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Abstract

We study some generalized instanton algebras which are required to describe ‘instantonic complex rank 2
bundles’. The spaces on which the bundles are defined are not prescribed from the beginning but rather are obtained
from some natural requirements on the instantons. They turn out to be quantum 4-spheresS4

q , with q ∈ C, and the
instantons are described by self-adjoint idempotentse. We shall also clarify some issues related to the vanishing
of the first Chern–Connes classch1(e) and on the use of the second Chern–Connes classch2(e) as a volume form.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently there has been an intense activity on noncommutative [9] and quantum 4-spheres [3,4,10,13]
and instanton bundles over them.

In this paper, by generalizing the methods presented in [7,9], we search for quantum instantons.
Paralleling the classical situation [2,11,14], by this we just mean a complex rank 2 bundle, i.e., we
require that the 0th Chern–Connes class vanishes, on some ‘four-dimensional space’ and with not trivial
characteristic classes. Weakening the assumptions made in [7,9], we do not require from the beginning
that the 1st Chern–Connes class of the bundle vanishes as well.

As we shall see, the spaces on which the instanton bundle are defined are not prescribed from the
beginning but rather comea posteriori. We could say that first comes the bundle and then the space on
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278 L. Dąbrowski, G. Landi / Differential Geometry and its Applications 16 (2002) 277–284

which the bundle is defined. While our procedure is completely general and could be used to produce
other quantum spaces, in this paper the resulting spaces will be quantum 4-sphereS4

q , with q ∈ C. The
quantum instantons will be described by self-adjoint idempotentse ∈ Mat4(Aq), with Aq the noncommu-
tative algebra of functions associated with (in fact, defining) the spheresS4

q . These spheres and instantons
interpolate between analogous objects recently found in [9] (forq such that|q| = 1) and [10] (forq ∈ R).

We shall also clarify some issues related to the vanishing of the 1st Chern–Connes class and the use
of the 2nd Chern–Connes class as a ‘volume form’. It turns out that the first Chern–Connes classch1(e)

does vanish if and only if the deformation parameterq is such that|q| = 1. In contrast, the second Chern–
Connes classch2(e) does not vanish for any values ofq. The couple(ch1(e),ch2(e)) defines a cycle in
the reduced(b,B) bicomplex of cyclic homology andch2(e) is closed, that isbch2(e) = 0, if and only if
q is such that|q| = 1. It is only in the latter cases that the classch2(e) is ‘q-antisymmetric’ and can be
used as a volume form [9].

In the final section we shall make some remarks on alternative definitions of spheres.

2. The instanton projections

Consider first the free∗-algebra with unityF = C[[I, αj , βj , α
∗
j , β

∗
j : j = 1,2,3]] generated by

elementsαj , βj and their adjointsα∗
j , β∗

j . Then, take the following self-adjoint elemente = e∗ in the
algebra Mat4(F ) � Mat4(C)⊗ F ,

(1)e =
(
Q1 Q2

Q∗
2 Q3

)
.

Each of theQj ’s is assumed to be a 2× 2 matrix of ‘generalized quaternions’ that is,

(2)Qj =
(

αj βj

−qβ∗
j πα∗

j

)
, j = 1,2,3,

andq andπ are complex parameters for the time being. Beinge self-adjoint also requiresQ1 = Q∗
1,

Q3 = Q∗
3, from which it follows that the parameterπ must, in fact, be real, thatα1 = α∗

1 andα3 = α∗
3,

and thatβ1 = β3 = 0 (unlessq = −1 which, for simplicity, we shall not consider here).
The next requirement we make is thate be of rank 2. This we implement by requiring that its 0th

Chern–Connes classch0(e) vanish (see later for the definition ofch0),

(3)ch0(e) =
〈(

e − 1

2

)〉
= 0.

As a consequence we get that

(4)(1+ π)(α1 + α3) = 2,

which says thatπ �= −1 and relatesα3 with α1. Summing up (and denotingα1 by t , α2 by α andβ2 by β)
up to now we have that

Q1 =
(

t 0
0 πt

)
, Q3 =

( 2
1+π

− t 0
0 π

(
2

1+π
− t

) )
,

(5)Q2 = Q =
(

α β

−qβ∗ πα∗

)
, Q∗

2 = Q∗ =
(

α∗ −q̄β

β∗ πα

)
,

with t = t∗ (remember that 1+ π �= 0).
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Finally we require thate is idempotent as well, that ise2 = e.
One of the consequences is that

(6)

(
t 0
0 πt

)
Q+ Q

( 2
1+π

− t 0
0 π

(
2

1+π
− t

) )
= Q.

From the diagonal elements it follows that

(7)tα − αt = π − 1

π + 1
α, tα∗ − α∗t = 1− π

(π + 1)π
α∗,

the consistency of which requires thatt commutes withα andα∗. Excluding the caseα = 0 we also get
thatπ = 1. Then, the off-diagonal elements in (6) imply thatt commutes withβ andβ∗ as well.

Frome2 = e it also follows that

QQ∗ +
(

t 0
0 t

)2

−
(

t 0
0 t

)
= 0,

(8)Q∗Q +
(

t 0
0 t

)2

−
(

t 0
0 t

)
= 0.

These constraints require that

(9)βα = q̄αβ, β∗α = qαβ∗,
(10)α∗α + |q|2β∗β + t2 − t = 0, αα∗ + ββ∗ + t2 − t = 0,

(11)α∗α + |q|2ββ∗ + t2 − t = 0, αα∗ + β∗β + t2 − t = 0.

Eqs. (10) and (11) in turn imply that

(12)
(|q|2 − 1

)
(ββ∗ − β∗β) = 0.

Then, if |q|2 �= 1, it follows thatβ must commute withβ∗. On the other hand, if|q|2 = 1, from Eqs. (10)
and (11) it follows directly thatββ∗ = β∗β (and alsoα∗α = αα∗ in this case).

3. The algebra of the quantum spheres S4
q

By slightly changing notations again, i.e., denotet = 1
2(I − z) and replaceα → 1

2α, β → 1
2β, the

construction of the previous section amounts to the following. Withq ∈ C \ {0}, we consider first the free
∗-algebra with unityFq = C[[I, α,β, z,α∗, β∗, z∗]] generated by three elementsα, β andz (and their
adjointsα∗, β∗, z∗). Then, we take the following elemente in the algebra Mat4(Fq) � Mat4(C)⊗ Fq ,

(13)e = 1

2




I + z, 0, α, β

0, I + z, −qβ∗, α∗
α∗, −q̄β, I − z, 0
β∗, α, 0, I − z


 .

By constructione is self-adjoint, that ise = e∗. The algebraAq of the quantum 4-sphereS4
q is thus the

quotient of the free∗-algebraFq which results by requiring thate is idempotent as well, that ise2 = e.
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This is equivalent to the requirement that the generators satisfy the relations (and their∗-adjoints)

z = z∗, zα = αz, zβ = βz,

βα = q̄αβ, β∗α = qαβ∗, ββ∗ = β∗β,
(14)α∗α + |q|2β∗β + z2 = I, αα∗ + ββ∗ + z2 = I.

Thus the algebraAq we are looking for is the unital∗-algebra generated by the elementsα, β and z

satisfying the relations (14). Here the deformation parameterq could be restricted so that|q| ∈ (0,1];
for q, such that|q| > 1, the transformationq �→ 1/q, α �→ α∗, β �→ −qβ andz �→ z yields an isomorphic
sphere.

By restricting toq = exp(2π iθ) we get the sphereS4
θ introduced in [9]; while forq ∈ R the presentS4

q

is the same as the one introduced in [10].
Whenq = 1 the algebra of the sphereS4

q is commutative and coincides with the algebra of continuous
functions on the 4-dimensional sphereS4. ThusS4

q provides a deformation of the classical sphereS4.
The algebraAq can be made into aC∗-algebra in the usual way. Fora ∈ Fq one defines‖a‖ as the

supremum, over all representationsπ of Fq in B(H) that areadmissible, in the sense that the operators
π(α), π(β), π(z) satisfy the relations (14), of the operator norms‖π(a)‖. ThenJ := {a ∈ Fq : |a| = 0}
is a two-sided ideal and one obtains aC∗-norm onFq/J . The completion of this quotient algebra defines
aC∗-algebra, which we shall denote by the same symbolAq .

By using relations (14) it can be seen that the elementsakmn�, with k ∈ Z andm, n, � nonnegative
integers, of the form

(15)akmn� =
{
α∗kβ∗mβnz� for k = 0,1,2, . . . ,
α−kβ∗mβnz� for k = −1,−2, . . .

provides a linear basis forAq .
We note that for the generic situation when 0< |q| < 1 any characterχ , besides

(16)χ(α∗) = χ(α), χ(β∗) = χ(β), χ(z∗) = χ(z),

has to satisfy the equations

(17)χ(β) = 0 and
∣∣χ(α)

∣∣2 + (
χ(z)

)2 = 1.

Thus the space of all (nonzero) characters, which can be thought of as the space of ‘classical points’ of
S4
q , is homeomorphic to the 2-dimensional sphereS2.

Next, we describe infinite dimensional irreducible representations of the algebraAq (for 0< |q| < 1)
in B(H), the algebra of bounded operators on a Hilbert spaceH . Let {ψn, n = 0,1,2, . . .} be an
orthonormal basis for the Hilbert spaceH . With ζ ∈ C, |ζ | � 1, we get two families of representations
πζ,± :Aq → B(H) given by

πζ,±(z)ψn = πζ,±(z∗)ψn = ±
√

1− |ζ |2ψn,

πζ,±(α)ψn = ζ
√

1− |q|2(n+1) ψn+1, πζ,±(α∗)ψn = ζ̄
√

1− |q|2n ψn−1,

(18)πζ,±(β)ψn = ζ q̄nψn, πζ,±(β∗)ψn = ζ̄ qnψn.

In fact, for ζ such that|ζ | = 1, the two representationsπζ,+ and πζ,− are identical so that the
representations are parametrized by points on a classical sphereS2, similarly to what happens for one-
dimensional representations (characters) as described before.
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4. Chern–Connes classes

The self-adjoint idempotente given by (13) is clearly an element in the matrix algebra Mat4(Aq) �
Mat4(C) ⊗ Aq . It naturally acts on the right freeAq -moduleA4

q = Aq ⊗ C
4, and one gets as its range a

projective module of finite type which may be thought of as the module of ‘sections of a vector bundle
over S4

q ’. The moduleeA4
q is a deformation of the classical instanton bundle overS4: for q = 1, the

moduleeA4
q is the module of sections of the complex rank two, instanton bundle overS4 [1].

We compute now the Chern–Connes Character of the moduleeA4
q for a generic value of the

deformation parameterq. If 〈 〉 is the projection on the commutant of 4× 4 matrices, up to normalization
the component of the (reduced) Chern–Connes Character are given by the formulae

(19)chn(e) =
〈(
e − 1

2

)
e ⊗ · · · ⊗ e︸ ︷︷ ︸

2n

〉
,

and they are elements of the tensor product

(20)Aq ⊗ �Aq ⊗ · · · ⊗ �Aq︸ ︷︷ ︸
2n

,

where�Aq = Aq/CI is the quotient of the algebraAq by the scalar multiples of the unitI.
The crucial property of the componentschn(e) is that they define acycle in the (b,B) bicomplex of

cyclic homology [5,6,8,12],

(21)B chn(e) = bchn+1(e).

The operatorb is defined by

b(a0 ⊗ a1 ⊗ · · · ⊗ am)=
m−1∑
j=0

(−1)j a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am

(22)+ (−1)mama0 ⊗ a1 ⊗ · · · ⊗ am−1

while the operatorB is written as

(23)B = AB0,

where

(24)B0(a0 ⊗ a1 ⊗ · · · ⊗ am) = I ⊗ a0 ⊗ a1 ⊗ · · · ⊗ am,

(25)A(a0 ⊗ a1 ⊗ · · · ⊗ am) = 1

m

m∑
j=0

(−1)mjaj ⊗ aj+1 ⊗ · · · ⊗ aj−1,

with the obvious cyclic identificationm + 1 = 0. To be precise, in formulae (22), (24) and (25), all
elements in the tensor products but the first one should be taken modulo complex multiples of the unitI,
that is one has to project onto�Aq = Aq/CI.

The fact thatch0(e) = 0 has been imposed from the very beginning and was one of the conditions that
lead to the projections (13). As already remarked, this could be interpreted as saying that the idempotent
and the corresponding module (the ‘vector bundle’) has complex rank equal to 2.
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Next one finds,

ch1(e)= 〈(
e − 1

2

) ⊗ e ⊗ e
〉

(26)

= 1
8

(
1− |q|2){z ⊗ (β ⊗ β∗ − β∗ ⊗ β) + β∗ ⊗ (z ⊗ β − β ⊗ z)+ β ⊗ (β∗ ⊗ z − z ⊗ β∗)

}
.

It is straightforward to check that

(27)bch1(e) = 0= B ch0(e).

Furthermore, we have the following

Proposition 1. Given the projections(13) its first Chern–Connes class vanishes, ch1(e) = 0, if and only
if the deformation parameterq is such that|q| = 1.

This result matches the analogous one found in [9].
Finally,

(28)ch2(e) = 〈(
e − 1

2

) ⊗ e ⊗ e ⊗ e ⊗ e
〉

is the sum of five terms

(29)ch2(e) = 1
32(z ⊗ cz + α ⊗ cα + α∗ ⊗ cα∗ + β ⊗ cβ + β∗ ⊗ cβ∗),

with

cz = (
1− |q|4)(β ⊗ β∗ ⊗ β ⊗ β∗ − β∗ ⊗ β ⊗ β∗ ⊗ β)

+ (
1− |q|2){z ⊗ z ⊗ (β ⊗ β∗ − β∗ ⊗ β) + (β ⊗ z ⊗ z ⊗ β∗ − β∗ ⊗ z ⊗ z ⊗ β)

+ (β ⊗ β∗ − β∗ ⊗ β) ⊗ z ⊗ z + z ⊗ (β ⊗ β∗ − β∗ ⊗ β) ⊗ z

− z ⊗ (β ⊗ z ⊗ β∗ − β∗ ⊗ z ⊗ β) − (β ⊗ z ⊗ β∗ − β∗ ⊗ z ⊗ β) ⊗ z
}

+ (
α⊗α∗ − |q|2α∗ ⊗α

)⊗ (β ⊗β∗ −β∗ ⊗β)+ (β ⊗β∗ −β∗ ⊗β)⊗ (
α⊗α∗ − |q|2α∗ ⊗α

)
+ (β ⊗α − q̄α⊗β)⊗ (α∗ ⊗β∗ − qβ∗ ⊗α∗)+ (α∗ ⊗β∗ − qβ∗ ⊗α∗)⊗ (β ⊗α − q̄α⊗β)

(30)

+ (α∗ ⊗β − q̄β ⊗α∗)⊗ (qα⊗β∗ − β∗ ⊗α)+ (qα⊗β∗ − β∗ ⊗α)⊗ (α∗ ⊗β − q̄β ⊗α∗);

(31)

cα = (z ⊗ α∗ − α∗ ⊗ z)⊗ (β∗ ⊗ β − β ⊗ β∗)+ |q|2(β∗ ⊗ β − β ⊗ β∗) ⊗ (z ⊗ α∗ − α∗ ⊗ z)

+ q̄(z ⊗ β − β ⊗ z)⊗ (α∗ ⊗ β∗ − qβ∗ ⊗ α∗) + (α∗ ⊗ β∗ − qβ∗ ⊗ α∗)⊗ (z ⊗ β − β ⊗ z)

+ q(β∗ ⊗ z − z ⊗ β∗) ⊗ (α∗ ⊗ β − q̄β ⊗ α∗)+ (α∗ ⊗ β − q̄β ⊗ α∗) ⊗ (β∗ ⊗ z − z ⊗ β∗);

(32)

cα∗ = |q|2(z ⊗ α − α ⊗ z)⊗ (β ⊗ β∗ − β∗ ⊗ β) + (β ⊗ β∗ − β∗ ⊗ β) ⊗ (z ⊗ α − α ⊗ z)

+ (β∗ ⊗ z − z ⊗ β∗) ⊗ (β ⊗ α − q̄α ⊗ β) + q(β ⊗ α − q̄α ⊗ β) ⊗ (β∗ ⊗ z − z ⊗ β∗)
+ (z ⊗ β − β ⊗ z)⊗ (β∗ ⊗ α − qα ⊗ β∗)+ q̄(β∗ ⊗ α − qα ⊗ β∗) ⊗ (z ⊗ β − β ⊗ z);
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(33)

cβ = (
1− |q|4)[(β∗ ⊗ z − z ⊗ β∗)⊗ β ⊗ β∗ + β∗ ⊗ β ⊗ (β∗ ⊗ z − z ⊗ β∗)

]
+ (

1− |q|2){β∗ ⊗ z ⊗ z ⊗ z − z ⊗ β∗ ⊗ z ⊗ z + z ⊗ z ⊗ β∗ ⊗ z − z ⊗ z ⊗ z ⊗ β∗}
+ (β∗ ⊗ z − z⊗β∗)⊗ (

α⊗α∗ − |q|2α∗ ⊗α
) + (

α⊗α∗ − |q|2α∗ ⊗α
)⊗ (β∗ ⊗ z − z⊗β∗)

+ (α ⊗ z − z ⊗ α)⊗ (α∗ ⊗ β∗ − qβ∗ ⊗ α∗)+ q̄(α∗ ⊗ β∗ − qβ∗ ⊗ α∗)⊗ (α ⊗ z − z ⊗ α)

+ (β∗ ⊗ α − qα ⊗ β∗)⊗ (α∗ ⊗ z − z ⊗ α∗) + q̄(α∗ ⊗ z − z ⊗ α∗) ⊗ (β∗ ⊗ α − qα ⊗ β∗);

(34)

cβ∗ = (
1− |q|4)[(z ⊗ β − β ⊗ z)⊗ β∗ ⊗ β + β ⊗ β∗ ⊗ (z ⊗ β − β ⊗ z)

]
+ (

1− |q|2){−β ⊗ z ⊗ z ⊗ z + z ⊗ β ⊗ z ⊗ z − z ⊗ z ⊗ β ⊗ z + z ⊗ z ⊗ z ⊗ β
}

+ (z ⊗ β − β ⊗ z)⊗ (
α ⊗ α∗ − |q|2α∗ ⊗ α

) + (
α ⊗ α∗ − |q|2α∗ ⊗ α

) ⊗ (z ⊗ β − β ⊗ z)

+ q(z ⊗ α∗ − α∗ ⊗ z)⊗ (β ⊗ α − q̄α ⊗ β) + (β ⊗ α − q̄α ⊗ β) ⊗ (z ⊗ α∗ − α∗ ⊗ z)

+ q(α∗ ⊗ β − q̄β ⊗ α∗)⊗ (z ⊗ α − α ⊗ z)+ (z ⊗ α − α ⊗ z)⊗ (α∗ ⊗ β − q̄β ⊗ α∗).

By using the relations (14) for our algebra, and remembering that we need to project on�Aq in all terms
of the tensor product but the first one, a long (one needs to compute 750 terms) but straightforward
computation gives

bch2(e) = 1
16

(
1− |q|2){I ⊗ z ⊗ (β ⊗ β∗ − β∗ ⊗ β) + I ⊗ β ⊗ (β∗ ⊗ z − z ⊗ β∗)

(35)+ I ⊗ β∗ ⊗ (z ⊗ β − β ⊗ z)
}

and this is exactly equal toB ch1(e).
Again as in [9], we shall have the following

Proposition 2. Given the projection in(13), the cycle ch2(e) is closed, i.e.,bch2(e) = 0, if and only if
the deformation parameterq is such that|q| = 1. Then, the resulting class ch2(e) is ‘q-antisymmetric’
and can be used as a ‘volume form’.

5. Final remarks

In the present paper, we have searched for a general algebraA for which the elemente ∈ Mat4(A)

is an hermitian rank 2 projection of the form (1). As a result we have obtained a family of quantum
4-spheresS4

q , q ∈ C, which turn out to be a suspension of a family of quantum 3-spheresS3
q . In the two

special casesq ∈ R and|q| = 1, we obtain the two families found in [10] and [9], respectively. Moreover,
our instanton projectionse also specialize at the same time to the projections presented therein. This
explains in which sense these two special families are related by analytic continuation of the deformation
parameter.

While this work was being completed, there has been the papers [13] and its generalization [4], where
other familiesS4

q,θ , q, θ ∈ R, andS4
p,q,s , |p| = 1, q, s ∈ R, of noncommutative 4-spheres have been

introduced. In the appropriate limits (when|q| = 1) they exactly reduce to the quantum 4-sphereS4
θ

of [9]. However, the projections defined therein do not specialize correspondingly to those of [9].
Provided that we could perform the polar decompositionβ = |β|phase(β) of β, the change of

variablesq ′ �→ |q|, e2iθ �→ q̄/|q|, α′ �→ α, β ′ �→ |q| |β| andU �→ zphase(β), seems to suggest that
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the family S4
q,θ (and thenS4

p,q,s) should not be too much different from ourS4
q . This is, however, not

the case and these families are not equivalent as it is clear, e.g., from the fact that the related spaces of
characters are different.

We also remark that the form of the projectionse in [13] (and in [4]) is different from ours. The same
holds fore′ of [13] but e′, being independent of phase(β), is clearly even nonequivalent. In facte′, rather
than on a noncommutative 4-sphere, lives on a 3-sphere and thus, not surprisingly, corresponds to some
trivial bundle (with vanishingchk(e), k = 0,1,2). (The same observations apply toẽ in [4].)
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