Two-fold symmetrical 6R foldable frame and its bifurcations

Yan Chena, Zhong Youb,*,1

aSchool of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
bDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

Abstract

In this paper, we have discovered that a type of two-fold symmetrical 6R foldable frame proposed as a deployable core structure to support solar blankets in space applications is actually a line and plane-symmetric Bricard linkage. Using the singular value decomposition of the Jacobian matrix of closure equations, we are able to show that bifurcations exist during deployment of the frame. And the bifurcations cannot be avoided in current designs. However, we also identified a feasible area for design parameters in which bifurcations can be completely removed. A physical model has been made which proves that our conclusion is correct.

1. Introduction

Deployable polygonal frames are widely used in aerospace structures to support antenna reflectors and solar blankets (Fang et al., 2004). First proposed by Crawford et al. (1973), the frames consist of a closed loop of bars connected by revolute hinges. They can have various forms, from squares, rectangles to hexagons. A comprehensive review of its applications was given by Gan and Pellegrino (2006).

This paper focuses on rectangular frames. A conceptual design of such frames was proposed by Pellegrino et al. (2000) and Hutt (2007). The frame, shown in Fig. 2, consists of a loop of 6 links of square cross sections connected by revolute hinges. The frame has two-fold symmetry. It expands to a rectangular profile and can be packaged into a bundle. Two side bars, 2 and 3 and 5 and 6, remain parallel in its conventional deployment, which makes it ideal as a support frame for solar blankets because it can be rolled onto the parallel bars. However, it has been noted that there exists bifurcation during deployment.

In this paper, using the technique employed by us previously for 4R frames (Chen and You, 2006), we shall show that the foldable 6R rectangular frame is in fact an alternative form of a special kind of Bricard linkage with both line and plane symmetry (Bricard, 1897, 1927). Comprehensive reviews on the Bricard linkage and relevant 6R overconstrained linkages can be found in Baker (1980), Phillips (1990), Chen (2003) and Cui and Dai (2009). Because of the symmetric characteristics, this special Bricard linkage has bifurcations during deployment. By a comprehensive analysis of the kinematic characters of this special Bricard linkage using the technique similar to that proposed by Gan and Pellegrino (2006), we are able to detect these bifurcations. Moreover, we have found a feasible set of design parameters that lead to construction of frames without bifurcation. This discovery removes the requirement of additional appendages to avoid deployment bifurcations and therefore greatly improves the deployment reliability of the frame.

The layout of the paper is as follows. Section 2 establishes a link between the special Bricard linkage and the foldable 6R frame. In Section 3, a kinematic analysis is conducted in order to investigate the bifurcations. Based on the analysis, a new frame design without motion bifurcation is presented in Section 4. Conclusions and further discussion is given in Section 5 which ends the paper.

2. The special case of Bricard linkage and the foldable six-bar frame

2.1. The Bricard linkages

The Bricard 6R linkages have six distinct types, that can be summarised as follows (Baker, 1980; Phillips, 1990).

(a) The general line-symmetric case

\begin{align*}
& a_{12} = a_{45}, \quad a_{23} = a_{56}, \quad a_{34} = a_{61} \\
& x_{12} = x_{45}, \quad x_{23} = x_{56}, \quad x_{34} = x_{61} \\
& R_1 = R_4, \quad R_2 = R_5, \quad R_3 = R_6
\end{align*}

(1)
The folding sequence of the 6R foldable frame in motion sequences, respectively. For the first linkage, each joint or link of the linkage is line-reflected in the line of symmetry, which is located in the centre of the linkage, whereas for the second one, they are plane-reflected in the plane of symmetry, which always passes through joint axes 1 and 4.

2.2. The 6R foldable frame

The geometry of the 6R foldable frame proposed by Pellegrino et al. (2000) is shown in Fig. 5. Six bars with square cross section, 1–2, 2–3, 3–4, 4–5, 5–6 and 6–1, are connected by six hinges at 1, 2, 3, 4, 5, 6.
3, 4, 5 and 6, to form a rectangular frame with a symmetric plane passing through hinges 1 and 4. Note that the bars are laid tilted by an angle μ, and the hinges are placed on either the inner or outer surface of the bars. The frame can be folded into a bundle. Links 12, 34, 45, and 61 have length l_1, and links 23 and 56 have length l_2. The conventional folding sequence of such a frame is shown in Fig. 2. When $2l_1 < l_2$, the frame can be folded and hinges 1 and 4 are a distance apart in the folded configuration. When $2l_1 = l_2$, the frame is a square and hinges 1 and 4 meet when completely folded. When $2l_1 > l_2$, the frame cannot be completely folded as hinges 1 and 4 collide during folding.

This 6R frame is a linkage with usually one internal mobility. It is not in the original form of a 6R linkage because in mechanism theory, links always span the shortest distance between two adjacent revolute hinges, whereas here the physical links do not. Thus we name the frame as the alternative form of the original linkage. By extending the hinge axes of the six-bar frame, we are able to identify the corresponding links of the original linkage, see Fig. 6.

Because of symmetry of the 6R frame, we have

$$a_{12} = a_{34} = a_{45} = a_{61}. \quad (7a)$$

Since axes of joints 2 and 3 meet at point A and axes of joints 5 and 6 meet at point B, we have

$$a_{23} = a_{56} = 0. \quad (7b)$$

Following the convention given by Beggs (1966), we can define axes X's and Z's in the original 6R linkage shown in Fig. 7. Let X_3 at point A be perpendicular to both Z_2 and Z_3 and point out of the paper, and X_6 at point B be perpendicular to axes Z_5 and Z_6 and also point out of the paper, as shown in Fig. 7. So the twists of the linkage are

$$a_{12} = a_{45} = \frac{3\pi}{2}, \quad a_{34} = a_{61} = \frac{\pi}{2}. \quad (8a)$$

$$a_{23} = a_{56}. \quad (8b)$$

and

$$R_1 = R_4 = 0 \quad \text{and} \quad -R_2 = R_3 = -R_5 = R_6. \quad (9)$$

Compare (7)–(9) with (1), we can conclude this original linkage is a line-symmetric Bricard linkage with a symmetric line passing through the centre and perpendicular to the paper for the configuration in Fig. 7.

Note that, if either X_3 or X_6 is reversed, which is possible because they correspond to zero length links, the twists a_{23} or...
\(\alpha_{56} \) have to change accordingly. For instance, if \(X_6 \) reverses its direction, (8b) becomes

\[
\alpha_{56} = 2\pi - \alpha_{23},
\]

which indicates that this original linkage is actually a plane-symmetric Bricard linkage by comparing it with (2).

We therefore conclude that the corresponding original linkage of the 6R frame is a special Bricard linkage with both line and plane symmetries. Next, we try to find the relationship between the geometric parameters of the original linkage and those of the alternative form.

Because of symmetry, only links 12 and 23 are studied, as shown in Fig. 8 with both the original linkage and the alternative form. Let \(ED = l_1 \) and \(EG = l_2 \). We have

\[
\angle DEM = \angle KEM = \arcsin \frac{1}{\sqrt{1 + \cos^2 \mu}},
\]

DM is the link 12 in original linkage; MA is the offset of joint 2; and \(\angle FAH \) is the twist of link 23. So we have

\[
a_{12} = \frac{l_1}{\sqrt{1 + \cos^2 \mu}},
\]

\[
R_1 = \frac{l_2}{2} \sqrt{1 + \cos^2 \mu} - l_1 \frac{\cos \mu}{\sqrt{1 + \cos^2 \mu}} \quad \text{and}
\]

\[
\alpha_{23} = \arccos \frac{1 - \cos^2 \mu}{1 + \cos^2 \mu}
\]

For the 6R frame, the kinematic angles of the original linkage corresponding to the fully deployed and fully folded configurations are
\[h_1 = \frac{1}{2} \arcsin \left(\frac{1}{\sqrt{1 + \cos^2 \mu}} \right) - \pi, \]
\[h_2' = \frac{\pi}{2} + \arccos(\cos^2 \mu), \]
\[h_1' = -2 \arcsin \left(\frac{1}{\sqrt{1 + \cos^2 \mu}} \right) \quad \text{and} \quad h_2' = \frac{3\pi}{2} \quad (11) \]

Superscripts 'd' and 'f' indicate the deployed and fully folded configurations.

3. The analysis of kinematic path and bifurcation

For a 6R foldable frame, the geometric parameters of the original line and plane-symmetric Bricard linkage can be obtained from (10). The parameters with line-symmetric case in (7)–(9) will be used for derivation of kinematic path. So the closure equation is, using Denavit and Hartenberg notation (Beggs, 1966),

\[[T_{61}] \cdots [T_{34}][T_{23}][T_{12}] = [I] \]

where

\[[T_{i(i+1)}] = \begin{bmatrix}
C\theta_i & S\theta_i & 0 & -a(i-1) \\
-C\theta_i S\theta_i & C\theta_i & S\theta_i & -R_i S\theta_i (i+1) \\
S\theta_i & -C\theta_i & 0 & -R_i C\theta_i (i+1) \\
0 & 0 & 0 & 1
\end{bmatrix} \]

\[(i = 1, 2, \ldots, 6 \text{ and when } i+1 > 6, \text{ it is replaced by } 1). \]

The closure Eq. (12) contains six unknown variables, \(\theta_1-\theta_6 \), and usually only one of them is independent because this linkage has in general one degree of mobility. A numerical method, the singular

Fig. 11. Singular values of Jacobian matrix vs. \(\theta_1 \) for a linkage with \(R/a = 3/2 \) and \(\alpha = \pi/2 \). The sixth singular value (SV6) is always zero.

Fig. 12. The linkage at bifurcation configuration.

Fig. 13. Kinematic paths of the linkage with \(R/a = 3/2 \) and \(\alpha = \pi/2 \), where the path for the line and plane-symmetric Bricard linkage is in grey and the one for 4R spherical linkage is in black. The intersection points of two paths in \(\bigstar \) are the bifurcation points. (a) \(\theta_1 \) vs. \(\theta_2 \) and (b) \(\theta_3 \) vs. \(\theta_2 \).
The value decomposition of Jacobian matrix of the system with the predictor and corrector steps (Lay, 2003; Gan and Pellegrino, 2006), is applied to obtain the kinematic path. The detail of this approach is given in Appendix A.

For the original linkage of the 6R frame, we set

- \(a_{12} = a_{34} = a_{45} = a_{61} = a \)
- \(a_{23} = a_{56} = 0 \)

and

- \(R_1 = R_4 = 0 \)
- \(-R_2 = R_3 = -R_5 = R_6 = R \).

The general kinematic path of this mechanism is shown in Fig. 9. It is found that the path is independent of \(R \) and \(a \).

In the numerical method of singular value decomposition, the six singular values of Jacobian matrix can be monitored. The sixth singular value for the Bricard linkage is always zero, which corresponds to the one degree of mobility. Meanwhile, there is some point that the fifth singular value becomes zero on the kinematic path, which is related to the bifurcation of the linkage.

Through numerical analysis, we are able to group the bifurcations into four cases, which will be discussed in detail next. By observing the bifurcated configurations, we are able to analytically derive the boundaries according to the ratio \(R/a \) and \(\alpha \). These boundaries are shown in Fig. 10.

Fig. 14. Motion sequence of the linkage passing the bifurcation point. (a) Configuration with \(\theta_1 = -\pi/2 \) and \(\theta_2 = \pi/2 \); (b) bifurcation point; (c) and (d) on the path of line- and plane-symmetric Bricard linkage; (e) and (f) on the path of a spherical 4R linkage.

Fig. 15. Singular values of Jacobian matrix vs. \(\theta_1 \) for a linkage with \(R/a = 4/5 \) and \(\alpha = \pi/2 \). The sixth singular value (SV6) is always zero.
CASE I: \(\frac{3}{5} > \cot \frac{\alpha}{2} \) \(0 < \alpha < \frac{\pi}{2} \) and \(\frac{3}{5} \geq \tan \frac{\alpha}{2} \) \(\frac{\pi}{2} < \alpha < \pi \)

A typical set of relationships between singular values and kinematic variable \(\theta_1 \) is shown in Fig. 11 for a linkage with \(R/a = 3/2 \) and \(\alpha = \pi/2 \). The bifurcation occurs when \(\theta_1^b = -67.38 \). At this configuration the axes of hinges 2, 3, 5, and 6 meet at the same point due to the line and plane symmetry of the linkage. Such a configuration always exists on the kinematic path of a Case I linkage, as shown in Fig. 12. Considering the geometry, it can be found that at the bifurcation point,

\[
\theta_1^b = -\arccos \frac{R^2 - a^2}{R^2 + a^2}. \quad (14g)
\]

In fact, when bifurcation occurs the linkage becomes a 4R spherical linkage with revolute joints being 2, 3, 5, and 6. \(\theta_1 \) and \(\theta_3 \) do not change when the linkage moves to the new kinematic path after bifurcation, as shown in Fig. 13, implying that links 61 and 12 are rigidified into one link, so are the links 34 and 45. The motion sequence of this linkage passing the bifurcation point is shown in Fig. 14.

It can also been shown analytically using (10), (11) and (14) that \(\theta_1^b \) is always between \(\theta_1^d \) and \(\theta_1^f \).

Further study shows that this particular 4R spherical linkage also has bifurcation points also due to the symmetric geometry of the linkage. These bifurcations warrant in-depth investigation and they are not shown in Fig. 14.

CASE II: \(\frac{3}{5} < \cot \frac{\alpha}{2} \) \(0 < \alpha < \frac{\pi}{2} \) and \(\frac{3}{5} \leq \tan \frac{\alpha}{2} \) \(\frac{\pi}{2} < \alpha < \pi \)

There is no such configuration as in Case I where the axes of revolute joints 2, 3, 5, and 6 meet at the same point. However, the fifth singular value still reaches zero when

\[
\theta_1^b = \arccos \frac{a^2 - R^2}{a^2 + R^2}. \quad (14h)
\]
which is the configuration where revolute joints 1 and 4 are in the same position though the axes of the joints are not collinear. One example of the relationship between singular values and kinematic variable h_1 is shown in Fig. 15, in which $R/a = 4/5$ and $a = \pi/2$. The bifurcation happens when $h_1 = 77.32$. The bifurcation leads the linkage into a kinematic path of a plane-symmetric Bricard linkage, see Fig. 16. The motion sequence of this linkage passing through the bifurcation point is shown in Fig. 17.

Similar to Case I, θ'_6 is always between θ_1 and θ'_1.

CASE III: $\tan \frac{\alpha}{2} \leq \frac{\theta'_1}{\theta'_6} \leq \cot \frac{\alpha}{2} \left(0 < \alpha \leq \frac{\pi}{2}\right)$

In this case, the linkage does not have any bifurcation. A typical relationship between singular values and kinematic variable θ_1 is shown in Fig. 19 where $R/a = 1$ and $a = 2\pi/3$. The sixth singular value (SV6) is always zero.
4. Design of frames without bifurcation

From the discussions above, Case IV frames do not have bifurcation. Hence, ideally the parameters that satisfy Case IV conditions should be used for the frame design. Prior to doing so, let us revisit the other conditions that a frame design should meet. First, the cutting angles between the horizontal and vertical links at the corners where they meet must be equal in order to have compact folding. For instance, in the case of the frame shown in Fig. 5, the corners are at joints 2, 3, 5 and 6 and the cutting angles is $\pi/2$ regardless what l is. This is because the horizontal bars become parallel to the vertical ones when the frame is fully packaged. Secondly, the central revolute hinges always remain in the symmetrical plane, e.g., plane that passes joints 1 and 4 in the frame shown in Fig. 2. These requirements results in that α, the twists of the original Bricard linkage for those links corresponded to horizontal bars, can only be between 0 and $\pi/2$. Hence, for the 6R foldable frame shown in Fig. 5 with $2l_1 \leq l_2$, $0 \leq \mu \leq \pi/2$, and, R/a is always greater than or equal to $\tan(\alpha/2)$ because of the geometric relationship given in (10) and (11). So this frame design always falls into Cases I or II with at least one bifurcation point at θ_1^f and $\theta_1^0 \leq \theta_1^f \leq \theta_1^0$. The bifurcation of one of such frame models is shown in Fig. 20.

To use geometrical parameters which fall in the region of Case IV, we should aim for Bricard linkages with α greater than $\pi/2$. This only becomes possible when the horizontal bars are replaced by inclined bars. Fig. 21 shows such an example in which $R/a = 1$ and $\alpha = 2\pi/3$ ($\alpha_{12} = \alpha_{45} = 3\pi/2$, $\alpha_{23} = \alpha_{56} = \alpha = 2\pi/3$ and $\alpha_{34} = \alpha_{41} = \pi/2$). As expected no bifurcation is detected in the model. The design retains two-fold symmetry.

5. Conclusions and discussion

In this paper, we have identified the original linkage for the two-fold symmetrical 6R foldable frame proposed by Pellegrino et al. (2000) and Hutt (2007). It is in fact a line and plane-symmetric Bricard linkage. We have grouped the geometrical parameters of the linkage into four cases and using the singular value decomposition of the Jacobian matrix of closure equations, we have found bifurcations exist in its kinematic paths in three out of four cases. Moreover, the bifurcations exist between the folded and fully expanded configurations and therefore they are unavoidable in the proposed design.

Through our analysis, we show that only Case IV Bricard linkages do not have bifurcations. A frame design, which retains two-fold symmetry, is proposed. The appearance of this design differs from the previous one in that four horizontal bars are now inclined.

It should be noted that Hutt (2007) also suggested a bifurcation-free design which has only one-fold symmetry. In the design, the square section of the side members twists from one end to the other. Because our current study focuses on frames with two-fold symmetry, it is beyond the scope of this paper. However, the same
link could be made to the original Bricard linkages and its motion paths can be studied accordingly. The bifurcations exist in current or any other frame designs may be utilised to build reconfigurable frames. This is a topic that warrants further investigation.

Acknowledgments

Y. Chen would like to acknowledge the support from the Nanyang Technological University, Singapore, in the form of a research Grant (RG21/05) and subsequent academic leave to undertake works related to this article. Z. You would like to thank Dalian University of Technology for awarding him a Haitian Fellowship during this research. Both authors are grateful to Mr. W. H. Chai and Mr. S.Y. Liu for the model fabrication and simulation in SolidWorks®, and to Mrs A. May for proofreading this paper.

Appendix A

Using the Denavit–Hartenberg notation (Beggs, 1966), the necessary and sufficient mobility condition for a closed loop linkage is shown in (12). For matrix \([T_{i(i-1)}] \), given in (13), the following relationship holds.

\[
[T_{i(i-1)}] = [T_{i(i-1)}]^{-1} =
\begin{bmatrix}
C_{i0} & -C_{i0} & C_{i0} & a_{i0} & C_{i0} & S_{i0} \\
S_{i0} & C_{i0} & -S_{i0} & C_{i0} & S_{i0} & a_{i0} \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\] (A1)

In order to conduct the predictor and corrector step in the singular value decomposition of the Jacobian matrix of the system as suggested by Gan and Pellegrino (2006), the transfer matrix in (13) is divide into two matrices, one is the transfer due to the link’s geometric parameters, i.e., the two translations from link length \(a_{i(i-1)} \) and the offset \(R_i \), and the rotation from link twist \(\omega_{i(i+1)} \), marked as \([T_{i(i-1)}]^2\), which is constant for any configuration; the other is the transfer due to the rotation of revolute joint \(\theta_i \), marked as \([T_{i(i-1)}]^1\), which is changed with the joint rotation. So we have

\[
[T_{i(i-1)}] = [T_{i(i-1)}]^1 \cdot [T_{i(i-1)}]^2
\] (A2)

where

\[
[T_{i(i-1)}]^2 =
\begin{bmatrix}
1 & 0 & 0 & -a_{i0} \\
0 & C_{i0} & S_{i0} & -R_iS_{i0} \\
0 & -S_{i0} & C_{i0} & -R_iC_{i0} \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (A3a)

and

\[
[T_{i(i-1)}]^1 =
\begin{bmatrix}
C_{i0} & S_{i0} & 0 & 0 \\
-S_{i0} & C_{i0} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (A3b)

The closure Eq. (12) then becomes

\[
[T_{i(i-1)}][T_{i(i-1)}]^2[T_{i(i-1)}]^1[T_{i(i-1)}] = [I].
\] (A4)

If taking revolute joint 1 as input of the linkage, see Fig. 6, the linkage moves from configurations \(\theta_i \) to \(\theta_i + \Delta \theta_i \) \((i = 1, 2, \ldots, 6)\). In both configurations, the closure Eq. (A4) should be satisfied. For a very small \(\Delta \theta_i \), using the Taylor expansion of the kinematic variables and ignoring the higher-order terms, the transfer matrix of the revolute joint is

\[
[T_{i(i-1)}]^{\Delta \theta_i} =
\begin{bmatrix}
C(\theta_i + \Delta \theta_i) & S(\theta_i + \Delta \theta_i) & C(\theta_i + \Delta \theta_i) & 0 & 0 \\
-S(\theta_i + \Delta \theta_i) & C(\theta_i + \Delta \theta_i) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\approx [T_{i}]^1
\]

or

\[
\begin{bmatrix}
-S \theta_i & C \theta_i & 0 & 0 \\
-C \theta_i & -S \theta_i & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\Delta \theta_i = [T_{i}]^1 + [T_{i}]^1 \Delta \theta_i.
\] (A5)

Substituting (A5) into (A4) for each kinematic variable, we have

\[
[T_{i}]^1 \left([T_{i}]^1 + [T_{i}]^1 \Delta \theta_i \right) = [T_{i}]^1
\]

\[
\times [T_{i}]^1 + [T_{i}]^1 \Delta \theta_i = [I].
\] (A6)

Because of (A4), it can be derived that

\[
[T_{i}] \Delta \theta_i + [T_{i}] \Delta \theta_i + \cdots + [T_{i}] \Delta \theta_i = [0]
\] (A8)

where

\[
[T_{i}] = [T_{i}]^1 [T_{i}]^2 [T_{i}]^3 [T_{i}]^4 [T_{i}]^5 [T_{i}]^6]
\]

\[
[T_{i}] (i = 1, 2, \ldots, 6)
\]

in which \(t \)'s are non-zero elements in the matrix. Due to the skew-symmetry, \([T_{i}]\) has only six independent parameters which form the Plucker coordinates of each joint axis. Therefore, (A8) is equivalent to a 6 × 6 system of equations, whose coefficient matrix is known as the Jacobian of the system

\[
\begin{bmatrix}
T_{i12} & T_{i21} & T_{i32} & T_{i42} & T_{i52} & T_{i62} & T_{i61} \\
T_{i13} & T_{i23} & T_{i33} & T_{i43} & T_{i53} & T_{i63} & T_{i61} \\
T_{i14} & T_{i24} & T_{i34} & T_{i44} & T_{i54} & T_{i64} & T_{i61} \\
T_{i15} & T_{i25} & T_{i35} & T_{i45} & T_{i55} & T_{i65} & T_{i61} \\
T_{i16} & T_{i26} & T_{i36} & T_{i46} & T_{i56} & T_{i66} & T_{i61} \\
\end{bmatrix}
\]

\[
\Delta \theta_i = [0]
\] (A9)

\[
[T_{i}] = [T_{i}]^1 [T_{i}]^2 [T_{i}]^3 [T_{i}]^4 [T_{i}]^5 [T_{i}]^6]
\]

When the system has one mobility, the large matrix on the left in (A9) will have a rank of 5 rather than full rank 6. This means that (A9) has a single set of infinity solutions and the six Plucker coordinates of the linkage are linearly dependent. So the solution of (A9) is the infinitesimal displacement of the linkage at the current configuration, which can be found by computing the singular value decomposition (SVD) of the Jacobian matrix.

In the numerical simulation, a small finite displacement, \(\Delta \theta_i \) \((i = 1, 2, \ldots, 6)\), which is called predictor and proportional to the infinitesimal solution of (A9), is added to \(\theta_i \) to update the linkage to the predicted configuration, \(\theta_i' = \theta_i + \Delta \theta_i \). However, this lin-
ear relationship is very likely to induce small errors to the kinematic paths, which is mostly non-linear. Therefore, under the predicted configuration, \((A4) \) becomes
\[
\frac{1}{2} T_{L61}^T [E] + C138 [E] = [I] + [E],
\]
where \([E] \) is the error matrix.

We therefore add a corrector, \(\Delta \theta_i \), to the predictor displacement to make the linkage moves to the new correct configuration on the kinematic paths, i.e.
\[
\theta_i^p = \theta_i^p + \Delta \theta_i^c = 0_i + \Delta \theta_i^c + \Delta \theta_i^f,
\]
under which \((A4) \) is satisfied.

From \((A10)\)–\((A12) \), it can be obtained that
\[
[I] = T_{06}^p \Delta \theta_6^c + \cdots + T_{12}^p \Delta \theta_1^c = [E],
\]
where \(T_{06}^p = [T_{06}^p | T_{16}^p | T_{26}^p | \cdots | T_{12}^p | T_{12}^p | T_{11}^p | \cdots] \), etc.

The solution of \((A13) \) can be obtained with the same SVD method. The new configuration will be used as initial one for next iteration in calculation. And after a number of iterations, the full kinematic paths of the linkage can be found.

References

