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a b s t r a c t

Let g be a semisimple Lie algebra and V a g-semisimple module. In this paper, we study
the category G of Z-graded finite-dimensional representations of g n V . We show that the
simple objects in this category are indexed by an interval-finite poset and produce a large
class of truncated subcategories which are directed and highest weight. In the case when
V is a finite-dimensional g-module, we construct a family of Koszul algebras which are
indexed by certain subsets of the set of weights wt(V ) of V . We use these Koszul algebras
to construct an infinite-dimensional graded subalgebra Ag

Ψ of the locally finite part of the
algebra of invariants (EndC(V) ⊗ Sym V )g, where V is the direct sum of all simple finite-
dimensional g-modules. We prove that Ag

Ψ is Koszul of finite global dimension.
© 2011 Elsevier B.V. All rights reserved.

0. Introduction

In this paper, we study the category of finite-dimensional representations of the semi-direct product Lie algebras g n V ,
where g is a complex semisimple Lie algebra and V is a g-semisimple representation. There are several well-known classical
families of such Lie algebras, for instance, the co-minuscule parabolic subalgebras of a simple Lie algebra. However, our
primary motivation comes from two sources: the first is the truncated current algebras g ⊗ C[t]/t rC[t], where C[t] is the
polynomial ring in an indeterminate t , and their multi-variable generalizations, and the secondmotivation is our interest in
the undeformed infinitesimal Hecke algebras (see [8,14,11,13]). The representation theory of the truncated current algebras
has interesting combinatorial properties and is connected with important families of representations of quantum affine
algebras. It appears likely that the more general setup we consider will also have such connections [3].

In this paper, we are primarily interested in understanding the homological properties of the category of finite-
dimensional representations of the semi-direct product g n V . To be more precise, we shall regard the Lie algebra as being
graded by the non-negative integers Z+. We assume that g lives in grade zero and that V is finite-dimensional and lives in
grade one. The universal enveloping algebra of g nV is also Z+-graded and in fact has elements of grade s for all s ∈ Z+. We
work with the category of Z-graded modules for g n V , where the morphisms are just the degree zero maps. In the special
case when V is the adjoint representation of a simple Lie algebra, this category was previously studied in [4,5]. The authors
of those papers made certain choices which were not completely understood or explained. In the current paper, we recover
as a special case the results of [4,5] and, using the results of [12], provide a more conceptual explanation for the choices.

We now explain the overall organization of the paper. The main result, which is the construction of a family of Koszul
algebras, is given in Section 1 and can be stated independently of the representation theory of g n V . Thus, let h be a Cartan
subalgebra of g and let wt (V ) be the set of weights of V . We consider the convex polytope defined by wt (V ). For each
subset Ψ of wt (V ) which lies on a face of this polytope, we define an Z-graded g-module algebra AΨ . We prove that the
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(infinite-dimensional) subalgebraAg
Ψ of g-invariants is Koszul of global dimension atmost equal to the sumof the dimension

of eigenspaces of V corresponding to the elements of Ψ . The strategy to prove this result is the following. We first observe
that the set Ψ defines in a natural way a partial ordering ≤Ψ on h∗. Associated to each element ν of wt (V ), we can define
a subalgebra AΨ (≤Ψ ν)g of Ag

Ψ . We relate this algebra to the endomorphism algebra of the projective generator of a full
subcategory (with finitely many simple objects) of Z-graded finite-dimensional representations of g n V . This is done in
Sections two through four where we analyze the homological properties of the category. To do this, we need to work in
a bigger category which has enough projectives. The Koszul complex associated to the symmetric algebra of V provides
a projective resolution of the simple objects and we can compute arbitrary extensions between the simple modules. This
allows us, in Section 5, to use results of [2] to prove that AΨ (≤Ψ ν)g is Koszul. The final step is to prove that this implies
that Ag

Ψ is Koszul. A natural question that arises from our work is the realization of Koszul duals of these algebras as module
categories arising from Lie theory. The authors hope to pursue this question in the future.

1. The main results

We shall denote by Z (resp. Z+, C) the set of integers (resp. non-negative integers, complex numbers).

1.1

Throughout this paper, we fix a complex semisimple Lie algebra g and a Cartan subalgebra h of g. We let R be the set of
roots of g with respect to h, and fix a set of simple roots∆ = {αi|i ∈ I} of R. If {ωi|i ∈ I} is a set of fundamental weights, we
denote by P+ the Z+-span of the fundamental weights, and by Q+ the Z+-span of∆.

1.2

Given µ ∈ P+, let V (µ) be the finite-dimensional simple g-module with highest weight µ. Define

V :=


µ∈P+

V (µ) and V~
:=


µ∈P+

V (µ)∗.

The natural embedding V~
⊗ V → EndV (respectively V~

⊗ V → EndV~) of g-modules is an anti-homomorphism
(resp., a homomorphism). For each µ ∈ P+, this anti-homomorphism (resp., homomorphism) restricts to an isomorphism
V (µ)∗ ⊗V (µ) → (End V (µ))op (resp., V (µ)∗ ⊗V (µ) → End V (µ)∗). Under this isomorphism, the preimage of the identity
element in (End V (µ))op is the canonical g-invariant element 1µ ∈ V (µ)∗ ⊗ V (µ).

1.3

Suppose that A is an Z-graded g-module algebra; i.e., A is an associative Z-graded algebra which admits a compatible
action of g:

A =


k∈Z

A[k], g.A[k] ⊂ A[k], k ∈ Z.

The space

A = A ⊗ V~
⊗ V,

has a natural Z-grading given by

A[k] = A[k] ⊗ V~
⊗ V.

Moreover, it acquires the structure of an Z-graded g-module algebra as follows: the multiplication is given by linearly
extending the assignment

(a ⊗ f ⊗ v)(b ⊗ g ⊗ w) = g(v)ab ⊗ f ⊗ w,

while the g-module structure is just given by the usual action on tensor products of g-modules.
Abusing notation, we set

1µ = 1A ⊗ 1µ.

The next Lemma is immediate.

Lemma. For µ, ν ∈ P+, we have,

1µA1ν = A ⊗ V (µ)∗ ⊗ V (ν). �
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1.4

From now on, we fix a finite-dimensional g-module V and write

V = ⊕µ∈h∗Vµ, Vµ = {v ∈ V : hv = µ(h)v ∀h ∈ h}.

Set wt (V ) = {µ ∈ h∗
: Vµ ≠ 0} and assume that wt (V ) ≠ {0}. We shall also set

V g
= {v ∈ V : xv = 0, ∀ x ∈ g}.

Suppose that Ψ ⊂ wt (V ) is nonempty. Define a reflexive, transitive relation ≤Ψ on h∗ via

µ ≤Ψ ν ⇐⇒ ν − µ ∈ Z+Ψ ,

and set

dΨ (µ, ν) := min


β∈Ψ

mβ : ν − µ =


β∈Ψ

mββ, mβ ∈ Z+∀β ∈ Ψ


.

1.5

For µ ≤Ψ ν ∈ P+, define

AΨ (ν, µ) := 1νA[dΨ (µ, ν)]1µ,

and given F ⊂ P+, define

AΨ (F) :=


µ,ν∈F ,µ≤Ψ ν

AΨ (ν, µ).

Note that AΨ (F) is a g-module.
Lemma. Suppose that Ψ ⊂ wt (V ) is the set of weights of V which lie on some proper face of the weight polytope of V , and let A
be as above.

(i) AΨ (F) is a graded subalgebra of AΨ (G) for all F ⊂ G ⊂ P+.
(ii) If F ⊂ G ⊂ P+, then AΨ (F)g is a graded subalgebra of AΨ (G)g.

This result is clear once we show that dΨ satisfies the following in Proposition 5.2:
dΨ (η, µ)+ dΨ (µ, ν) = dΨ (η, ν) ∀ η ≤Ψ µ ≤Ψ ν ∈ h∗. (1.1)

1.6

Given µ, ν ∈ P+, define [µ, ν]Ψ := (≤Ψ ν) ∩ (µ ≤Ψ ), where

≤Ψ ν := {η ∈ P+
: η ≤Ψ ν}, and µ ≤Ψ := {η ∈ P+

: µ ≤Ψ η}.

The main theorem of this paper is the following.
Theorem. Suppose that Ψ is a subset of wt (V ) which lies on some proper face of the weight polytope of V , and let A be the
symmetric algebra of V . Given µ ≤Ψ ν ∈ P+, the algebras Ag

Ψ , AΨ (≤Ψ ν)
g, AΨ (µ ≤Ψ )

g, and AΨ ([µ, ν]Ψ )g are Koszul with
global dimension at most NΨ :=


ξ∈Ψ dim Vξ . Moreover, there exist µ ≤Ψ ν ∈ P+ such that the global dimension of all these

algebras is exactly NΨ .

2. The categories G and G
In this section, we define and study the elementary properties of the category of Z-graded finite-dimensional

representations of g n V . We classify the simple objects in this category and describe their projective covers. We denote
by U(b) the universal enveloping algebra of a Lie algebra b. We use freely the notation established in Section 1.

2.1

We begin by working in the following general situation. Thus, we assume that a is an Z+-graded complex Lie algebra,

a =


n∈Z+

an,

with the additional assumptions that a0 = g and dim an < ∞ for all n ∈ Z+. Set a+ =


n>0 an and note that it is an
Z+-graded ideal in a.
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Set R+
= R ∩ Q+ and fix a Chevalley basis {x±

α , hi : α ∈ R+, i ∈ I} of g, and

n±
=


α∈R+

g±α, g = n−
⊕ h ⊕ n+.

2.2

Let F (g) be the semisimple tensor category whose objects are finite-dimensional g-modules and morphisms are maps
of g-modules. The simple objects of F (g) are just the modules V (λ), λ ∈ P+. We shall need the fact that V (λ) is generated
by an element vλ with relations:

n+vλ = 0, hvλ = λ(h)vλ, (x−

αi
)λ(hi)+1vλ = 0, (2.1)

for all h ∈ h and i ∈ I . Any object V of F (g) is a weight module, i.e.,

V =


µ∈h∗

Vµ, Vµ = {v ∈ V : hv = µ(h)v, h ∈ h},

and we set wt (V ) = {µ ∈ h∗
: Vµ ≠ 0}.

Let G be the category whose objects are Z-graded a-modules V with finite-dimensional graded components V [r]; i.e.,

V =


r∈Z

V [r], V [r] ∈ ObF (g) ∀r ∈ Z.

The morphisms in G are a-module maps f : V → W such that f (V [r]) ⊂ W [r] for all r ∈ Z. For V ∈ G, we have

Vµ =


r∈Z

Vµ[r], Vµ[r] = Vµ ∩ V [r].

Observe that the adjoint representation of a is an object of G.
Let G be the full subcategory of G given by

V ∈ ObG ⇐⇒ V ∈ ObG, dim V < ∞.

Given V ∈ ObF (g), let ev (V ) ∈ ObG be given by

ev (V )[0] = V , ev (V )[k] = 0 ∀k > 0,

with the a-module structure defined by setting a+ev (V ) = 0 and leaving the g-action unchanged. Clearly, any g-module
morphism extends to a morphism of graded a-modules, and we have a covariant functor ev : F (g) → G.

2.3

For r ∈ Z, define a grading shift operator τr : G → G via

τr(V )[k] = V [k − r].

For λ ∈ P+ and r ∈ Z, set

V (λ, r) = τrev V (λ), vλ,r = τrvλ.

Proposition. For (λ, r) ∈ P+
× Z we have that V (λ, r) is a simple object in G. Moreover if (µ, s) ∈ P+

× Z, then,

V (λ, r) ∼=G V (µ, s) ⇐⇒ λ = µ, and r = s.

Conversely, if M ∈ G is simple then

M ∼= V (λ, r), for some (λ, r) ∈ P+
× Z.

Proof. The first two statements are trivial. Suppose now that M is a simple object of G and that r, s ∈ Z are such that
M[r] ≠ 0 and M[s] ≠ 0, and assume that r > s. Then the subspace ⊕k≥rM[k] ≠ 0 and is a proper submodule of M ,
contradicting the fact thatM is simple. Hence there must exist a unique r ∈ Z such thatM[r] ≠ 0. In particular, we have

M ∼=G τrevM[r],

and also thatM[r] ∼= V (λ) for some λ ∈ P+. This completes the proof of the Proposition. �

From now on, we set Λ = P+
× Z and observe that this set parametrizes the set of simple objects in G and G. Given

V ∈ ObG, we set

[V : V (λ, r)] = dimHomg(V (λ), V [r]).
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2.4

We now turn our attention to constructing projective resolutions of the simple objects of G. The algebra U(a) has a Z+-
grading inherited from the grading on a: namely, the grade of a monomial a1 · · · ak, where ai ∈ asi , is s1 + · · · + sk. The
ideal U(a+) is a graded ideal with finite-dimensional graded pieces. By the Poincare–Birkhoff–Witt Theorem, we have an
isomorphism of Z+-graded vector spaces

U(a) ∼= U(a+)⊗ U(g).

If we regard a+ as a g-module via the adjoint action, thenwe have the following result, again by using the Poincare–Birkhoff–
Witt Theorem.

Proposition. As g-modules,

U(a+)[k] ∼=


(r1,...,rk)∈Zk

+
:
k

j=1 jrj=k

Sym r1(a1)⊗ · · · ⊗ Sym rk(ak). �

Given M ∈ ObG, we can regard U(a)⊗U(g) M as a module for a by left multiplication. Moreover, if we set

(U(a)⊗U(g) M)[k] = (U(a+)⊗ M)[k] =


i∈Z+

(U(a+)[i] ⊗ M[k − i])

then we have the following Corollary of Proposition 2.4.

Corollary. For all M ∈ ObG with M[s] = 0 for s ≪ 0, we have U(a)⊗U(g) M ∈ ObG. �

2.5

For (λ, r) ∈ Λ, set

P(λ, r) = U(a)⊗U(g) V (λ, r) ∈ ObG, pλ,r = 1 ⊗ vλ,r .

Proposition. (i) For (λ, r) ∈ Λ, we have that P(λ, r) is generated as an Z-graded a-module by pλ,r with defining relations

n+pλ,r = 0, hpλ,r = λ(h)pλ,r , (x−

αi
)λ(hi)+1pλ,r = 0, (2.2)

for all h ∈ h and i ∈ I . In particular, we have that if V ∈ ObG, then
HomG(P(λ, r), V ) ∼= Homg(V (λ), V [r]).

(ii) P(λ, r) is the projective cover of its unique irreducible quotient V (λ, r) in G.
(iii) Let K(λ, r) be the kernel of the morphism P(λ, r) → V (λ, r) which maps pλ,r → vλ,r . Then

K(λ, r) = U(a)(a+ ⊗ V (λ, r)),

and hence

HomG(K(λ, r), V (µ, s)) ≠ 0 =⇒ Homg(as−r ⊗ V (λ), V (µ)) ≠ 0.

Proof. It is clear that the element pλ,r generates P(λ, r) as a a-module.Moreover, since vλ,r satisfies relations (2.1), it follows
that pλ,r satisfies (2.2). The fact that they are the defining relations is immediate from the Poincare–Birkhoff–Witt Theorem.
It is now easily seen that the map

ϕ → ϕ|1⊗V (λ,r)

gives an isomorphism HomG(P(λ, r), V ) ∼= Homg(V (λ), V [r]). Since U(a+)[0] = C, we see that dim P(λ, r)λ[r] = 1,
and hence P(λ, r) has a unique maximal graded submodule with corresponding quotient V (λ, r). The fact that P(λ, r) is
projective is standard. Suppose that there exists a projective module P ∈ ObG and a surjective morphismψ : P → V (λ, r);
and choose p ∈ Pλ[r] such that ψ(p) = vλ,r . The induced morphism ψ : P → P(λ, r) must satisfy ψ(p) = pλ,r and,
hence, is surjective, proving that P(λ, r) is the projective cover. This also implies that V (λ, r) is the quotient of P(λ, r) by
imposing the additional relation a+pλ,r = 0. This proves that K(λ, r) is generated as a a+-module by a+ ⊗ V (λ, r). Hence if
ϕ ∈ HomG(K(λ, r), V (µ, s)) ≠ 0, then ϕ(a+[s − r] ⊗ V (λ, r)) ≠ 0, and the proof of the Proposition is complete. �

The following is obvious.

Corollary. Suppose that M ∈ G is such that M[s] = 0 for all s ≪ 0. Then M is a quotient of a projective object P(M) ∈ G. �
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2.6

Motivated by the preceding Proposition, we define a partial order on Λ as follows. Say that (µ, s) covers (λ, r) if s > r
andµ−λ ∈ wt as−r . Define 4 to be the transitive and reflexive closures of this relation. In particular, if (λ, r) 4 (µ, r), then
λ = µ. It is easily checked that 4 is a partial order onΛ.
Lemma. Let (λ, r), (µ, s) ∈ Λ. Then,

Ext 1G(V (λ, r), V (µ, s)) ≠ 0 =⇒ (µ, s) covers (λ, r).

Proof. Using Proposition 2.5(ii), we see that

Ext 1G(V (λ, r), V (µ, s)) ∼= HomG(K(λ, r), V (µ, s)).
The Lemma follows from Proposition 2.5(iii). �

2.7

We can now produce a projective resolution of the simple objects of G. The resolution is not minimal, and, in fact, it is
unclear how to produce a minimal resolution. However, as we shall see, it is adequate to compute extensions between the
simple objects.

For (λ, r) ∈ Λ and j ∈ Z+, define

Pj(λ, r) := P(∧j(a+)⊗ V (λ, r)) = U(a+)⊗ ∧
j(a+)⊗ V (λ, r) ∈ G.

In particular, notice that

Pj(λ, r)[k] = 0, k < r + j, P0(λ, r) = V (λ, r).

For j ≥ 0, define linear maps dj : Pj(λ, r) → Pj−1(λ, r), (where we understand that P−1(λ, r) = V (λ, r)) by

d0 : P(λ, r) → V (λ, r), d0(u ⊗ v) = u.v,

for u ∈ U(a+) and v ∈ V (λ, r) and

dj = D ⊗ id V (λ,r), j > 0,

where D is the Koszul differential on the Chevalley–Eilenberg complex [6] for a+.
Proposition. (i) If j > 0 and [Pj(λ, r) : V (µ, s)] ≠ 0, then (λ, r) ≺ (µ, s).
(ii) The following is a projective resolution of V (λ, r) in G:

· · ·
d3

−→ P2(λ, r)
d2

−→ P1(λ, r)
d1

−→ P(λ, r)
d0

−→ V (λ, r) −→ 0.

Proof. If j > 0, then Pj(λ, r)[r] = 0 and so [Pj(λ, r) : V (λ, r)] = 0. The rest of the proof follows by an argument similar to
the one in Proposition 2.5. Note that Pj(λ, r) is projective in G for all j ∈ Z+ by Corollary 2.5. It is straightforward to check
that dj is an a-module map, and hence a morphism inG for all j ∈ Z+. Finally, since dj = D ⊗ id V (λ,r) for all j, it follows that
the sequence is exact in G. �

2.8

For s ∈ Z, let G≤s be the full subcategory of G satisfying

V ∈ ObG =⇒ V [k] = 0, k > s.

The subcategory G≤s is defined similarly. Notice that

V ∈ ObG, V [k] = 0, k ≪ 0 =⇒ V≤r ∈ G≤r , r ∈ Z.

For V ∈ ObG, define
V>s =


k>s

V [k], V≤s = V/V>s,

and note that V≤s ∈ ObG≤s. If f ∈ HomG(V ,W ) and s ∈ Z, there is a natural morphism

f≤s ∈ HomG≤s(V≤s,W≤s), v + V>s
f≤s

−→ f (v)+ W>s.

The assignment V → V≤s and f → f≤s defines a full, exact, and essentially surjective functor : G → G≤s for each s ∈ Z+.
The following is immediate from Propositions 2.4 and 2.5.
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Lemma. For (λ, r) ∈ Λ and s ∈ Z, we have P(λ, r)≤s = 0 if s < r. If s ≥ r, then P(λ, r)≤s is the projective cover in G≤s of
V (λ, r) and P(λ, r)[s] ≠ 0 if a+ ≠ 0. �

2.9

We end this section with the following result, which shows that it is necessary to work in G rather than G.

Lemma. G has projective objects if and only if a+ = 0.

Proof. First suppose that a+ = 0 and a = g is semisimple. Then G is a semisimple category and all Ext 1-groups vanish. In
particular, every object in G is projective.

Suppose that a+ ≠ 0 and let P ∈ G be a non-zero projective object in G. Since P is finite-dimensional, we may assume
without loss of generality that P is indecomposable and maps onto V (λ, r) for some (λ, r) ∈ Λ. For any s ∈ Z such that
P ∈ G≤s, we see from Lemma 2.8 that there exists a surjective map from P → P(λ, r)≤s. Suppose now that s is such that
P[s − 1] ≠ 0 but P[s] = 0. Then we would have that P(λ, r)≤s[s] = 0, which contradicts Lemma 2.8. �

3. Truncated categories

In this section, we study certain Serre subcategories ofG, and prove that they are directed categories with finitely many
simple objects.

3.1

Given Γ ⊂ Λ, let G[Γ ] be the full subcategory of G consisting of allM such that

M ∈ ObG, [M : V (λ, r)] > 0 =⇒ (λ, r) ∈ Γ .

The subcategories G[Γ ] are defined in the obvious way. Observe that if (λ, r) ∈ Γ , then V (λ, r) ∈ G[Γ ], and we have the
following trivial result.

Lemma. The isomorphism classes of simple objects of G[Γ ] are indexed by Γ . �

3.2

For V ∈ G, set
V+

Γ := {v ∈ V [r]λ : (λ, r) ∈ Γ , n+v = 0},

VΓ := U(g)V+

Γ VΓ := V/VΛ\Γ .

It is clear that VΓ and VΓ are Z-graded g-modules, and that they are finite-dimensional if Γ is a finite set. If f ∈

HomG(V ,W ) then f (V+

Γ ) ⊂ W+

Γ , and hence the restriction fΓ of f to VΓ is an element of Homg(VΓ ,WΓ ). Moreover, since
f (VΛ\Γ ) ⊂ WΛ\Γ , we also have a natural induced map of g-modules f Γ : VΓ → WΓ . It is not true in general that VΓ and
VΓ are in G[Γ ]. However, in the case when VΓ and WΓ (resp. VΓ and WΓ ) are a-submodules, fΓ (resp. f Γ ) is a morphism
in G[Γ ].

The following is the first step in determining a sufficient condition for this to be true. Set

Λ(V ) = {(λ, r) ∈ Λ : Vλ[r] ≠ 0}.

Proposition. Suppose V ∈ G and Γ ⊂ Λ. If VΓ is not an a-submodule of V , then there exist (ν, s) ∈ Λ(V ) \ Γ and
(λ, r) ∈ Γ ∩Λ(V ) such that (ν, s) covers (λ, r).

Proof. Since VΓ is Z-graded and generated as a g-module by V+

Γ , wemay assumewithout loss of generality that there exists
a ∈ ak and v ∈ V+

Γ ∩ V [r]λ with a.v ∉ VΓ for some k ∈ Z+, r ∈ Z, λ ∈ P+. Let U be a g-module complement of VΓ in V .
Then, the projection of av onto U is non-zero and so there exists ν ∈ P+ such that the composition of g-module maps,

ak ⊗ V (λ, r) → V � U � U[r + k] � V (ν, r + k)

is non-zero. Call this nonzero composite map ξ . Now ak.V (λ, r) ≠ 0, so one can show that no nonzero maximal vector
vλ ∈ V (λ, r)λ (i.e., a weight vector killed by n+) is killed by all of ak. Since ak ⊗ Cvλ is a U(b+)-submodule of ak ⊗ V (λ, r),
ξ(ak⊗Cvλ) is a nonzeroU(b+)-submodule of V (ν, r+k). Since ξ(ak⊗Cvλ) is finite-dimensional, it must contain amaximal
weight vector in V (ν, r + k). In particular, vν ∈ ξ(ak ⊗ Cvλ) where Cvν = V (ν, r + k)ν . Hence vν ∈ ak.vλ ⊂ V [r + k], so
ν − λ ∈ wt (ak), and we conclude that (ν, r + k) covers (λ, r). �
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3.3

A subset Γ ofΛ is said to be interval-closed if

(λ, r) 4 (ν, p) 4 (µ, s), (λ, r), (µ, s) ∈ Γ =⇒ (ν, p) ∈ Γ .

Proposition. Suppose Γ is a finite interval-closed subset ofΛ. Let V ∈ ObG.
(i) Assume that for any (λ, r) ∈ Λ(V ) \ Γ there exists (µ, s) ∈ Γ with (λ, r) ≺ (µ, s). Then VΓ ∈ ObG[Γ ]. Furthermore, if

U is a submodule of V , then

UΓ , (V/U)Γ ∈ ObG[Γ ], (V/U)Γ ∼= VΓ /UΓ .

(ii) Assume that for any (λ, r) ∈ Λ(V ) \ Γ there exists (µ, s) ∈ Γ with (µ, s) 4 (λ, r). Then VΓ ∈ ObG[Γ ]. Furthermore, if
U is a submodule of V , then

UΓ , (V/U)Γ ∈ ObG[Γ ], (V/U)Γ ∼= VΓ /UΓ .

Proof. Suppose that VΓ is not an a-module. By Proposition 3.2 there exists (λ, r) ∈ Λ(V ) ∩ Γ and (ν, s) ∈ Λ(V ) \ Γ such
that (λ, r) 4 (ν, s). By hypothesis we can choose (µ, k) ∈ Γ with (λ, r) 4 (ν, s) 4 (µ, k)which contradicts the fact that Γ
is interval-closed. Suppose now that we have a short exact sequence

0 → U → V → W → 0

of objects of G. Since Λ(V ) = Λ(U) ∪ Λ(W ), it is clear that U and W both satisfy the hypothesis of (i) and, hence,
UΓ ,WΓ ∈ G[Γ ] and hence the inclusion of U in V induces a G[Γ ]-morphism UΓ → VΓ which is obviously injective
since U+

Γ ⊂ V+

Γ . SimilarlyWΓ is a quotient of VΓ as objects ofG[Γ ] and the exactness follows by noting that VΓ = UΓ ⊕WΓ

as g-modules.
The proof of part (ii) is similar and hence omitted. �

3.4

We now construct projective objects and projective resolutions of simple objects in G[Γ ] when Γ is finite and interval-
closed.

Proposition. Suppose Γ ⊂ Λ is finite and interval-closed with respect to 4, and assume that (λ, r), (µ, s) ∈ Γ .

(i) P(λ, r)Γ is the projective cover in G[Γ ] of V (λ, r).
(ii) We have

[P(λ, r) : V (µ, s)] = [P(λ, r)Γ : V (µ, s)] = dimHomG[Γ ](P(µ, s)Γ , P(λ, r)Γ ).

(iii) HomG(P(λ, r), P(µ, s)) ∼= HomG[Γ ](P(λ, r)Γ , P(µ, s)Γ ).
(iv) For all j ∈ Z+, Pj(µ, s)Γ ∈ G[Γ ]. The induced sequence

· · ·
dΓ3

−→ P2(µ, s)Γ
dΓ2

−→ P1(µ, s)Γ
dΓ1

−→ P(µ, s)Γ
dΓ0

−→ V (µ, s) −→ 0

is a finite projective resolution of V (µ, s) ∈ G[Γ ].

Proof. By Proposition 2.5(iii), we see that

(ν, k) ≻ (λ, r), (ν, k) ∈ Λ(P(λ, r)) \ {(λ, r)}.

By Proposition 3.3(ii) we see that P(λ, r)Γ ∈ G[Γ ] and maps onto V (λ, r). Let K = P(λ, r)Λ\Γ ; thus, in G, we have a short
exact sequence

0 → K → P(λ, r) → P(λ, r)Γ → 0.

Applying HomG(−, V (µ, s)) yields the long exact sequence

· · · → HomG(K , V (µ, s)) → Ext 1G(P(λ, r)Γ , V (µ, s)) → 0.

If (µ, s) ∈ Γ , we have,

HomG(K , V (µ, s)) ∼= Homg(K [s], V (µ)) = 0,

and hence we have

Ext 1G(P(λ, r)Γ , V (µ, s)) = 0.
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In particular, this proves that

Ext 1
G[Γ ]

(P(λ, r)Γ , V (µ, s)) = 0,

and hence P(λ, r)Γ is a projective object of G[Γ ]. The proof that P(λ, r)Γ is the projective cover of V (λ, r) is similar to the
proof given in Proposition 2.5.

For (ii), we again consider the short exact sequence

0 → K → P(λ, r) → P(λ, r)Γ → 0.

Since F (g) is a semisimple category, we have,

dimHomg(V (µ), P(λ, r)[s]) = dimHomg(V (µ), P(λ, r)Γ [s])+ dimHomg(V (µ), K [s]).

By the definition of K , we have,

Homg(V (µ), K [s]) = 0, (µ, s) ∈ Γ ,

and hence we get

[P(λ, r) : V (µ, s)] = [P(λ, r)Γ : V (µ, s)].

The second equality follows by imitating (in G[Γ ]) the proof of the first part of Proposition 2.5.
For (iii), choose a nonzero f ∈ HomG(P(λ, r), P(µ, s)). Then, f (1 ⊗ V (λ, r)) ∉ P(µ, s)Λ\Γ , so f Γ ≠ 0. Thus, we have an

injective map

HomG(P(λ, r), P(µ, s)) → HomG[Γ ](P(λ, r)Γ , P(µ, s)Γ ).

Since both of these spaces have the same dimension (by part (ii) and Proposition 2.5(i)), the map is an isomorphism.
For (iv), first note that Pj(λ, r)Γ ∈ ObG[Γ ] by Proposition 2.7(i) and Proposition 3.3(ii). Furthermore, a similar procedure

as in part (i) shows that Pj(λ, r)Γ is projective in G[Γ ]. The fact that the resolution terminates after finitely many steps
follows from the fact that Γ is finite, along with the fact that Pj(λ, r)[k] = 0 for all k < r + j. �

3.5

We recall the following definition from [7,15], where we define a length category in the sense of [9].

Definition. Suppose C is an abelian C-linear length category. We say that C is directed if:

(i) The simple objects in C are parametrized by a poset (Π,≤) such that the set {ξ ∈ Π : ξ < τ } is finite for all τ ∈ Π .
(ii) For all simple objects S(ξ), S(τ ) ∈ C, Ext 1

C(S(ξ), S(τ )) ≠ 0 =⇒ ξ < τ .

In the case when (Π,≤) is finite, a directed category is highest weight in the sense of [7].
We end this section by noting that we have established that for any subset Γ ofΛ, the category G[Γ ] is directed, and if

Γ is finite and interval-closed, then G[Γ ] is a directed highest weight category.

4. Undeformed infinitesimal Hecke algebras

For the rest of the paper, we restrict our attention to the case when ak = 0 for all k > 1 and a1 = V , where V ∈ F (g) is
such that wt (V ) ≠ {0}. In this case, the algebra a = g n V and we identify V with the abelian ideal 0 n V of a. In particular,
this means that U(a+) = Sym (V ), and it is immediate that

Pj(λ, r) = U(g n V )⊗U(g) ∧
jV ⊗ V (λ, r)

is generated as an a-module by the component of degree r + j. This motivates our search for Koszulity in this picture.

4.1

We begin by computing extensions between the simple objects.

Proposition. For all j ∈ Z+ and (µ, r), (ν, s) ∈ Λ,

Ext jG(V (µ, r), V (ν, s)) ∼=


Homg(∧

jV ⊗ V (µ), V (ν)), if j = s − r;
0, otherwise.
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Proof. Truncating the projective resolution from Proposition 2.7(ii) at

· · ·
dj

−→ Pj−1(µ, r)
dj−1
−→ im dj−1 −→ 0 yields

Ext jG(V (µ, r), V (ν, s)) ∼= Ext 1G(im dj−1, V (ν, s)).

Applying HomG(−, V (ν, s)) to the short exact sequence
0 → im dj → Pj−1(µ, r) → im dj−1 → 0

yields the exact sequence

0 → HomG(im dj−1, V (ν, s)) → HomG(Pj−1(µ, r), V (ν, s)) →

HomG(im dj, V (ν, s)) → Ext 1G(im dj−1, V (ν, s)) → 0.

The result follows if we prove that

HomG(im dj, V (ν, s)) ≠ 0 =⇒ j = s − r.

Suppose f ∈ HomG(im dj, V (ν, s)) is nonzero and choose v ∈ im dj[s] with f (v) ≠ 0. It is easily seen that we may write

v =


p

(up ⊗ 1)dj(1 ⊗ wp), up ∈ Sym V , wp ∈ ∧
jV ⊗ V (µ, r),

and hence we have

f (v) =


p

(up ⊗ 1)f (dj(1 ⊗ wp)).

Since dj(1 ⊗ wp) ∈ im dj[j + r] for all p, we see that f (v) ∈ V (ν, s)[r + j] and hence s = r + j.
If j = s − r , then since ∧

j−1V ⊗ V (µ, r) is concentrated in degree s − 1 and Pj−1(µ, r) is the projective cover of
∧

j−1V ⊗ V (µ, r), we have

HomG(Ps−r−1(µ, r), V (ν, s)) = 0,

and:

Ext s−rG (V (µ, r), V (ν, s)) ∼= Ext 1G(im ds−r−1, V (ν, s))
∼= HomG(im ds−r , V (ν, s)) ∼= Homg((im ds−r)[s], V (ν))
∼= Homg(∧

s−rV ⊗ V (µ), V (ν)).

This completes the proof of the Proposition. �

4.2

IfΓ ⊂ Λ is finite and interval-closed, thenwe canmake the following observation regarding Ext -groups in the truncated
subcategory G[Γ ].
Proposition. Let Γ be finite and interval-closed. For all (µ, r), (ν, s) ∈ Γ , we have

Ext j
G[Γ ]

(V (µ, r), V (ν, s)) ∼= Ext jG(V (µ, r), V (ν, s)) ∀j ∈ Z+.

Proof. By Proposition 2.7 and Proposition 3.4, we have a projective resolution P•(µ, s) of each simple object V (µ, s) inG[Γ ]

and G. Then one shows as in [5, Proposition 3.3], that for all (λ, r) ∈ Γ ,

HomG(P•(µ, s), V (λ, r)) → HomG[Γ ](P•(µ, s)Γ , V (λ, r))

is an isomorphism. �

4.3

Define P(Γ ) :=


(λ,r)∈Γ

P(λ, r), and set

B(Γ ) := EndGP(Γ ), and BΓ (Γ ) := End G[Γ ](P(Γ )Γ ).

Notice that B(Γ ) is graded via

B(Γ )[k] =


(λ,r),(µ,r−k)∈Γ

HomG(P(λ, r), P(µ, r − k)).

In particular, B(Γ )[0] =


(λ,r)∈Γ EndG(P(λ, r)).
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Proposition. If Γ ⊂ Λ is finite and interval-closed, then the category G[Γ ] is equivalent to the category of right modules over
B(Γ ).

Proof. By Proposition 3.4(iii),B(Γ ) ∼= BΓ (Γ ) if Γ is finite and interval-closed; thus, it is standard ([1, Theorem II.1.3]) that

HomG[Γ ](P(Γ )Γ ,−) : G[Γ ] → Mod − B(Γ )

is an equivalence of categories. �

5. Faces of polytopes and Koszul algebras

This section is devoted to proving the main theorem.

5.1

We begin with a key technical observation about the set of weights which lie on a face of the weight polytope of V .
Namely, we wish to consider the subsets Ψ ⊂ wt (V ) that satisfy the following property:

If

α∈Ψ

mαα =


β∈wt (V )

rββ, formα, rβ ∈ Z+, (5.1)

then

α

mα ≤


β

rβ , with equality if and only if β ∈ Ψ whenever rβ > 0.

The main result of [12] states that Ψ satisfies (5.1) if and only if the set Ψ lies on a proper face of the weight polytope of
V .

5.2

For our next result, recall dΨ and ≤Ψ defined in Section 1.4.

Proposition. Suppose Ψ ⊂ wt (V ) satisfies (5.1).

(i) ≤Ψ is a partial order on h∗. Moreover,

dΨ (η, µ)+ dΨ (µ, ν) = dΨ (η, ν) ∀η ≤Ψ µ ≤Ψ ν ∈ h∗.

(ii) Ψ induces a refinement 4Ψ of the partial order 4 on Λ = P+
× Z via: (µ, r) 4Ψ (λ, s) if and only if µ ≤Ψ λ and

dΨ (µ, λ) = s − r. If the interval [(ν, r), (µ, s)]4Ψ is nonempty, then [(ν, r), (µ, s)]4Ψ = [(ν, r), (µ, s)]4.

Proof. By definition, ≤Ψ is reflexive and transitive. To see that ≤Ψ is anti-symmetric, let

ν − µ =


β∈Ψ

rββ, µ− ν =


β∈Ψ

mββ, rβ ,mβ ∈ Z+ ∀ β ∈ Ψ .

Then,

0 =


β∈Ψ

(rβ + mβ)β,

which gives rβ + mβ = 0 for all β ∈ Ψ using condition (5.1). In particular, rβ = 0 for all β ∈ Ψ , so µ = ν. This shows that
≤Ψ is a partial order on h∗.

Suppose that µ ≤Ψ ν, and let

ν − µ =


β∈Ψ

rββ =


β∈Ψ

mββ, rβ ,mβ ∈ Z+ ∀ β ∈ Ψ .

Applying condition (5.1) to each sum gives
β∈Ψ

rβ ≤


β∈Ψ

mβ ≤


β∈Ψ

rβ ,

which shows that dΨ (µ, ν) is taken over a singleton set. This uniqueness and the fact that λ−µ = (λ− ν)+ (ν−µ) show
that dΨ (µ, ν)+ dΨ (ν, λ) = dΨ (µ, λ).

The fact that 4Ψ is a partial order follows immediately from part (i).
Notice that

(µ, r) 4 (λ, s) ⇐⇒ λ− µ =


ν∈wt (V )

mνν, mν ∈ Z+∀ν ∈ wt (V ),


ν∈wt (V )

mν = s − r.
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It follows immediately that 4Ψ is a refinement of 4 and that the interval [(ν, r), (µ, s)]4Ψ is a subset of [(ν, r), (µ, s)]4 for
all (ν, r) 4Ψ (µ, s).

Now, suppose that

(ν, r) 4 (η, t) 4 (µ, s), (ν, r) 4Ψ (µ, s) ∈ Γ

Then, we can write

µ− η =

t−s
i=1

βi, η − ν =

s−r
j=1

γj, βi, γj ∈ wt (V ) ∀ i, j.

Since

µ− ν = (µ− η)+ (η − ν), and (s − t)+ (t − r) = s − r = dΨ (µ, λ),

it follows that βi, γj ∈ Ψ for all i, j by condition (5.1). This gives

(ν, r) 4Ψ (η, t) 4Ψ (µ, s),

which proves (ii). �

Remark. In [5], the authors work with V = gad and Ψ ⊂ R+. However, they use the partial order 4′
Ψ on Λ given by

(λ, r) 4′
Ψ (µ, s) if and only if µ ≤Ψ λ and dΨ (µ, λ) = s − r . We use 4Ψ instead, because 4′

Ψ is not a refinement of the
standard partial order 4 onΛ.

5.3

We need the following well-known result.
Lemma. Suppose g is a complex semisimple Lie algebra, V ∈ F (g), and λ,µ ∈ P+. Define V+

:= {v ∈ V : n+v = 0}.

(i) dimHomg(V (λ), V ) = dim(V+
∩ Vλ).

(ii) As vector spaces,

Homg(V ⊗ V (µ), V (λ)) ∼= {v ∈ Vλ−µ : (x+

αi
)µ(hi)+1v = (x−

αi
)λ(hi)+1v = 0}. �

5.4

We now discuss some results on specific sets of g-module homomorphisms which will be useful later. Recall that λ ∈ P+

is said to be regular if λ(hi) > 0 for all i ∈ I .
Lemma. Suppose Ψ ⊂ wt (V ) satisfies condition (5.1). Define λΨ :=


µ∈Ψ (dim Vµ)µ ∈ P and NΨ :=


µ∈Ψ (dim Vµ).

(i) If ν, ν + λΨ ∈ P+, then dimHomg(∧
NΨ V ⊗ V (ν), V (ν + λΨ )) ≤ 1.

(ii) Given η ∈ P+, there exists ν ∈ P+ such that ν, ν + λΨ ∈ P+ are both regular, η ≤ ν , and

dimHomg(∧
NΨ V ⊗ V (ν), V (ν + λΨ )) = 1.

Proof. Suppose vµ1 ∧ · · · ∧ vµNΨ
∈ (∧NΨ V )λΨ , where each vµi ∈ Vµi . Then

µ1 + · · · + µNΨ = λΨ =


µ∈Ψ

(dim Vµ)µ, NΨ =


µ∈Ψ

dim Vµ,

so µi ∈ Ψ ∀i by condition (5.1). In particular, dim(∧NΨ V )λΨ = 1. Hence (i) follows by Lemma 5.3.
Now suppose that (∧NΨ V )λΨ = Cv. Let

λΨ =


i∈I

diωi, η =


i∈I

ciωi.

Let 2ρ =


α∈R+ α = 2


i∈I ωi. Choose k ∈ Z+ sufficiently large such that

ci + 2k, ci + di + 2k ∈ N

and

(x+

αi
)ci+2k+1v = (x−

αi
)ci+di+2k+1v = 0 ∀ i ∈ I.

Let ν = η + 2kρ. Then, η ≤ ν, and it follows from Lemma 5.3 that

Homg(∧
NΨ V ⊗ V (ν), V (ν + λΨ )) ∼= Cv,

which proves (ii). �
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5.5

Lemma. Fix (µ, r) ∈ Λ. Suppose Γ ⊂ Λ is finite and interval-closed with respect to 4Ψ . Also, assume that (µ, r) 4Ψ
(ν, s) ∀ (ν, s) ∈ Γ .

(i) If HomG[Γ ](P(ν, s)Γ , P(ν ′, s′)Γ ) ≠ 0, then (ν ′, s′) 4Ψ (ν, s).
(ii) If Ext j

G[Γ ]
(V (ν ′, s′), V (ν, s)) ≠ 0, then (ν ′, s′) 4Ψ (ν, s), j = dΨ (ν ′, ν).

(iii) gldimG[Γ ] ≤ NΨ , and equality holds for some (µ, r) ∈ Λ and some Γ .

Proof. (i) Suppose that HomG[Γ ](P(ν, s)Γ , P(ν ′, s′)Γ ) ≠ 0. Then, by Propositions 3.4 and 2.5,

Homg(V (ν), Sym s−s′V ⊗ V (ν ′)) ≠ 0.

Using Lemma 5.3 and Steinberg’s formula [10, Section 24],

ν − ν ′
=

s−s′
i=1

ξi, ξi ∈ wt (V ).

On the other hand, since (µ, r) 4Ψ (ν, s), (ν ′, s′) ∈ Γ ,

ν − µ =

s−r
j=1

ηj, ν ′
− µ =

s′−r
k=1

η′

k, ηj, η
′

k ∈ Ψ ∀j, k.

Combining these gives

ν − µ =

s−r
j=1

ηj =

s−s′
i=1

ξi +

s′−r
k=1

η′

k.

Finally, since Ψ satisfies (5.1) and s − r = (s − s′)+ (s′ − r), we get ξi ∈ Ψ ∀i, whence (ν ′, s′) 4Ψ (ν, s).
(ii) Suppose Ext j

G[Γ ]
(V (ν ′, s′), V (ν, s)) ≠ 0. By Propositions 4.1 and 4.2, j = s − s′ and

Homg(∧
jV ⊗ V (ν), V (ν ′)) ≠ 0.

Using Lemma 5.3, ν ′
− ν = ξ1 + · · · + ξj for some ξi ∈ wt (V ). Since Ψ satisfies (5.1), an argument similar to part (i)

shows that ξi ∈ Ψ ∀ i and ν ≤Ψ ν
′. Finally, by Proposition 5.2, j = dΨ (ν, ν ′) and, therefore, (ν, s) 4Ψ (ν

′, s′).
(iii) Since G[Γ ] is a length category, it suffices to work with extensions between simple objects. By Propositions 4.1 and 4.2

again, we have

Ext j
G[Γ ]

(V (ν, s), V (ν ′, s′)) ≠ 0 =⇒ Homg(∧
jV ⊗ V (ν), V (ν ′)) ≠ 0,

so gldimG[Γ ] ≤ NΨ .
Using Lemma 5.4,

HomG[Γ ](∧
NΨ V ⊗ V (µ), V (µ+ λΨ )) ≠ 0

for some µ,µ+ λΨ ∈ P+. Let r ∈ Z and define

Γ := [(µ, r), (µ+ λΨ , r + NΨ )]4Ψ .

Then, gldimG[Γ ] = NΨ . �

5.6

Theorem. Assume that Γ ⊂ Λ is finite and interval-closed under 4Ψ . Then, the algebra B(Γ )op is Koszul.
Proof. We use the numerical condition from [2, Theorem 2.11.1] to show Koszulity. Let B = B(Γ )op . We note that the
|Γ | × |Γ |-Hilbert matrices H(B, t) of B and H(E(B), t) of its Yoneda algebra E(B) are lower triangular in this case.

Note from the definition of the grading that B[0] is semisimple, commutative, and spanned by pairwise orthogonal
idempotents {1(ν,s) : (ν, s) ∈ Γ }. For each (ν ′, s′) 4Ψ (ν, s) ∈ Γ , we compute:

(H(E(B),−t)H(B, t))(ν,s),(ν′,s′)
=


(ξ ,l)∈Γ

H(E(B),−t)(ν,s),(ξ ,l)H(B, t)(ξ ,l),(ν′,s′)

=


ν′≤Ψ ξ≤Ψ ν

(−t)dΨ (ξ ,ν) dim Ext dΨ (ξ ,ν)
G[Γ ]

(V (ξ , l), V (ν, s)) · tdΨ (ν
′,ξ)

[P(ν ′, s′)Γ : V (ξ , l)]

=


j≥0


ν′≤Ψ ξ≤Ψ ν

(−1)jtdΨ (ν
′,ν)

[P(ν ′, s′)Γ : V (ξ , l)] dim Ext j
G[Γ ]

(V (ξ , l), V (ν, s)),
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where the first equality is by definition, the second uses the definitions of the Hilbert matrices, and the third uses
Proposition 5.2 and Lemma 5.5. Now use the long exact sequence of Ext groups and a Jordan–Holder series for P(ν ′, s′)Γ ,
along with the fact that all P(ν ′, s′)Γ are projective, to obtain:

= tdΨ (ν
′,ν)


j≥0

(−1)j dim Ext j
G[Γ ]

(P(ν ′, s′)Γ , V (ν, s))

= tdΨ (ν
′,ν) dimHomG[Γ ](P(ν ′, s′)Γ , V (ν, s))

= tdΨ (ν
′,ν)δ(ν′,s′),(ν,s) = δ(ν′,s′),(ν,s).

Thus, H(E(B),−t)H(B, t) is the identity matrix, so B = B(Γ )op is Koszul by [2, Theorem 2.11.1]. �

5.7

We are now ready to approach the proof of Theorem 1.6. The following Lemma will provide a major component of the
proof. Let π1 : Λ → P+ be the projection map onto the first coordinate. Recall that A = Sym V .
Lemma. Fix (µ, r) ∈ Λ. Let Γ ⊂ Λ be finite and interval-closed with (µ, r) 4Ψ (ν, s) ∀ (ν, s) ∈ Γ . Then, B(Γ )op has global
dimension at most NΨ , and

B(Γ )op ∼= AΨ (π1(Γ ))
g

as Z+-graded algebras.
Proof. By definition,

1νA
g
Ψ [dΨ (µ, ν)]1µ = (V (ν)∗ ⊗ Sym dΨ (µ,ν)V ⊗ V (µ))g.

For any finite-dimensional g-modules, V ,W , the map
i

(fi ⊗ wi) → (v →


i

fi(v)wi)

gives an isomorphism (V ∗
⊗ W )g ∼= Homg(V ,W ). In particular,

(V (ν)∗ ⊗ Sym dΨ (µ,ν)V ⊗ V (µ))g ∼= Homg(V (ν), Sym dΨ (µ,ν)V ⊗ V (µ)).

Finally,

P(µ, r)[r + dΨ (µ, ν)] = (U(a)⊗U(g) V (λ, r))[r + dΨ (µ, ν)] = Sym dΨ (µ,ν)V ⊗ V (λ, r)

by Proposition 2.4, and

Homg(V (ν), Sym dΨ (µ,ν)V ⊗ V (µ)) ∼= HomG(P(ν, r + dΨ (µ, ν)), P(µ, r))

by Proposition 2.5.
Notice that the product of the terms 1νA

g
Ψ [dΨ (µ, ν)]1µ is from left to right, whereas the composition of the Hom-spaces

is from right to left. The bound on global dimensions follows from Lemma 5.5. �

5.8

We are now able to prove our main result:
Proof of Theorem 1.6. Notice first that ≤Ψ ν and [µ, ν]Ψ are finite and interval-closed, so AΨ (≤Ψ ν)g and AΨ ([µ, ν]Ψ )g
are Koszul and have finite global dimension by Lemma 5.7 and Theorem 5.6.

It remains to show the results for AΨ (µ ≤Ψ )
g and Ag

Ψ . We begin by showing that the algebras in question have finite
global dimension. We only show the proof for Ag

Ψ ; the proof is similar for AΨ (µ ≤Ψ )
g.

Suppose µ ∈ P+, and let Sµ be the simple left Ag
Ψ -module corresponding to the idempotent 1µ. Recall that 1νA

g
Ψ 1µ ≠ 0

only if µ ≤Ψ ν by Lemma 5.7. Thus, the projective cover of Sµ in the category of finite-dimensional left Ag
Ψ -modules is

Pµ := Ag
Ψ 1µ =


µ≤Ψ ν

1νA
g
Ψ 1µ = AΨ (µ ≤Ψ )

g1µ.

As in Proposition 2.5, this yields that
[Pν : Sµ] > 0 =⇒ µ ≤Ψ ν,

so we obtain a projective resolution of Sµ in the category of finite-dimensional left AΨ (µ ≤Ψ )
g-modules. Applying

HomAg
Ψ
(−, Sν) to this projective resolution and using Lemma 5.7 and Lemma 5.4, the statements on the global dimension

follow from the result for AΨ (≤Ψ ν)
g and AΨ ([µ, ν]Ψ )g.

It remains to show that Ag
Ψ and AΨ (µ ≤Ψ )

g are Koszul. The proof is finished by adapting the proof of the analogous
theorem in [5] while keeping in mind that we use a different definition for ≤Ψ and the reverse ordering on the summands
of A. A brief summary of the proof for Ag

Ψ is provided for the reader (see [16] for more details):
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Let TV = V~
⊗ T (V )⊗ V. Use the kernel of the canonical projectionΠ : TV → A to show that Ag

Ψ is quadratic. Finally,
show that the Koszul resolution of Ag

Ψ is exact, which shows that Ag
Ψ is Koszul by [2, Theorem 2.6.1]. �

We conclude by remarking that it is possible to construct a linear graded resolution for the algebras addressed in
Theorem 1.6. More generally, such a resolution has been constructed for every Koszul algebra in [2, Theorem 2.6.1].
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