Uniqueness of Best L_1-Approximations
from Periodic Spline Spaces

G. MEINARDUS

Fakultät für Mathematik und Informatik,
Universität Mannheim,
6800 Mannheim, West Germany

AND

G. NÜRNBERGER

Mathematisches Institut, Universität Erlangen-Nürnberg,
8520 Erlangen, West Germany

Communicated by Oved Shisha

Received December 8, 1987

It is shown that every periodic continuous function has a unique best L_1-approximation from a given periodic spline space, although these spaces are not weak Chebyshev in general. © 1989 Academic Press, Inc.

INTRODUCTION

Standard spaces for approximating periodic continuous functions $f: [a, b] \to \mathbb{R}$ (i.e., $f(a) = f(b)$) are spaces of periodic splines. We denote by $P_m(K_n)$ the n-dimensional space of periodic splines of order $m \geq 2$ with the set of knots $K_n = \{x_0, \ldots, x_n\}$, where $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

The space $P_m(K_n)$ is weak Chebyshev for odd n. We show that any periodic weak Chebyshev space G (i.e., $g(a) = g(b)$ for all $g \in G$) with some additional property is necessarily of odd dimension. In particular, the space $P_m(K_n)$ is not weak Chebyshev for even n.

Our object is to prove a uniqueness result on best L_1-approximation by periodic splines. The standard spaces for which uniqueness of best L_1-approximations is known are all weak Chebyshev and have even a stronger property (A) (cf. Sommer [4] and Strauss [5]). We show that every periodic continuous function has a unique best L_1-approximation from $P_m(K_n)$, although $P_m(K_n)$ is not weak Chebyshev in general.
BEST L_1-APPROXIMATIONS

MAIN RESULTS

Let $C'[a, b]$ be the space of all r-times continuously differentiable real functions on the interval $[a, b]$. The space of polynomials of order at most m is denoted by Π_m. Let a set of knots $K_n = \{x_0, ..., x_n\}$ with $n \geq 1$ and $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ be given. For $m \geq 2$ we call

$$P_m(K_n) = \{s \in C^{m-2}[a, b] : s\mid_{(x_{i-1}, x_i)} \in \Pi_m, i = 1, ..., n, s^{(j)}(a) = s^{(j)}(b), j = 0, 1, ..., m-2\}$$

the space of periodic splines of order m with the set of knots K_n.

An n-dimensional subspace G of $C[a, b]$ is called weak Chebyshev, if every function $g \in G$ has at most $n - 1$ sign changes; i.e., there do not exist points $a < t_1 < \cdots < t_{n+1} < b$ such that $g(t_i) g(t_{i+1}) < 0$, $i = 1, ..., n$.

We note that by induction on m using Rolle's theorem it is not difficult to verify that every spline in $P_m(K_n)$ has at most $n - 1$ (respectively n) sign changes, if n is odd (respectively even). In particular, the n-dimensional space $P_m(K_n)$ is weak Chebyshev for odd n (compare also Schumaker [3]).

Our first result on weak Chebyshev spaces of periodic functions implies that this is not true for even n.

A subspace G of $C[a, b]$ is called periodic, if $g(a) = g(b)$ for all $g \in G$. This definition differs from that given in Zielke [6, p. 20].

We next show that certain periodic weak Chebyshev spaces must have odd dimension. A similar result, which can be easily derived from Theorem 1, was proved in Zielke [6, p. 20].

THEOREM 1. Let G be a periodic weak Chebyshev subspace of $C[a, b]$. If there exists a function $g_0 \in G$ with $g_0(a) \neq 0$, then the dimension of G is odd.

Proof. Let $g_1, ..., g_n$ form a basis of the n-dimensional periodic weak Chebyshev subspace G of $C[a, b]$. Since the functions $g_1, ..., g_n$ are linearly independent, there exist points $a \leq t_1 < \cdots < t_n \leq b$ such that the determinant $\det(g_j(t_i))_{i,j=1}^n$ is nonzero. Thus there exists a function $g \in G$ such that

$$g(t_i) = (-1)^i, \quad i = 1, ..., n.$$

We first consider the case $g(a) \neq 0$. Then we have $\sgn g(a) = -1$, since otherwise by considering the points $a, t_1, ..., t_n$ we see that g has n sign changes, contradicting the assumption that G is weak Chebyshev. Since g is a periodic function, we have $\sgn g(b) = -1$. For even n we get $\sgn g(t_n) = 1$. By considering the points $t_1, ..., t_n, b$ we see that g has again n sign changes, contradicting our assumption. We now consider the case $g(a) = 0$. Let $g_0 \in G$ be the function with $g_0(a) \neq 0$. We may assume that
\(\text{sgn } g_0(a) = 1. \) For all \(\varepsilon > 0 \) we define the function \(g_\varepsilon \in G \) by \(g_\varepsilon = g + \varepsilon g_0. \) Then

\[\text{sgn } g_\varepsilon(a) = 1 \]

and for sufficiently small \(\varepsilon > 0 \) we still have

\[\text{sgn } g_\varepsilon(t_i) = (-1)^i, \quad i = 1, ..., n. \]

Hence \(g_\varepsilon \) has at least \(n \) sign changes, contradicting our assumption. This proves Theorem 1.

We note that Theorem 1 is no longer true, if we drop the assumption that there exists a function \(g_0 \in G \) with \(g_0(a) \neq 0. \) This can be seen by following the example.

Let points \(a = x_1 < x_2 < \cdots < x_{n+m} = b \) be given and \(G = \text{span} \{ B_1^m, ..., B_n^m \}, \) where for each \(i \in \{ 1, ..., n \} \) the function \(B_i^m \) is the \(B \)-spline of order \(m \) with support \((x_i, x_{i+m}) \). Then it is well known that \(G \) is an \(n \)-dimensional periodic weak Chebyshev subspace of \(C[a, b] \) such that \(g(a) = 0 \) for all \(g \in G \) (see Schumaker [3]).

Following the proof of Theorem 1 we see that the next result holds.

Corollary 2. Let \(G \) be a periodic weak Chebyshev subspace of \(C[a, b] \) of dimension \(n \). If there exists a function \(g_0 \in G \) with \(g_0(a) \neq 0 \), then there is no function \(g \in G \) with \(n - 1 \) sign changes on \([a, b] \) satisfying \(g(a) = 0 \).

We now investigate the uniqueness of best \(L_1 \)-approximations from \(P_m(K_n) \) for periodic functions in \(C[a, b] \).

For all functions \(h \in C[a, b] \) the \(L_1 \)-norm is defined by

\[\| h \|_1 = \int_a^b |h(t)| \, dt. \quad (1) \]

Let a subspace \(G \) of \(C[a, b] \) and a function \(f \in C[a, b] \) be given. A function \(g_f \in G \) is called a **best \(L_1 \)-approximation** of \(f \) from \(G \), if

\[\| f - g_f \|_1 = \inf_{g \in G} \| f - g \|_1. \quad (2) \]

In the following we prove a global unicity result for best \(L_1 \)-approximations from \(P_m(K_n) \). For doing this we need some notations and results.

Given a function \(f \in C[a, b] \) we set \(Z(f) = \{ t \in [a, b] : f(t) = 0 \} \). Moreover, if \(A \) is a subset of \([a, b] \), then we denote by \(|A| \) the number of points in \(A \).

The first result on zeros of periodic splines can be found in Schumaker [3].
Lemma 3. Let a spline \(s \in P_m(K_n) \) be given such that \(|Z(s)| < \infty \). If \(n \) is even (respectively odd), then \(|Z(s) \cap [a, b]| \leq n \) (respectively \(|Z(s) \cap [a, b]| \leq n - 1 \)). Moreover, if \(|Z(s) \cap [a, b]| = n \), then \(s \) changes sign at the zeros in \((a, b)\).

The next result on weak Chebyshev spaces is well known (see, e.g., Deutsch, et al. [1]).

Lemma 4. Let an \(n \)-dimensional weak Chebyshev subspace of \(C[a, b] \) and points \(a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b \) be given, where \(0 \leq r \leq n - 1 \). Then there exists a nontrivial function \(g \in \mathcal{G} \) such that

\[
(-1)^i g(t) > 0, \quad t \in [t_{i-1}, t_i], \ i = 1, \ldots, r + 1.
\]

The following characterization of best \(L_1 \)-approximations can be found in Rice [2].

Theorem 5. Let \(G \) be a subspace of \(C[a, b] \) and \(f \in C[a, b] \). The following statements hold:

(i) A function \(g_f \in G \) is a best \(L_1 \)-approximation of \(f \) if and only if for all \(g \in G \),

\[
\int_a^b g(t) \operatorname{sgn}(f(t) - g_f(t)) \, dt \leq \int_{Z(f - g_f)} |g(t)| \, dt.
\]

(ii) If \(g_1, g_2 \in G \) are best \(L_1 \)-approximations of \(f \), then

\[
(f(t) - g_1(t))(f(t) - g_2(t)) \geq 0, \quad t \in [a, b].
\]

We are now in position to prove the announced unicity result.

Theorem 6. Every periodic function in \(C[a, b] \) has a unique best \(L_1 \)-approximation from \(P_m(K_n) \).

Proof. Suppose that the claim is false. Then there exists a function \(f \in C[a, b] \) such that \(s_1 = 0 \) and \(s_0 \in P_m(K_n), s_0 \neq 0 \), are best \(L_1 \)-approximations of \(f \) from \(P_m(K_n) \). It follows from Theorem 5 that

\[
f(t)(f(t) - s_0(t)) \geq 0, \quad t \in [a, b].
\]

This implies that for all \(t \in [a, b] \),

\[
|f(t) - \frac{1}{2}s_0(t)| = \frac{1}{2}(f(t) - s_0(t)) + \frac{1}{2}f(t) = \frac{1}{2} |f(t) - s_0(t)| + \frac{1}{2} |f(t)|.
\]
Therefore, if \(f(t) - \frac{1}{2}s_0(t) = 0 \), then \(\frac{1}{2} | f(t) - s_0(t) | + \frac{1}{2} | f(t) | = 0 \) which implies that \(s_0(t) = 0 \). This shows that
\[
Z(f - \frac{1}{2}s_0) \subseteq Z(s_0). \tag{6}
\]

Claim. There exists a nontrivial function \(s \in P_m(K_n) \) such that
\[
(f(t) - \frac{1}{2}s_0(t)) s(t) \geq 0, \quad t \in [a, b],
\tag{7}
\]
and
\[
s(t) = 0, \quad t \in [c, d], \quad \text{if } f(t) - \frac{1}{2}s_0(t) = 0, t \in [c, d],
\tag{8}
\]
for all \(c < d \).

Suppose for the moment that the claim is true. Then it follows that
\[
\int_a^b s(t) \text{sgn}(f(t) - \frac{1}{2}s_0(t)) > 0 = \int_{Z(f - (1/2)s_0)} |s(t)| \, dt.
\]

Then by Theorem 5 the spline \(\frac{1}{2}s_0 \) is not a best \(L_1 \)-approximation of \(f \) from \(P_m(K_n) \) which is a contradiction, since \(s_1 = 0 \) and \(s_0 \in P_m(K_n) \) are best \(L_1 \)-approximations of \(f \). Therefore, it remains to prove the existence of the spline \(s \) as in the claim. It suffices to consider three cases.

Case 1. \(|Z(s_0)| < \infty \). We first consider the case when \(n \) is odd. It follows from Lemma 3 that \(|Z(s_0) \cap (a, b)| \leq n - 1 \). Then by (6) the function \(f - \frac{1}{2}s_0 \) has at most \(n - 1 \) sign changes. Thus there exists a sign \(\sigma \in \{-1, 1\} \) and points \(a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b \), where \(0 \leq r \leq n - 1 \), such that
\[
\sigma(-1)^i (f(t) - \frac{1}{2}s_0(t)) \geq 0, \quad t \in [t_{i-1}, t_i], \quad i = 1, \ldots, r. \tag{9}
\]

Since \(n \) is odd, \(P_m(K_n) \) is an \(n \)-dimensional weak Chebyshev space. Therefore, by Lemma 4 there exists a nontrivial function \(s \in P_m(K_n) \) such that
\[
\sigma(-1)^i s(t) \geq 0, \quad t \in [t_{i-1}, t_i], \quad i = 1, \ldots, r. \tag{10}
\]

Then it follows from (9) and (10) that the spline \(s \) has the desired property (7).

We now consider the case when \(n \) is even. We set \(K_{n-1} = \{y_0, \ldots, y_{n-1}\} \), where \(y_i = x_i \), \(i = 0, \ldots, n - 2 \), and \(y_{n-1} = b \). Since \(n - 1 \) is odd, \(P_m(K_{n-1}) \) is an \((n - 1)\)-dimensional weak Chebyshev space.

Case 1.1. \(f(a) - \frac{1}{2}s_0(a) = 0 \). It follows from (6) that \(s_0(a) = 0 \). Then by Lemma 3 we have \(|Z(s_0) \cap (a, b)| \leq n - 1 \). Therefore, by (6) the function \(f - \frac{1}{2}s_0 \) has at most \(n - 1 \) sign changes. If \(f - \frac{1}{2}s_0 \) has at most \(n - 2 \) sign changes, then analogously as in the case when \(n \) is even, there exists a
spline $s \in P_m(K_{n-1}) \subset P_m(K_n)$ satisfying (7). If $f - \frac{1}{2}s_0$ changes sign at $n - 1$ points $t_1 < \cdots < t_{n-1}$ in (a, b), then by (6) we have $t_1, \ldots, t_{n-1} \in Z(s_0)$. Since $s_0(a) = 0$, it follows from Lemma 3 that $Z(s_0) \cap (a, b) = \{t_1, \ldots, t_{n-1}\}$ and s_0 changes sign at the points t_1, \ldots, t_{n-1}. Therefore, the spline $s = s_0$ or $s = -s_0$ satisfies (7).

Case 1.2. $f(a) - \frac{1}{2}s_0(a) \neq 0$. It follows from Lemma 3 that $|Z(s_0) \cap (a, b)| \leq n$. Then by (6) we have $|Z(f - \frac{1}{2}s_0) \cap (a, b)| \leq n$. Moreover, since $f(a) - \frac{1}{2}s_0(a) = f(b) - \frac{1}{2}s_0(b) \neq 0$, the function $f - \frac{1}{2}s_0$ has an even number of sign changes. If $f - \frac{1}{2}s_0$ has at most $n - 2$ sign changes, then analogously as in Case 1.1 there exists a spline $s \in P_m(K_{n-1}) \subset P_m(K_n)$ satisfying (7). If $f - \frac{1}{2}s_0$ changes sign at n points $t_1 < \cdots < t_n$ in (a, b), then by (6) we have $t_1, \ldots, t_n \in Z(s_0)$. Moreover, it follows from Lemma 3 that $Z(s_0) \cap (a, b) = \{t_1, \ldots, t_n\}$ and s_0 changes sign at the points t_1, \ldots, t_n. Therefore, the spline $s = s_0$ or $s = -s_0$ satisfies (7).

Case 2. $s_0(t) = 0$, $t \in [x_k, x_i] \cup [x_p, x_q]$, where $k < l < p < q$, and $|Z(s_0) \cap (x_l, x_p)| < \infty$. It is well known that

$$G = \{s_{[x_k, x_q]}: s \in P_m(K_n) \text{ and } s(t) = 0, t \in [x_k, x_l] \cup [x_p, x_q]\}$$

is a $(p - l - m + 1)$-dimensional weak Chebyshev space. Since $s_0_{[x_k, x_q]} \in G$ and $|Z(s_0) \cap (x_l, x_p)| < \infty$, we have $|Z(s_0) \cap (x_l, x_p)| \leq p - l - m$ (see Schumaker [3]). Then by (6) the function $f - \frac{1}{2}s_0$ has at most $p - 1 - m$ sign changes in (x_l, x_p). Therefore, analogously as above there exists a spline $s \in G$ such that

$$(f(t) - \frac{1}{2}s_0(t)) s(t) \geq 0, \quad t \in [x_l, x_p].$$

We now extend s to $[a, b]$ by defining

$$s(t) = 0, \quad t \in [a, x_k] \cup [x_q, b],$$

which implies that $s \in P_m(K_n)$ has the desired properties (7) and (8).

Case 3. $s_0(t) = 0$, $t \in [x_p, x_q]$, where $p < q$, and $|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| < \infty$. By identifying b with a we may consider the interval $[a, b)$ as a circle T with circumference $b - a$. We set

$$y_i = x_{i+q}, \quad i = 0, \ldots, n - q,$$

and

$$y_i = x_{i-n+q}, \quad i = n-q+1, \ldots, n-q+p.$$
may be identified with the space

\[H = \{ s \in C^{m-2}(T) : s|_{[y_{i-1}, y_i]} \in \Pi_m, i = 1, ..., n - q + p, \]

and \(s(t) = 0, t \in [y_{n-q+p}, y_0] \} \).

The space \(H \) may be considered as a usual spline space and it is well known that \(H \) is a \((n + p - q - m + 1)\)-dimensional weak Chebyshev space. Since \(s_0 \in H \) and \(|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| < \infty \), we have \(|Z(s_0) \cap ([a, b] \setminus [x_p, x_q])| \leq n + p - q - m \) (see Schumaker [3]). Then by (6) the function \(f - \frac{1}{2}s_0 \) has at most \(n + p - q - m \) sign changes in \([a, b] \setminus [x_p, x_q]\).

Therefore, analogously as above there exists a spline \(s \in H \) satisfying (7) and (8). This proves Theorem 6.

REFERENCES