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PHEX gene and hypophosphatemia
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PHEX gene and hypophosphatemia. X-linked hypophospha- mineralization, and vitamin D metabolism. This review
temia (XLH) and tumor-induced osteomalacia (TIO) are dis- focuses on describing the impact that the discovery of
eases that have in common abnormal proximal renal tubular the PHEX gene has had on the understanding of thefunction resulting in increased renal clearance of inorganic

pathophysiology of XLH and TIO and the modulationphosphorus and hypophosphatemia. The recent discovery of
of fundamental processes operative in kidney and bone.the PHEX gene has provided new insights to these disorders.

In this regard, identification of the PHEX gene product as a
membrane-bound endopeptidase suggests that the pathophysi-
ologic cascade underlying XLH likely involves inactivation mu- PHENOTYPIC CHARACTERISTICS OF X-LINKED
tations of the gene causing a failure to clear an active hormone, HYPOPHOSPHATEMIA AND TUMOR-
phosphatonin, from the circulation. The presence of this hor- INDUCED OSTEOMALACIA
mone through unknown mechanisms decreases the sodium-

X-linked hypophosphatemia occurs as an X-linkeddependent phosphate cotransporter in the kidney, resulting in
impaired phosphate transport. In contrast, TIO likely evolves dominant disorder with complete penetrance of a renal
secondary to tumor overproduction of the putative phospha- tubular abnormality resulting in phosphate wasting and
tonin, which exerts physiologic function despite efforts to coun- consequent hypophosphatemia. It is the prototypic renalteract the resultant hypophosphatemia with overproduction of

phosphate wasting disorder, characterized in general byPHEX transcripts that are insufficient to accommodate the
progressively severe skeletal abnormalities and growthenhanced substrate load. These potential pathophysiologic

mechanisms for XLH and TIO provide valuable inroads to retardation. The hyp-mouse model harbors a homolo-
understanding phosphate homeostasis, as well as vitamin D gous mutation and is an excellent mimic of the human
metabolism, bone mineralization, and calcium metabolism. disease. Indeed, much of our understanding of the patho-

physiology of XLH derives from studies of the murine
homologue.

X-linked hypophosphatemia (XLH) and tumor-in- In contrast, TIO is a sporadic condition characterized
duced osteomalacia (TIO) are examples of rachitic and by remission of the unexplained bone disease after resec-
osteomalacic disorders in which phosphate depletion tion of a coexisting tumor. The tumors have been of
predominates. Both of these diseases have abnormal mesenchymal origin in the large majority of patients.
proximal renal tubular function in common, which re- However, the recent observation of TIO concurrent with
sults in an increased renal clearance of inorganic phos- breast carcinoma, prostate carcinoma, oat cell carcinoma,
phorus and hypophosphatemia. In addition, the disor- small cell carcinoma, multiple myeloma, and chronic
ders are characterized by low or inappropriately normal lymphoctytic leukemia indicates that the disease is likely
serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels and secondary to a variety of tumors, including those of epi-
defective bone mineralization [1, 2]. Until recently, the dermal and endodermal derivation.
pathophysiologic mechanisms underlying these diseases

Quite remarkably, these diseases of notably different
have remained poorly understood. However, the recent

genesis have amazingly similar clinical presentations.
discovery of the PHEX gene [3] has provided new insight

This has led to much speculation about links between
into these disorders and revealed possible alternative

the pathophysiologic basis for the disorders.
regulatory mechanisms for phosphate homeostasis, bone

Clinical features

The clinical expression of the XLH is widely variable,Key words: rickets, osteomalacia, vitamin D, phosphatonin, bone min-
eralization. ranging from a mild abnormality, the apparent isolated

occurrence of hypophosphatemia, to severe rickets and/Received for publication December 30, 1998
or osteomalacia [4]. In children, the most common clini-and in revised form February 22, 1999
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ease exhibit enlargement of the wrists and/or knees sec- membranes of the proximal nephron in hyp-mice. Until
recently, whether this renal abnormality is primary orondary to rickets, as well as bowing of the lower extremit-

ies. Additional signs of the disease may include late secondary to the elaboration of a humoral factor has
been controversial. In this regard, the presence of a pri-dentition, tooth abscesses secondary to poor mineraliza-

tion of the interglobular dentine, and premature cranial mary renal abnormality is supported by the observations
that primary cultures of renal tubule cells from hyp-micesynostosis. Many of these features do not become appar-

ent until the age of 6 to 12 months or older [5]. In spite exhibit a persistent defect in renal phosphate transport
[abstract; Gutteridge et al, J Bone Miner Res 5(Suppl 1):of marked variability in the clinical presentation, bone

biopsies in affected children and adults invariably reveal S205, 1990] [14], likely caused by decreased expression of
the Na1-phosphate cotransporter (NPT-2) mRNA andlow turnover osteomalacia without osteopenia. The se-

verity of the bone disorder has no relationship to gender, immunoreactive protein [15–17]. In contrast, transfer of
the defect in renal phosphate transport to normal and/the extent of the biochemical abnormalities, or the sever-

ity of the clinical disability [6]. In untreated youths and or parathyroidectomized normal mice parabiosed to hyp-
mice implicated a humoral factor in the pathogenesisadults, the serum 25(OH)D levels are normal and the

concentration of 1,25(OH)2D is in the low to normal of the disease [18, 19]. Current studies, however, have
provided compelling evidence that the defect in renalrange [7–9]. The paradoxical occurrence of hypophos-

phatemia and normal serum calcitriol levels is due to phosphate transport in XLH is secondary to the effects
of a circulating hormone or metabolic factor. Thus, im-aberrant regulation of renal 25(OH)D-1a-hydroxylase

activity. Studies in hyp- and gy-mice, the murine homo- mortalized cell cultures from the renal tubules of hyp
and gy -mice exhibit normal Na1-phosphate transport,logues of the human disease, have established that defec-

tive regulation is confined to the enzyme localized in suggesting that the paradoxical effects observed in pri-
mary cultures may represent the effects of impressedthe proximal convoluted tubule, the site of abnormal

phosphate transport [10–13]. memory and not an intrinsic abnormality [20, 21]. More-
over, the report that cross-transplantation of kidneys inPatients with TIO usually present with bone and mus-

cle pain, muscle weakness, and, occasionally, recurrent normal and hyp -mice results in neither transfer of the
mutant phenotype nor its correction unequivocally es-fractures of long bones. Additional symptoms common

to younger patients are fatigue, gait disturbances, slow tablished the humoral basis for XLH [22]. Subsequent
efforts, which resulted in localization of the gene encod-growth, and skeletal abnormalities, including bowing of

the lower extremities. The duration of symptoms before ing the Na1-phosphate cotransporter to chromosome 5,
further substantiated the conclusion that the renal defectdiagnosis ranges from 2.5 months to 19 years, with an

average of .2.5 years. The age at diagnosis is generally in brush-border membrane phosphate transport is not
intrinsic to the kidney in XLH [23]. Although these datathe sixth decade, with a range of 7 to 74 years. Approxi-

mately 20% of the patients are younger than 20 years establish the presence of a humoral abnormality in XLH,
the identity of the putative factor, the spectrum of itsat presentation [2]. The biochemical abnormalities of the

disorder include hypophosphatemia and an abnormally activity, and the mechanism by which it functions have
not been definitively elucidated. Regardless, preliminarylow renal tubular maximum for the reabsorption of phos-

phorus per liter of glomerular filtrate (TmP/GFR), indic- reports suggest the production of a phosphaturic factor
by hyp-mouse osteoblasts and marrow mesenchymalative of renal phosphate wasting. The serum phosphorus

values range from 0.7 to 2.4 mg/dL. Additional abnor- cells maintained in culture (abstract; Nesbitt et al, J Bone
Miner Res 12:S113, 1997) [24]. These studies argue thatmalities include gastrointestinal malabsorption of phos-

phorus, which, coupled with renal phosphorus wasting, a circulating factor, phosphatonin, may play an important
role in the pathophysiologic cascade responsible forresults in a negative phosphorus balance. Serum 25(OH)D

is normal and serum 1,25(OH)2D inappropriately normal XLH.
There is strong evidence that a humoral factor pro-relative to the hypophosphatemia [2]. Aminoaciduria,

most frequently glycinuria, and glucosuria are occasion- duced by the tumor is likewise responsible for TIO. This
possibility has been supported by: (a) the presence ofally present. Radiographic abnormalities include gener-

alized osteopenia, pseudofractures, and coarsened tra- phosphaturic activity in tumor extracts from three of
four patients with TIO (abstract; Lau et al, Clin Res 27:beculae, as well as widened epiphyseal plates in children.
421A, 1979) [25, 26]; (b) the occurrence of hypophospha-

Physiology temia and increased urinary phosphate excretion in het-
erotransplanted tumor-bearing athymic nude mice [27];Investigators generally agree that the primary inborn

error in XLH results in an expressed abnormality of the (c) the inhibition of phosphate uptake in opossum kidney
cells by conditioned medium collected from cultured tu-renal proximal tubule that impairs phosphate reabsorp-

tion. This defect has been indirectly identified in affected mor cells obtained from affected patients [28–31]; (d) the
demonstration that extracts of the heterotransplantedpatients and directly demonstrated in the brush border
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tumor inhibited renal 25-hydroxyvitamin D-1a-hydroxy- along the Xp22-p21 region of the X-chromosome and
only allowed the identification of flanking markers forlase activity in cultured kidney cells [29]; and (e) the

coincidence of aminoaciduria and glycosuria with renal the HYP locus 20 centimorgans (cM) apart. More re-
cently, the independent and collaborative efforts of thephosphate wasting in some affected subjects, indicative

of complex alterations in proximal renal tubular function HYP consortium resulted in the study of some 13 multi-
generational pedigrees and consequent refined mapping[32]. Indeed, partial purification of “phosphatonin” from

a cell culture of a sclerosing hemangioma causing TIO of the Xp22.1-p21 region of the X chromosome, identifi-
cation of tightly linked flanking markers for the HYP locus,has reaffirmed this possibility [30]. These studies reveal

that the putative phosphatonin may be a peptide with construction of a YAC contig spanning the HYP gene
region, and eventual cloning and identification of themolecular weight of 8 to 25 kd, which does not alter

glucose or alanine transport but inhibits sodium-depen- disease gene as PHEX, a PHosphate-regulating gene with
homologies to Endopeptidases located on the X chromo-dent phosphate transport. However, recent studies that

document the presence in various disease states of addi- some. In brief, these studies ascertained a locus order
on Xp22.1 of: Xcen-DXS451-(DXS41/DXS92)-DXS274-tional phosphate transport inhibitors [33] indicate that

the TIO syndrome is heterogeneous and “phosphatonin” DXS1052-DXS1683-HYP-DXS7474-DXS365-(DXS443/
DXS3424)-DXS257-(GLR/DXS43)-DXS315-Xtel.may be a family of hormones. In this regard, Rowe et

al have reported that screening of conditioned medium Moreover, the physical distance between the flanking
markers, DXS1683 and DXS7474, was determined asfrom the tumor cells of an affected patient, using an antise-

rum raised preoperatively, and subsequent Western anal- 350 kb, and their location on a single YAC was ascer-
tained. Subsequently, a cosmid contig spanning the HYPysis revealed the presence of two proteins of 56 and 58 kd

[28]. More recently, they have successfully extracted gene region was constructed, and efforts were directed
at discovering deletions within the HYP region. Identifi-mRNA from a tumor in an affected patient and cloned

a novel gene that codes for a protein of over 430 residues cation of several such deletions permitted characteriza-
tion of cDNA clones that mapped to cosmid fragmentswith N-glycosylation motifs and glycosaminoglycan at-
in the vicinity of the deletions. Database searches withtachment sites. Characteristics of the predicted protein
these cDNAs detected homologies at the peptide levelare consistent with coding of a hydrophilic circulating
to a family of endopeptidase genes that includes neutralprotein with two small localized regions of hydropho-
endopeptidase (NEP), endothelin-converting enzyme-1bicity (abstract; Rowe, Bone 23:S653, 1998). Similar to
(ECE-1), and the Kell antigen. These efforts clearly es-XLH, the mechanism of action by which phosphatonin
tablished PHEX as the candidate gene responsible forfunctions in TIO remains unknown. Although there is
XLH [37–41].no evidence that the factor is parathyroid hormone, para-

Subsequent studies determined that the human PHEXthyroid hormone-related protein, or the recently de-
gene consists of 22 exons that encode a 749 amino acidscribed phosphate regulator, human stanniocalcin, recent
protein. However, PHEX gene expression as a 6.6 kbobservations suggest that parathyroid hormone/parathy-
transcript in bone, adult ovary, and fetal lung, as well asroid hormone-related protein receptors, in some cases,
adult lung and fetal liver [42–45] indicate that only 35%may modulate the activity of the factor.
of the PHEX mRNA contains the 2247 base pairs coding
sequence, with the remaining 65% representing untrans-

CLONING OF THE PHEX GENE lated regions. Further investigations have unequivocally
Efforts to better understand XLH have more recently established that deactivating mutations of the PHEX

included attempts to identify the genetic defect underly- gene underlie the phenotypic expression of XLH. In
ing this disease. In 1986, Read et al [34] and Machler et this regard, extensive mutational analysis of some 170
al [35] reported linkage of the DNA probes DXS41 and families with XLH reveal a range of defects in the PHEX
DXS43, which had been previously mapped to Xp22.31- gene that include nonsense, deletions, duplications, in-
p21.3, to the HYP gene locus. In subsequent studies, sertions, deletional insertions, splice site, and missense
Thakker et al [36] and Albersten et al (abstract; Ninth mutations. Moreover, the mutations involve almost the
Workshop on Human Gene Mapping #401, p 317, 1987) entire length of the gene, and the majority, if translated,
reported linkage to the HYP locus of additional poly- will result in a functional loss of the PHEX protein activ-
morphic DNA, DXS197, and DXS207 and, using multi- ity [46–49]. Interestingly, of all the PHEX abnormalities
point mapping techniques, determined the most likely reported to date, only one has involved the putative
order of the markers as Xpter-DXS85-(DXS43/DXS197)- intracellular domain, and none has involved the putative
HYP-DXS41-Xcen and Xpter-DXS43-HYP-(DXS207/ transmembrane region. Somewhat unexpectedly, PHEX
DXS41)-Xcen, respectively. The relatively small number mutations have not been found in a significant percent-
of informative pedigrees available for these studies pre- age of affected probands. This may result from study of

only a fraction of the mRNA transcript (approximatelyvented a definitive determination of the genetic map



Drezner: PHEX gene and hypophosphatemia12

33%), limited investigation of the 59-untranslated region normal and hyp-mice to rescue the mutant phenotype.
Although several explanations for this discrepancy areand gene promoter or from misdiagnosis, and confusion

of X-linked recessive hypophosphatemia or autosomal possible, further data are necessary to resolve the incon-
gruity. Alternatively, it is possible that PHEX functionsdominant hypophosphatemia for XLH.
in a different fashion to regulate phosphatonin activity.
In this regard, the gene may function indirectly to inhibit

POSSIBLE ROLES FOR PHEX AND
the expression of phosphatonin, and an inactivating mu-

PHOSPHATONIN IN THE PATHOGENESIS
tation would result in phosphatonin overexpression, lead-

OF X-LINKED HYPOPHOSPHATEMIA AND
ing to renal phosphate wasting. In any case, further work

TUMOR-INDUCED OSTEOMALACIA
by several groups indicates that the osteoblast is the

Although mutations in the PHEX gene clearly under- functional locus for the abnormalities underlying XLH
lie XLH, the pathogenesis of the disorder is not immedi- (abstract; Nesbit et al, J Bone Miner Res 12:S113, 1997)
ately apparent. Nevertheless, several observations sug- [51, 52]. To this end, these data illustrate that the osteo-
gest the likely cascade of events that result in the primary blast is a unique source of phosphatonin (Fig. 1) pro-
abnormalities characteristic of the syndrome. duced in a developmentally dependent fashion. More-

First, the role of PHEX in XLH must explain the over, differential phosphatonin activity in hyp-mouse
X-linked dominant expression of the disorder with little, osteoblasts is contingent on PHEX expression in normal
if any, gene dosage effect. In this regard, it is likely that cells. Thus, with the appearance of significant PHEX
mutations in the PHEX gene result in an haploinsuffi- production in normal cells, decreased phosphatonin ac-
ciency defect, in which one half the normal gene product tivity is observed. In contrast, with loss of PHEX function
in females (or null amounts in males) results in the phe- in hyp-mouse osteoblasts, stable phosphaturic activity is
notype. The alternative possibility that the PHEX gene maintained.
results in a dominant negative effect is unlikely because, In TIO, the interplay between phosphatonin and PHEX
inconsistent with this prospect, several mutations re- is remarkably different in spite of the notably similar
ported in affected humans [49] and the murine Gy muta- phenotypic expression of this tumor-associated syn-
tion almost certainly result in the lack of message produc- drome and XLH. As noted previously in this article, in
tion [50]. patients with TIO, the hyperphosphaturia that character-

Second, as noted earlier in this article, despite the ab- izes the syndrome is most likely the consequence of un-
sence of PHEX expression in kidneys, in hyp- and gy- regulated and excessive elaboration of a phosphaturic
mice, evidence suggests that the proximate cause of renal factor by the tumor, likely phosphatonin. However, wild-
phosphate wasting is a decreased concentration of the type PHEX transcripts are expressed in relative over-
renal sodium-dependent phosphate cotransporter. Hence, abundance in tumors from affected patients in contrast
the PHEX mutation must serve to regulate the expres- to the loss of gene function manifest in subjects with
sion of this transporter indirectly. XLH [53]. This probably reflects a response of PHEX

Third, the parabiosis data and renal cross-transplanta- expression to the hypophosphatemia or the primary phos-
tion studies in hyp-mice discussed previously support the phatonin overabundance. Recent studies favor the latter
possibility that the pathophysiology of XLH involves because phosphate depletion in animal models fails to
elaboration of a humoral phosphate-wasting factor, phos- alter PHEX expression (abstract; Meyer and Meyer, Bone
phatonin. Because PHEX codes for a membrane-bound 23:S545, 1998). In any case, the increased PHEX tran-
enzyme, it is clear that the PHEX protein is not phospha- scripts may be insufficient to accommodate the enhanced
tonin. However, it is possible that the inactivating PHEX substrate load, resulting in abnormally high circulating
mutations play a role in regulating the concentration of levels of the active phosphaturic hormone (Fig. 2). Re-
phosphatonin, which, in turn, controls the expression of gardless, the presence of high levels of PHEX expression
the renal sodium-dependent phosphate cotransporter. in tumors of osteoblast lineage is consistent with the

With these considerations in mind, Figure 1 illustrates intrinsic osteoblast defect postulated to exist in XLH.
the most plausible pathophysiologic basis for XLH. In
this cascade of events, an inactivating mutation of PHEX

ROLE OF PHEX IN THE PHYSIOLOGICproduces inadequate amounts of the PHEX endopepti-
REGULATION OF KIDNEY ANDdase, resulting in ineffective or inadequate degradation/
BONE FUNCTIONinactivation of phosphatonin and circulation of excessive

amounts of this protein, consequent repressed expres- Although the studies related previously firmly define
the role of PHEX in the pathogenesis of XLH and TIO,sion of the sodium-dependent phosphate cotransporter,

renal phosphate wasting, and hypophosphatemia. Al- little information is available regarding the possible func-
tion of this gene in regulating physiologic activities. How-though this postulate is consistent with most available

data, it does conflict with the failure of parabiosis of ever, several recent studies suggest that PHEX may play
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Fig. 1. Pathophysiologic basis for X-linked hypophosphatemia (XLH). Under normal conditions, the osteoblast produces PHEX and phosphatonin
(PTN), a circulating phosphaturic hormone. The PHEX protein, a membrane-bound endopeptidase, degrades (solid arrow) a substantial quantity
of the active phosphatonin (PTNa) to an inactive metabolite (PTNi). The remaining circulating active hormone interacts with a renal tubule cell
receptor that, by unknown mechanisms and to a small degree downregulates (dotted arrow) the sodium-dependent phosphate cotransporter
(NPT2), thereby minimally compromising the transport of phosphate. The inactivation of PTN by PHEX is crucial to limiting the effects of PTNa
on the transport of phosphate and consequently urinary phosphate (Pi) excretion. In XLH-defective PHEX fails to inactivate (dotted arrow) the
majority of PTNa. Thus, excessive PTNa interacts with the renal receptor and markedly decreases (dotted arrow) NPT2 mRNA and protein
content (the marked decrease indicated by the open circle compared with the closed circle under normal conditions). The resultant limited
phosphate reabsorption is reflected by substantial urinary phosphate wasting.

a role in physiologic regulation of bone mineralization inhibitor of mineralization that is a substrate of PHEX.
Of course, this substrate may be phosphatonin, but fur-and vitamin D metabolism, as well as phosphate homeo-

stasis. ther studies are necessary to characterize the mineraliza-
tion inhibitor.

Bone mineralization These observations provide new insights into novel
factors that regulate bone mineralization. By extrapola-Recent studies of Xiao et al suggest that PHEX may
tion, it is reasonable to believe that under normal condi-contribute to the regulation of bone mineralization [52].
tions, PHEX regulates an osteoblast-derived factor, which,They reported that the abnormal mineralization in hyp-
in turn, modulates mineralization of the extracellularmice is due, at least in part, to an intrinsic osteoblastic
matrix. Conceivably, upregulation of PHEX in the set-defect associated with abnormal PHEX function. In this
ting of (phosphatonin-mediated) hypophosphatemia mayregard, they found that mutant osteoblasts fail to miner-
reduce the concentration of such a factor and facilitatealize under culture conditions supporting mineralization
mineralization despite inadequate circulating phosphate.in normal osteoblasts. More important, they discovered
Alternatively downregulation of PHEX secondary to vi-that the hyp-mouse osteoblasts produce a factor(s) that
tamin D or hyperphosphatemia may increase the miner-is capable of regulating the mineralization of the extra-
alization inhibitor and appropriately limit bone mineral-cellular matrix. Hence, the mineralization defect observed
ization. Of course, much additional investigation isin mutant cells is transferable to normal osteoblasts in
necessary to validate these events. However, currentcoculture experiments. Because a physiologically rele-
studies clearly indicate that PHEX may play an impor-vant site of PHEX expression is the osteoblast, it is likely
tant, but poorly appreciated, role in the regulation ofthat production of this mineralization inhibitor is the
bone mineralization and may serve to protect the integ-result of the inactivating mutations of PHEX. Indeed,
rity of mineralization during states of mineral depriva-dysfunction of the gene product may result in failure

to degrade an endogenously synthesized but undefined tion or excess.
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Fig. 2. Pathophysiologic basis for tumor-induced osteomalacia (TIO). TIO tumor cells, generally of mesenchymal origin, produce active phosphatonin
(PTNa) in excess (bold arrows). The increased PTN production, through a presumed feedback mechanism (bold arrow), enhances PHEX production.
However, the overproduction of active phosphatonin (PTNa) exceeds the capability of PHEX to degrade sufficient amounts of the product to an
inactive product (PTNi). Hence, in spite of enhanced PHEX, an overabundance of PTNa circulates to the kidney where interaction with the
receptor decreases (dotted arrow) the sodium-dependent phosphate cotransporter (NPT2) mRNA and protein production, thereby limiting
phosphate (Pi) transport and resulting in phosphate wasting.

Vitamin D metabolism tivity in the proximal convoluted tubule [10, 11], the
site of abnormal phosphate transport, but normalFor several decades, investigators have considered the
enzyme activity in the proximal straight tubule [12],serum phosphorus concentration an important factor
in which normal phosphate transport prevails.that regulates 1,25(OH)2D production. In this regard, oral

• Additional human diseases marked by defective re-phosphate depletion and hypophosphatemia and oral
nal phosphate transport, including Fanconi’s syn-phosphate loading and hyperphosphatemia stimulate
drome, autosomal dominant hypophosphatemia andand suppress renal 25(OH)D-1a-hydroxylase activity, re-
adult-onset hypophosphatemia, likewise display im-spectively. However, over the past several years, a growing
paired enzyme activity and circulating 1,25(OH)2Dbody of evidence suggests that the effects of an altered
levels inappropriately low for the prevailing serumserum phosphorus concentration on enzyme function are
phosphorus concentration [54].linked to alterations in renal phosphate transport. Per-

• Patients with tumoral calcinosis and enhanced renalhaps the most compelling evidence in this regard is the
phosphate transport exhibit apparent increased 25-recognition that altered serum phosphorus levels second-
hydroxyvitamin D-1a-hydroxylase activity and ele-ary to abnormalities of renal phosphate transport para-
vated circulating 1,25(OH)2D levels inappropriatelydoxically influence renal enzyme activity. Among the
high for the prevailing hyperphosphatemia [54].data favoring this possibility are the following:

Although these data clearly favor a role for altered• Patients with XLH and TIO, with phosphatonin-
renal phosphate transport in the regulation of 1,25(OH)2Ddependent renal phosphate wasting, exhibit im-
production, recent observations challenge this possibil-paired enzyme activity and circulating 1,25(OH)2D
ity. In this regard, investigators have reported normallylevels inappropriately low for the prevailing serum
regulated 25-hydroxyvitamin D-1a-hydroxylase activityphosphorus concentration [7–9].
in NPT2 knockout mice (abstract; Portale et al, Bone• Murine homologues of XLH manifest abnormally

regulated 25-hydroxyvitamin D-1a-hydroxylase ac- 23:S364, 1998). These animal models exhibit hypophos-
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Fig. 3. Pathophysiologic basis underlying abnormal phosphate homeostasis in the Na1-phosphate cotransporter (NPT2) knockout mouse
(NPT22/2). In the NPT22/2 mouse, the production of PHEX and phosphatonin (PTN) proceed normally and a limited amount of active
phosphatonin (PTNa) escapes degradation to an inactive metabolite (PTNi). However, the genetic defect in this mouse results in an obliteration
(empty circle) of the sodium-dependent phosphate cotransporter (NPT2) in the absence of an enhanced PTNa load. Thus, phosphate (Pi) transport
is compromised, and urinary phosphate wasting ensues.

phatemia secondary to the NPT2 protein deficiency and Hormonal regulation
consequent renal phosphate wasting. This defect is re- Although most studies to date link PHEX with only
markably similar to the abnormality underlying hypo- regulation of the putative phosphate-regulating hor-
phosphatemia in XLH (Fig. 3). However, in XLH and mone, phosphatonin, recent data suggest that the PHEX
in the hyp-mouse, abnormally regulated enzyme activity gene may have a more profound impact on hormonal
prevails. Although the reason for this evident disparity function. In this regard, important observations to date

include the following:is unclear, it seems plausible that the defective enzyme
function in XLH and the murine homologue results from

• The deduced structure of PHEX, including the pres-a PHEX-dependent event. To this end, the presumptive
ervation of the catalytic glutamate and histidine resi-PHEX-dependent phosphatonin excess underlying the
dues (equivalent to Glu648 and His711 of the relateddisease may negatively impact renal 1,25(OH)2D produc-
membrane-bound endopeptidase, neprilysin), arguestion directly and independent of effects on NPT2, renal
strongly that the protein has protease activity [54].phosphate reabsorption, and circulating phosphate levels.

• In addition, the wide range of PHEX mutationsClearly, further investigations are essential to test this
in patients with XLH, which aligns with regionspossibility. However, the plausibility of the hypothesis
required for peptidase activity in neprilysin, suggestsis enhanced by the recent observation that 1,25(OH)2D that PHEX indeed functions as a protease [54].

decreases PHEX expression in osteoblasts (abstract; • Lipman et al have reported the unexpected finding
Escarot and Desbarats, Bone 23:S181, 1998). Such an that PHEX effectively degrades parathyroid hor-
effect may be part of a feedback loop in which excess mone, indicating that the enzyme is rather promiscu-
1,25(OH)2D suppresses PHEX expression, which conse- ous in its substrate specificity [54].
quently results in enhanced phosphatonin levels, de-
creased 25(OH)D-1a-hydroxylase activity, and dimin- Such information raises the possibility that under
ished 1,25(OH)2D production, correcting the primary physiologic conditions, PHEX functions to modulate
abnormality. Currently, several laboratories are investi- parathyroid hormone bioavailability and bioactivity, par-

ticularly at the level of the osteoblast. In addition, thegating this possibility.
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