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Abstract

A new mechanism of electromagnetic radiation by electrons under the influence of a dense neutrino flux, termed
“the spin light of electron” in neutrino flux (S Leν), is considered. It is shown that in the case when electrons are
moving against the neutrino flux with relativistic energy there is a reasonable increase of the efficiency of the energy
transfer from the neutrino flux to the electromagnetic radiation by the S Leν mechanism. The proposed radiation
process is applied to an astrophysical environment with characteristics peculiar to supernovae. It is shown that a
reasonable portion of energy of the neutrino flux can be transferred by the S Leν to gamma-rays .
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1. Introduction

For a period of about a decade neutrino electromag-
netic properties (see [2–4] for a review) and neutrino
electromagnetic interactions in dense matter have been
under the focus of studies performed at the neutrino the-
ory group at the Moscow State University. Within these
studies, in particular, a new mechanism of electromag-
netic radiation that can be emitted by a neutrino with
nonzero magnetic moment propagating in dense matter
was proposed and termed the spin light of neutrino in
matter (S Lν) [1]. The quantum theory of the S Lν was
first revealed in our studies [5, 6] ( see also [7]) within
implication of the so called “method of wave equations
exact solutions” that implies use of exact solutions of
modified Dirac equations that contain the corresponding
effective potentials accounting for the matter influence
on neutrinos [5, 6, 8–13].

In this short note we continue studies of a new pos-
sible realization of the spin light mechanism of elec-
tromagnetic radiation in a dense environment that was
termed the “spin light of electron” (S Leν) in a dense
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neutrino flux [14]. This phenomenon is a new mecha-
nism of electromagnetic radiation that can be emitted by
an electron in a dense flux of ultra-relativistic neutrinos.
This new scheme of the spin light provides a possibil-
ity to avoid two suppression factors in the radiation rate
and power peculiar for the S Lν: 1) a suppression due
to smallness of a neutrino magnetic moment and 2) a
suppression due to effects of the background plasma.

One might expect that the predicted S Leν mechanism
can have visible consequences for different astrophysi-
cal settings, for stellar core-collapse and supernova ex-
plosion phenomenology in particular. However, as it
was shown in [14], the S Leν in a dense neutrino flux
in the case of emitting electrons are at rest cannot pro-
vide important consequences for the energy balance in
a supernova process. This is because in case of non-
moving electrons the emitted photon energy in the S Leν
process is very small as well as the rate of the process
is also very small. Here below we consider “strength-
ening” the S Leν in case of the relativistic motion of the
emitting electrons. It is shown that the S Leν rate and
power are increased by many orders of magnitude in re-
spect to the case of the S Leν by electrons at rest. Also
the emitted photon energies are shifted up to gamma-
rays.
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2. Modified Dirac equation

We consider a beam of electrons moving towards the
neutrino flux composed of three flavors νe, νμ and ντ
with number densities ni (in the laboratory rest frame)
moving in the same direction. Following discussion of
[14], we introduce the average value n of the neutrino
number density and the parameter δe,

n =
ne + nμ + nτ

3
, δe =

nμ + nτ − ne

n
, (1)

and obtain the modified Dirac equation for an electron
in the neutrino flux,

{γμpμ + γμ
c + δeγ5

2
f μ − m}Ψ(x) = 0, (2)

where m and pμ are the electron mass and momentum,
c = δe − 12 sin2 θW , G = GF√

2
, and GF is the Fermi con-

stant. For the speed of relativistic neutrinos we have
β
μ
(ν) � (1, 0, 0, 1), thus the effective neutrino potential is

f μ = G(n, 0, 0, n). We suppose here that the neutrino
flux propagates along the direction of z axis.

3. Exact solution

Equation (2) can be solved exactly (see [14]) and for
the electron energy spectrum we get

Eεs (p) = ε

√
m2 + p2⊥ +

(
p3 + A

)2 − A, (3)

where A = Gn
2
(
c − sδ

)
, δ = |δe|, p3 is the electron mo-

mentum in the direction of the neutrino flux propagation
and p = (p⊥, p3) is the total electron momentum.

Comparing (3) with corresponding spectra of a
neutrino [5, 6] or an electron [15] in nonmoving mat-
ter we conclude that the number s = ±1 distinguishes
two possible electron spin states.

Two particular electron energy branches Eεs (p)|ε=+1 =

Es(p) with s = ±1 as functions of the momentum p are
plotted in Fig.1. It is possible to show [14] that E+(p) >
E−(p) for any p.

The exact solution of equation (2) is given by [14]

ψi(r, t) = ei(−E+t+pr)ψ̃i, (4)

ψ f (r, t) = ei(−E+t+pr)ψ̃ f , (5)

where

ψ̃i =
1

L
3
2 C+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
m

p⊥e−iφ

E+ − p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ψ̃ f =
1

L
3
2 C−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E− − p3
−p⊥eiφ

m
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

here L is the normalization length and

C± =
√

m2 + p2⊥ + (E± − p3)2 (7)

are the normalization coefficients.

4. Spin light of relativistic electron in dense neutrino
flux

Consider the quantum transition of an electron from
one quantum spin state to another with emission of a
photon when the electron moves rapidly towards the
dense neutrino flux. The element of S -matrix defining
the process amplitude is given by (see [10, 15]):

S (λ)
f i = −e

√
4π
∫

d4xψ̄ f (x)(γe(λ)∗)
eikx

√
2ωL3

ψi(x), (8)

where e is the electron charge, ψi(x) and ψ f (x) are the
wave functions of the initial and final electron states
in the background neutrino flux given by (4) and (5),
k = (ω, k) and e(λ) (λ = 1, 2) are the momentum and
polarization vectors of the emitted photon.

Figure 1: The dependence of the electron energies in two different
spin states, E+(p) and E−(p), on the momentum component p3.

The rest frame in moving background is defined as
one where the electron energy E+ gets its minimum,
∂E+
∂p = 0 (see [5, 16–18]): p3 = −Gn

2 (c − δ), p⊥ = 0.
Thus in general case the initial value of the electron mo-
mentum third component can be represent as

p3 = −Gn
2

(c − δ) + p̃3, (9)

where p̃3 is an “access” of the momentum component
over its (minimum) value in the rest frame. Now we
consider the relativistic electrons characterized by the
following conditions,

|p̃3| � m, |p̃3|Gnδ � m2, and p̃3 < 0. (10)

As for the supernova environment Gn
m ∼ 10−8, the elec-

tron momentum in this case should be within the range
1 � | p̃3 |

m � 108.
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From the energy-momentum conservation law we ob-
tain the expression for the emitted photon energy

ω =
2Gnδ

1 + cos θ + 1
2

m2

p̃2
3

, (11)

where θ is the angle between the direction of the S Leν
and neutrino flux propagation.

It is interesting to compare the emitted photon ener-
gies in the case of the considered here S Leν by rela-
tivistic electrons and one produced by electrons at rest
(see [14]). Taking into account that in the case of non-
moving electrons ω = Gnδ, for the photons energy ratio
(in the case of electron motion against the neutrino flux
propagation, θ = π) we get

ω(|p̃3| � m)
ω(|p̃3| � m)

= 4
p̃2

3

m2 � 1. (12)

It follows that there is a reasonable increase of the emit-
ted photon energy in case of the relativistic motion of
the emitters (the electrons).

Using expressions for the amplitude (8) and the wave
functions of the initial and final electrons (6), and also
for the emitted photon energy (11) we get for the S Leν
total rate and power,

Γ =
16
3

e2ma3
( |p̃3|

m

)2
, I = 16e2m2a4

( |p̃3|
m

)4
, (13)

where a = Gnδ
m . Comparing these expressions with

the corresponding characteristics of the S Leν in case of
nonmoving electrons [14], we get that

Γ(|p̃3| � m)
Γ(|p̃3| � m)

= 4
( |p̃3|

m

)2
,

I(|p̃3| � m)
I(|p̃3| � m)

= 12
( |p̃3|

m

)4
.

For the case of relativistic electrons |p̃3 |
m � 1. Thus we

show that there should be a reasonable amplification of
the S Leν rate and power in case of relativistic electrons.

5. Effect of plasma

The electromagnetic wave propagation in the back-
ground environment is influenced by the plasma effects.
For the S Lν in matter these effects have been discussed
in details in [6, 19, 20]. In [14] we have shown that
the effect of nonzero emitted photon mass (the plas-
mon mass mγ) in the case of S Leν is not important,
mγ

Gnδ � 1. The Debye screening of electromagnetic
waves (another possible plasma effect) could be impor-
tant for the S Leν radiation propagation if electron num-
ber density Ne < 1035 cm−3. However, the electron mat-
ter with Ne ∼ 1019 cm−3 considered here is quite trans-
parent for the S Leν.

Conclusions and indications for possible phe-
nomenology

Let us apply the considered S Leν of relativistic elec-
trons in dense flux of neutrinos to an environment pecu-
liar to the supernova phenomena. On the basis of [21]
one can estimate the effective neutrino matter density
to be n ∼ 1035 cm−3, thus the characteristic parameter
Gn
m ∼ 10−8. As it is discussed in [22, 23], the sur-

rounding interstellar medium can contain regions with
reasonably high electron density relativistically mov-
ing towards the neutrino flux. Under these conditions,
the spin light can be emitted by relativistic electrons in
the quantum transition from the energy states E+ to the
states E−.

From (11) and (13) for the relativistic electrons char-
acterized by | p̃3 |

m = 107 we get the following estima-
tions for the S Leν photon energy, rate and power, re-
spectively,

ω ∼ 1014 eV, Γ ∼ 1010 s−1, I ∼ 1021eV s−1. (14)

The electron number density at the distance R = 10 km
from the star center can be of order Ne ∼ 1019 cm−3.
Thus, the amount of S Leν flashes per second from 1 cm3

of the electron matter under the influence of a dense
neutrino flux is N ∼ 1028 cm−3 s−1. For the energy
release of 1 cm3 per one second we get

δE
δtδV

= INe ∼ 1040 eV cm−3 s−1. (15)

Now let us also estimate the efficiency of the energy
transfer from the total neutrino flux to the electromag-
netic radiation due to the proposed S Leν mechanism.
The total neutrino energy in the neutrino flux (charac-
terized by n ∼ 1035 cm−3 and 〈E〉 ∼ 107 eV) is

δEν
δV

∼ 〈E〉n ∼ 1042 eV cm−3. (16)

It follows that each second a considerable part of neu-
trino flux energy transforms into gamma-rays by the
S Leν mechanism. The performed studies illustrates an
increase of the efficiency of such energy transfer mecha-
nism in the case when the emitting electrons are moving
with relativistic speed against the neutrino flux propa-
gation in comparison with the case of nonmoving initial
electrons. We predict that this may have important con-
sequences in astrophysics and for the supernova process
in particular.
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