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Abstract

We study some generalized instanton algebras which are required to describe ‘instantonic complex rank 2
bundles’. The spaces on which the bundles are defined are not prescribed from the beginning but rather are obtaine
from some natural requirements on the instantons. They turn out to be quantum 4-§§hwid$q € C, and the
instantons are described by self-adjoint idempotente shall also clarify some issues related to the vanishing
of the first Chern—Connes clask; (¢) and on the use of the second Chern—Connes clags) as a volume form.
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1. Introduction

Recently there has been an intense activity on noncommutative [9] and quantum 4-spheres [3,4,10,13
and instanton bundles over them.

In this paper, by generalizing the methods presented in [7,9], we search for quantum instantons.
Paralleling the classical situation [2,11,14], by this we just mean a complex rank 2 bundle, i.e., we
require that the Oth Chern—Connes class vanishes, on some ‘four-dimensional space’ and with not trivia
characteristic classes. Weakening the assumptions made in [7,9], we do not require from the beginning
that the 1st Chern—Connes class of the bundle vanishes as well.

As we shall see, the spaces on which the instanton bundle are defined are not prescribed from th
beginning but rather come posteriori We could say that first comes the bundle and then the space on
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which the bundle is defined. While our procedure is completely general and could be used to produce
other quantum spaces, in this paper the resulting spaces will be quantum 4—S31ha'rtde1 qg €C. The
quantum instantons will be described by self-adjoint idempoteatMats(A,), with A, the noncommu-
tative algebra of functions associated with (in fact, defining) the splﬂéré’shese spheres and instantons
interpolate between analogous objects recently found in [9(Barch thatg| = 1) and [10] (forg € R).

We shall also clarify some issues related to the vanishing of the 1st Chern—Connes class and the us
of the 2nd Chern—Connes class as a ‘volume form’. It turns out that the first Chern—Connehalass
does vanish if and only if the deformation parametés such thatg| = 1. In contrast, the second Chern—
Connes classhy(e) does not vanish for any values @f The couple(chy(e), chu(e)) defines a cycle in
the reducedpb, B) bicomplex of cyclic homology andm(e) is closed, that i$ chy(e) = 0, if and only if
g is such thatg| = 1. It is only in the latter cases that the cla$s(e) is ‘g-antisymmetric’ and can be
used as a volume form [9].

In the final section we shall make some remarks on alternative definitions of spheres.

2. Theinstanton projections

Consider first the free--algebra with unity /' = C[[L, «;, B;, a7, B;: j = 1,2, 3]] generated by
elementsy;, g; and their adjointsy}, g;. Then, take the following self-adjoint element= ¢* in the
algebra Maj(F) ~ Maty(C) ® F,

01 02
= . l
¢ (QE Q3> @)
Each of theQ ;’s is assumed to be a:22 matrix of ‘generalized quaternions’ that is,
Q] ( _qﬂ;k 7'[0(; ) ’ .] & ( )

andg andx are complex parameters for the time being. Beingelf-adjoint also require®; = 07,
Qs = Q3%, from which it follows that the parameter must, in fact, be real, that; = o} andaz = o3,
and thatg; = 83 = 0 (unlessy = —1 which, for simplicity, we shall not consider here).

The next requirement we make is thabe of rank 2. This we implement by requiring that its Oth
Chern—Connes clagty(e) vanish (see later for the definition offy),

oo = (- 2)) o .

As a consequence we get that
1+ m) (g +a3) = 2, 4

which says thatr £ —1 and relatesz with «;. Summing up (and denoting, by ¢, a, by « andg, by )
up to now we have that

t 0 =1 0
Ql:(O nt)’ Q3:(1+O ﬂ(ﬁ—t))’
Qz=Q=( @« b ) Q;=Q*=<§* _q’g), 5)

—Q,B* To* T
with ¢t = r* (remember that & 7 # 0).
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Finally we require that is idempotent as well, that i€ = e.
One of the consequences is that

t 0 = -t 0 B
(6 n)ore(Po " a2 y)=e ©
From the diagonal elements it follows that
T—1 1-7m
to —at = e —at=——a 7
I e (n—i—l)na’ @

the consistency of which requires thatommutes withe anda*. Excluding the case = 0 we also get
thatr = 1. Then, the off-diagonal elements in (6) imply thaommutes withg and g* as well.
Frome? = ¢ it also follows that

N r 0)° t O
QQ +(O t) _(O t):O’
N t 0\ t O

These constraints require that

Bo = qap, Bra=qap”, 9)

oo+ g2 B+12—1=0, aa*+pBB +1t2—1=0, (10)

afa +|qlPBBF +12—1=0, ao*+pB+12—1t=0. (11)
Egs. (10) and (11) in turn imply that

(91> = 1) (88" — B*B) =0. (12)

Then, if|g|? # 1, it follows thatg must commute withg*. On the other hand, if|?> = 1, from Egs. (10)
and (11) it follows directly thaggs* = 8*8 (and alsax*«a = aa™ in this case).

3. Thealgebra of the quantum spheres S;‘

By slightly changing notations again, i.e., denote %(]I — z) and replacex — %a, B — %ﬁ, the
construction of the previous section amounts to the following. WihC \ {0}, we consider first the free
*-algebra with unityF, = C[[I, o, B, z, ™, %, z*]] generated by three elements 8 andz (and their
adjointsa®, g*, z*). Then, we take the following elemeain the algebra Mat( F,) ~ Mat(C) ® F,,

I+ z, 0, o, B
1 0, I+z, —gB*, af
2| of, —gB, I-z, O

B*, o, 0, I-z

(13)

By constructiore is self-adjoint, that i& = ¢*. The algebrad, of the quantum 4—spher@j¥1 is thus the
quotient of the free-algebrar, which results by requiring thatis idempotent as well, that i = e.
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This is equivalent to the requirement that the generators satisfy the relations (anddabdgmts)

z=2", o =az, 7B = Bz,
Bo = qgap, Bra=qap”, BB* = pB*B,
ofa+|q1?B* B+ 72 =1, aa* + BB+ 2 =1 (14)

Thus the algebrai, we are looking for is the unital-algebra generated by the elemeatsg and z
satisfying the relations (14). Here the deformation paramgtesuld be restricted so thag| € (O, 1];
for g, such thatg| > 1, the transformatiog — 1/¢, a — o*, B — —¢gB andz — z yields an isomorphic
sphere.

By restricting tog = exp(2if) we get the sphers; introduced in [9]; while folg € R the presenSj;
is the same as the one introduced in [10].

Wheng = 1 the algebra of the spheﬂg is commutative and coincides with the algebra of continuous
functions on the 4-dimensional spheit ThusSj]1 provides a deformation of the classical sphé&te

The algebrad, can be made into &*-algebra in the usual way. Fare F, one definegla|| as the
supremum, over all representationsof F, in B(H) that areadmissiblg in the sense that the operators
m(a), m(B), m(z) satisfy the relations (14), of the operator norfaga)||. ThenJ := {a € F,: |a| = 0}
is a two-sided ideal and one obtain€&norm onF, /7. The completion of this quotient algebra defines
aC*-algebra, which we shall denote by the same symhol

By using relations (14) it can be seen that the elemepts,, with k € Z andm, n, £ nonnegative
integers, of the form

skgrmgnzt  fork=0,1,2,...,
Akmne = { a—le *mlB nZ 14 (15)
akpmprzt fork=-1,-2,...
provides a linear basis fot, .
We note that for the generic situation wher:Qg| < 1 any charactey, besides
x@)=x@), xBH=xB),  x@)=x), (16)
has to satisfy the equations
x(B)=0 and [x@)|*+(x@)* =1 (17)

Thus the space of all (nonzero) characters, which can be thought of as the space of ‘classical points’ o
S, is homeomorphic to the 2-dimensional sph&fe

Next, we describe infinite dimensional irreducible representations of the algel{far 0 < |¢| < 1)
in B(H), the algebra of bounded operators on a Hilbert spHce. et {y,, n =0,1,2,...} be an
orthonormal basis for the Hilbert spaée With ¢ € C, |¢] < 1, we get two families of representations
e+ A, — B(H) given by

T+ ()Y = 7 ()Y = V1 = 2124,
n{,j:(a)wn ={v 1- |Q|2(n+1) 1ﬂn+1, ﬂ;,i(a*)Wn ZE V 1- |Q|2n %-1,

e+ (B)Yn = G " Y, e+ (B0 = Cq" V. (18)

In fact, for ¢ such that|¢| = 1, the two representations, . and 7, _ are identical so that the
representations are parametrized by points on a classical sphesinilarly to what happens for one-
dimensional representations (characters) as described before.
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4, Chern—Connesclasses

The self-adjoint idempotent given by (13) is clearly an element in the matrix algebra j#4f) ~
Maty(C) ® A,. It naturally acts on the right freg¢,-moduleA? = A, ® C*, and one gets as its range a
projective module of finite type which may be thought of as the module of ‘sections of a vector bundle
over Sj]". The moduleeA;‘ is a deformation of the classical instanton bundle oSfrfor ¢ = 1, the

moduleeA;‘ is the module of sections of the complex rank two, instanton bundleSividi.

We compute now the Chern—-Connes Character of the modmgefor a generic value of the
deformation parametey. If () is the projection on the commutant ok44 matrices, up to normalization
the component of the (reduced) Chern—Connes Character are given by the formulae

cm(e)=<(e—%)e®---®e>, (19)
2n
and they are elements of the tensor product
Aq®Zq®"'®Zq, (20)
e e
2n

Wherqu = A, /Cl is the quotient of the algebr4, by the scalar multiples of the urit
The crucial property of the componerds, (e) is that they define ayclein the (b, B) bicomplex of
cyclic homology [5,6,8,12],

Bch,(e) =bch,q(e). (21)
The operatob is defined by

m—1
bap®a® - @an) =Y (-1)/ag®  ®a;a;;1® -+ @ ay
j=0
+ (_1)mama0 & ag ®---Q am—1 (22)
while the operatoB is written as
B = AB,, (23)
where
Bo(ap®a1® -+ ® ) =1Qag®@a1Q -+ Q@ ay, (24)
1< .
Ala®@a1® - Qay) = . Z(—l)"”aj Raj1®---Qaj_1, (25)
j=0

with the obvious cyclic identificatiom: + 1 = 0. To be precise, in formulae (22), (24) and (25), all
elements in the tensor products but the first one should be taken modulo complex multiples of the unit
that is one has to project ontt, = A, /CL.

The fact thathy(e) = 0 has been imposed from the very beginning and was one of the conditions that
lead to the projections (13). As already remarked, this could be interpreted as saying that the idempoten
and the corresponding module (the ‘vector bundle’) has complex rank equal to 2.
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Next one finds,

chy(e) = ((e — %) Re® e)
=5(1-14P){z@BRF B R+ @R FRD+LR (B ®z-20 )]
(26)
It is straightforward to check that

bchy(e) =0= Bchy(e). 27)

Furthermore, we have the following

Proposition 1. Given the projectiongl3) its first Chern—Connes class vanishes,(eh= 0, if and only
if the deformation parametey is such thafq| = 1.

This result matches the analogous one found in [9].

Finally,
chh(e)=((e—3)Re@e®@e®e) (28)
is the sum of five terms
Chg(e):Siz(z®cz+a®ca+a*®ca*~|—,3®c,3+,3*®c,3*), (29)
with

c.=(1-14I") BB RBRE —F QLR ®P)
+(1-1g) {200 BB~ RH+ (BR800 — B ®21828 )
+ BB —B RPRzRz+zR (BB — B RP) Rz
—1Q(BRIQL - R - (BRI - R0 H) Dz
+(@®a" — g ®a)R(BRF —F P+ (B —F O ® (¢®a* —|¢lPa* ®a)
+(BRa—Ga®B) O @ QB —gf* Q)+ (@ QB —¢f* ®a) R (BOa—Ga®p)
+ @ QRB—GBRANR(qaRB — B ®a)+ (qa P  — f*Ra)® (@' ®B — B Ra”);
(30)
=" —a*®)® B RB—BRB)+ ¢ B OB—BOLHRz@a* —a*®7)
+3E®F-BONBR@ P —gf @)+ (@ @B — B ®aHNB®R®L-P®2)
+9(B*®z1—z2@0pH)Q @ RB—GBRa)+ (@ QB —GARaN) (B ®z—2®p");
(31)
o =19z —a®) QBRI - O+ (BRI - RPHO:Qa—a®2)
+ (B ®z—20NRBOr—Ga®P) +q(BRa—Ga®B (B ®z—28 ")
+Z®B-BR)OP " ®a—qu®P )+ Qa—qua®P )Rz —LR2);
(32)
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p=(1-1gI)[(B®z-20IQBOF +B QLR (B ®z—28 "]
+(1-19P){B®2®:@7- 20" ®21R7+71028p* ®7— 2102821 B}
+(B®z—2®B)R®(¢®a* — g’ ®a) + (¢ ®a* — |¢/’a* ®a) @ (B*®z — 2@ )
+(@®z7-7200)® (@ QB —gf" ®a") +q(@" @B — g ®a)® (@®z—z@ )
+ (B Ra—qa®PHR @ R®z—z2@a")+7(@*®z—20a") @ (B*Qu —ga ® f*);

(33)

cpr=(1-1gI")[cOB-BRIRB RB+LRL QB —BRI)]
+(1-1gP){-B®2®2®2+70BR7Q®7-21@2Q0B®2+21028z® B}
+@Z®B-BR®)®(@®a"— gl ®a)+ (¢ ®a* —|¢/’a" ®a)® QB — B ®2)
+9zRa* —a"R®)VBRa—qgaRPB)+(BRx—qgaRP)RZzRa* —a*®7)
+q@*®B—GARANR®IRe—a®)+ERe—a®)Q (@ QB —GBRa’). (34)

By using the relations (14) for our algebra, and remembering that we need to prongtimaII terms
of the tensor product but the first one, a long (one needs to compute 750 terms) but straightforward
computation gives

behy(e) = 2(1- g {I®z0 (BB — B @B +IRLR (B ®z—20 BY)
+I9"®:zZ®L—F®2)} (35)

and this is exactly equal tB chy(e).
Again as in [9], we shall have the following

Proposition 2. Given the projection in13), the cycle ch(e) is closed, i.e.bchy(e) = 0, if and only if
the deformation parameter is such thatg| = 1. Then, the resulting class gfe) is ‘g-antisymmetric’
and can be used as a ‘volume form’.

5. Final remarks

In the present paper, we have searched for a general algefoawhich the element € Maty(A)
is an hermitian rank 2 projection of the form (1). As a result we have obtained a family of quantum
4—sphere§;‘, g € C, which turn out to be a suspension of a family of quantum 3—sphia;°'r1e|$1 the two
special caseg € R and|g| = 1, we obtain the two families found in [10] and [9], respectively. Moreover,
our instanton projections also specialize at the same time to the projections presented therein. This
explains in which sense these two special families are related by analytic continuation of the deformation
parameter.

While this work was being completed, there has been the papers [13] and its generalization [4], where
other familiesS;‘ﬂ, q,6 € R, and Sﬁ,q,s, Ipl =1, ¢q,s € R, of noncommutative 4-spheres have been
introduced. In the appropriate limits (whe#q| = 1) they exactly reduce to the quantum 4-sph&fe
of [9]. However, the projections defined therein do not specialize correspondingly to those of [9].

Provided that we could perform the polar decompositfpe= |8| phasé€g) of g8, the change of
variablesq’ — |q|, ¢’ — G/lql, ' — a, B+ |q| |B| andU — zphas€p), seems to suggest that
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the family S} , (and thens? ) should not be too much different from odf. This is, however, not
the case and these families are not equivalent as it is clear, e.g., from the fact that the related spaces «
characters are different.

We also remark that the form of the projectians [13] (and in [4]) is different from ours. The same
holds fore’ of [13] bute’, being independent of pha@h, is clearly even nonequivalent. In fa€t rather
than on a noncommutative 4-sphere, lives on a 3-sphere and thus, not surprisingly, corresponds to sorr
trivial bundle (with vanishingh,(e), kK =0, 1, 2). (The same observations applyeto [4].)
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