almost 40 times larger than the number of posets for n = 13, combined with
the exponential behaviour in n of the number of ideals, it is not possible to obtain results for n > 13 in a feasible time frame
with our approach, unless substantially more computing power is available. Moreover, due to the growing size of the lattice
of ideals, the size of the memory also becomes a constraining factor for larger values of n.
In order to verify the correctness of the implementation of the algorithm, for posets on up to 9 elements all mutual

rank probability relations were compared to the results of an independent implementation based on the Varol–Rotem
algorithm [30] that generates all linear extensions of a given poset, and then deduces the mutual rank probability relation
for each poset.

4.1. LEM cycles

In Table 2, the number of n-element posets with l-cycles is shown, while in Table 3 the relative number of n-element
posets with l-cycles, multiplied by 104, is shown.
Clearly, the results in Table 3 provide additional support for the conjecture formulated by Gehrlein and Fishburn [11]

that the likelihood of observing a random poset with a LEM cycle increases as n increases. The rate at which the likelihood
increases, however, seems to decreasewith increasing n. This is in accordancewith the LEM cycle frequency estimatesmade
by Gehrlein [12].
When using nonlinear optimization to fit a function f (x) = a + b · x + x · log(x) with two parameters a, b ∈ R to the

total relative frequencies in Table 3, we found values a = 5.2304 and b = −2.7572 such that f (x) explains 99.59% of the
variance. Of course, using such a formula to estimate the incidence of n-elements with LEM cycles should be donewith great
caution, especially for larger n. We expect, however, that for n smaller than 50, a reasonable approximation can be obtained
by using f (x).
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Table 2
Number of n-element posets with LEM cycles of length l, for n = 9, 10, . . . , 13 and l = 3, 4, . . . , 8.

n|l 3 4 5 6 7 8 All

9 5 – – – – – 5
10 148 6 – – – – 153
11 5740 101 – – – – 5815
12 216573 2885 5 21 – – 218097
13 9318881 102127 471 363 1 – 9348400

Table 3
Relative number of n-element posets with LEM cycles of length l, multiplied by 104 , for n = 9, 10, . . . , 13 and l = 3, 4, . . . , 8.

n|l 3 4 5 6 7 8 All

9 0.273 – – – – – 0.273
10 0.576 0.023 – – – – 0.596
11 1.228 0.022 – – – – 1.244
12 1.960 0.026 0.000 0.000 – – 1.974
13 2.755 0.030 0.000 0.000 0.000 – 2.764

Fig. 1. The smallest poset with height one having a LEM cycle, where p(9 > 7) = p(10 > 8) = 174660/349260 and p(8 > 9) = p(7 > 10) =
174790/349260.

Table 4
Number of n-element posets of height 1 with LEM cycles of length l, for n = 11, 12, 13 and l = 3, 4, . . . , 7.

n|l 3 4 5 6 7 All

11 – 2 – – – 2
12 11 9 – 1 – 20
13 175 123 – 3 – 296

Table 5
Relative number of n-element posets with height 1 having LEM cycles of length l, multiplied by 104 , for n = 11, 12, 13 and l = 3, 4, . . . , 7.

n|l 3 4 5 6 7 All

11 – 0.308 – – – 0.308
12 0.219 0.179 – 0.020 – 0.399
13 0.345 0.273 – 0.006 – 0.584

4.2. Other results

4.2.1. Posets of height 1
Ewacha et al. [15] have shown that posets with height 1 can have LEM cycles. Our results indicate that the smallest

posets having this property have 11 elements. Actually, there are only two such 11-element posets: the poset depicted in
Fig. 1 and its dual poset which have a cycle of length 4. The results of this counting operation for n = 11, 12, 13 are shown
in Table 4, while the relative number of n-element posets with height 1 having LEM cycles are shown in Table 5. Remark
that no 11-element poset with height 1 has cycles of length 3. An analogous observation can bemade for 12 and 13-element
posets with height 1: although cycles with length 6 occur, no poset has cycles of length 5. It is clear that the probability of
encountering an n-element poset with a LEM cycle in a poset of height 1 is much lower than the probability in the whole
space of n-element posets. Note, also that the relative number of posetswith height 1 andwith a LEM cycle seems to increase
at a lower pace than the total number of n-element posets with LEM cycles.

4.2.2. Worst balanced posets
For a poset (P,≤P), the balance constant b(P) is defined as the maximum over all pairs (x, y) ∈ P of min(p(x > y),

p(y > x)). Worst balanced n-element posets are n-element posets of which the balance constant is the smallest and which
are not a linear sum of other posets. The importance of these worst balanced posets stems from a well-known conjecture
made by Kislitsyn in 1968 [3], known as the 1/3-2/3-conjecture. It states that in any non-chain poset P one can always find
a couple of elements (x, y) ∈ P such that 1/3 ≤ p(x > y) ≤ 2/3. Brightwell, Felsner and Trotter [31] proved that there
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Fig. 2. All worst balanced posets for n = 3, 4, . . . , 13.

exists a couple of elements (x, y) ∈ P such that (5 −
√
5)/10 ≤ p(x > y) ≤ (5 +

√
5)/10 and showed that for a class of

countably infinite posets for which the notion ofmutual rank probabilitiesmakes sense, it is the best possible bound. A finite
non-chain poset for which b(P) < 1/3 would be a counterexample to this conjecture. In this context it would be interesting
to know the structure of posets of which the balance constant approaches 1/3 as close as possible.
Brightwell [32] presented all worst balanced posets for n up to 8, and Peczarski [33] found the worst balanced posets for

n = 9, 10, 11. Due to the regularity one can observe, Peczarski introduced a new class of badly balanced posets, which he
called ladders with broken rungs. We obtained the worst balanced posets for n = 12, 13, and, as can be seen in Fig. 2, they
indeed fall into Peczarski’s class of ladders with broken rungs.

5. Conclusion

In this paper, an approach using the lattice of ideals representation of a poset enabled us to enumerate all posets on up
to 13 elements containing LEM cycles. The complete list of all posets with LEM cycles can be obtained from the authors and
can be helpful in the search for counterexamples to conjectures concerning LEM cycles. Furthermore, all posets of height 1
on up to 13 elements as well as all worst balanced posets on up to 13 elements are found.
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