805 pages. $65.00.

Contents:
Preface. Invited lectures and panel session. Chairs and committee members. Lifetime achievement awards.
Contributors. 1. Novel areas of evolutionary programming and evolution strategies. Application of evolutionary
programming to earthquake hypocenter determination (J.-B.H. Minster, N.P. Williams, T.G. Masters, J.F. Gilbert,
and J.S. Haase). Non-acoustic sensor array localization using evolutionary programming (V.W. Porto). Evolution
strategies for mixed-integer optimization of optical multilayer systems (T. Bück and M. Schütze). Interactive
evolution of images (J. Graf and W. Banzhaf). 2. Evolutionary computation with medical applications. Steps
toward controlling blood pressure during surgery using evolutionary programming (D.B. Fogel and A.V. Sebald).
Dynamic feature set training of neural nets for classification (T.W. Brotherton and P.K. Simpson). Evolution of
morphological recognition systems (M.M. Rizki, L.A. Tamburino, and M.A. Zmuda). 3. Issues in evolutionary
optimization I. Racial harmony and function optimization in genetic algorithms - The races genetic algorithm
(C. Ryan). Optimization stochastic and multiple fitness functions (J.L. Breeden). A survey of constraint handling
techniques in evolutionary computation methods (Z. Michalewicz). 4. Pattern discovery, pattern recognition,
and system identification. A combined stochastic and deterministic approach for classification using generalized
mixture densities (D.E. Waagen and J.R. McDonnell). Query translation using evolutionary programming for
multi-lingual information retrieval (M.W. Davis and T.E. Dunning). Evolutionary speciation using minimal
representation size clustering (C. Haccouglu and A.C. Sanderson). Stacked generalization and fitness ranking in
evolutionary algorithms (T.M. English and M. Gotesman). Evolutionary chromatographic law identification by
recurrent neural networks (A. Fadda and M. Schoenauer). Wavelet-based signal approximation with genetic algo-
rithms (M.M. Lankhorst and M.D. van der Laan). 5. Special session on hierarchical levels of learning. The
levels of learning in Kydon's hierarchy (J.S. Mertoguno and N.G. Bourbakis). Multiple level evolutionary learning
in neuronal pattern recognition (A.A. Ugur and M. Conrad). Using cultural algorithms for constraint handling in
coevolution (K.A. De Jong and M.A. Potter). Ethnography of artificial culture: Specifications, prospects, and
constraints (N. Gessler). Evolving social structure in communities of agents through meme evolution (S. Bankes).
6. Self-adaptation in evolutionary computation. An evolutionary programming approach to self-adaptation on
finite state machines (L.J. Fogel, P.J. Angeline, and D.B. Fogel). Adapting crossover in evolutionary algorithms
(W.M. Spears). 7. Special session on morphogenic evolutionary computation. Morphogenic evolutionary compu-
tations: Introduction, issues and example (P.J. Angeline). Towards a self-replicating language for computation
issues in evolutionary optimization II. The effects of generating more offspring from less-fit parents (H.P. Haiduk,
investigations into a two-stage method of evolutionary optimization on constrained problems (H. Myung, J.H. Kim
Some interesting test functions for evaluating evolutionary programming strategies (G.H. Koon and A.V. Sebald).
8. Evolutionary applications to VLSI and part placement. A comparison of evolutionary programming and genetic
algorithms for electronic part placement (K.M. Nelson). An extended evolutionary programming algorithm for
VLSI channel routing (B.B. Prahlada Rao, L.M. Patnaik, and R.C. Hansahd). 9. Special session on applications of
evolutionary computation to biology and biochemistry. Genetic mechanisms underlying the Baldwin effect are
evident in natural antibodies (R.W. Anderson). Evolutionary stable strategies are not always stable under
evolutionary dynamics (D.B. Fogel and G.B. Fogel). Evolutionary optimization of a neural network-based sig-
nal processor for photometric data from an automated DNA sequencer (J. Golden, E. Garcia, and C. Tibbetts).
An object-oriented environment for artificial evolution of protein sequences: The example of rational design of
transmembrane sequences (M. Milik and J. Skolnick). Docking conformationally flexible small molecules into a
protein binding site through evolutionary programming (D.K. Gehlhaar, G. Verkhivker, P.A. Rejto, D.B. Fogel,
L.J. Fogel, and S.T. Freer). 10. Control applications of evolutionary computation. Evolutionary programming-
based optimal robust locomotion control of autonomous mobile robots (J.-H. Kim and H.S. Shim). Evolutionary
programming for synthesis of optimal controllers (N. Saravanam). Genetic algorithms for automatic regrouping
of air traffic control sectors (D. Delahaye, J.-M. Alliot, M. Schoenauer, and J.L. Farges). An iterated function
systems approach to emergence (D.A. Hoskins). 11. Genetic and inductive logic programming. Evolving the
architecture of a multi-part program in genetic programming using architecture-altering operations (J.R. Koza).
Genetic programming exploratory power and the discovery of functions (J.P. Rosca). An adaptive inductive logic
programming system using genetic programming (M.L. Wong and K.S. Leung). PANIC: A parallel evolutionary
rule based system (A. Giani, F. Biaiardi, and A. Starita). Multi-rule-set decision-making schemes for a genetic
algorithm learning network structure and weights (Y. Sato and T. Ochiai). Author index.