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SUMMARY

Spinocerebellar ataxia type 2 (SCA2) is a neurode-
generative disorder caused by a polyglutamine
expansion within the Ataxin-2 (Atxn2) protein. Pur-
kinje cells (PC) of the cerebellum fire irregularly and
eventually die in SCA2. We show here that the type
2 small conductance calcium-activated potassium
channel (SK2) play a key role in control of normal
PC activity. Using cerebellar slices from transgenic
SCA2mice we demonstrate that SK channel modula-
tors restore regular pacemaker activity of SCA2
PCs. Furthermore, we also show that oral delivery
of a more selective positive modulator of SK2/3
channels (NS13001) alleviates behavioral and neuro-
pathological phenotypes of aging SCA2 transgenic
mice. We conclude that SK2 channels constitute a
therapeutic target for SCA2 treatment and that the
developed selective SK2/3 modulator NS13001
holds promise as a potential therapeutic agent for
treatment of SCA2 and possibly other cerebellar
ataxias.

INTRODUCTION

Spinocerebellar ataxia type 2 (SCA2) belongs to the family of poly-

glutamine expansion (polyQ) disorders. This group of degener-

ative and hereditary diseases also comprises Huntington’s

disease (HD), dentatorubropallidoluysian atrophy (DRPLA), spi-

nobulbar muscular atrophy (SBMA), and other SCAs, including

SCA1, SCA3 (Machado-Joseph disease), SCA6, SCA7, and

SCA17 (Carlson et al., 2009; Matilla-Dueñas et al., 2010; Orr

and Zoghbi, 2007). In these polyQ disorders, an unstable CAG

expansion within the disease-causing gene encodes an elon-

gated polyQ tract, which is associated with a progressive

neuronal degeneration accompanied by different clinical mani-
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festations that depend on the function and expression pattern

of the affected protein. A common feature of SCAs is a progres-

sive cerebellar ataxia (Klockgether et al., 1998). In SCA2, disease

pathogenesis is caused by polyQ expansion of more than 57

repeats in the ataxin-2 (Atxn2) protein (Pulst et al., 1996), the

function of which is not well understood. Interestingly, polyQ

repeat expansions of intermediate length in Atxn2 have been

associated with amyotrophic lateral sclerosis (ALS) and parkin-

sonian symptoms (Ross et al., 2011; Simon-Sanchez et al.,

2005). The cerebellar ataxia in SCA2 is associated with a loss

of Purkinje cells (PCs) and generation of cytoplasmic inclusions

(Huynh et al., 2000; Liu et al., 2009). The nuclear inclusion

bodies characteristic of other polyQ disorders are not prominent

in SCA2 (Huynh et al., 2000; Lastres-Becker et al., 2008). The

reason for PC degeneration in SCA2 and other SCAs is not fully

understood (Bezprozvanny and Klockgether, 2010; Kasumu and

Bezprozvanny, 2012; Matilla-Dueñas et al., 2010).

PCs exhibit a tonic pacemaking activity that is crucial for

the correct encoding of cortical cerebellar information to deep

cerebellar nuclei and further to other motor coordination areas

(Ito, 2002). In a recent study, we demonstrated that pacemaking

activity of PCs is abnormal in aging SCA2 mice (Kasumu et al.,

2012). Similar disruptions of PC pacemaking have been reported

in slices from mouse models of SCA3 (Shakkottai et al., 2011)

and episodic ataxia type-2 (EA2) (Walter et al., 2006). Small

conductance Ca2+-activated K+ channels (SK channels) play

a key role in the control of regular tonic firing in PCs (Womack

and Khodakhah, 2003) and the two broad-specificity SK/IK

channel activators chlorzoxazone (CHZ) and 1-ethyl-2-benzimi-

dazolinone (1-EBIO) normalize PC firing and exert beneficial

effects in a mouse model of EA2 (Alviña and Khodakhah,

2010a, 2010b; Walter et al., 2006). Three subtypes of SK

channels are expressed in the brain (Adelman et al., 2012;

Kuiper et al., 2012) with the SK2 isoform predominant in PCs

(Cingolani et al., 2002; Hosy et al., 2011; Sailer et al., 2004).

Thus, the SK2 channel subtype is the most attractive pharmaco-

logical target for treatment of cerebellar ataxia. Indeed, we

here directly demonstrate that SK2 controls normal PC pace-

making. We also demonstrate that application of the SK/IK
lsevier Ltd All rights reserved
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Table 1. Potency and Selectivity of Positive Modulators of SK

Channels

EC50 Values SK1 SK2 SK3

Riluzole ND ND 16

CHZ ND 960a ND

1-EBIO 650 722 589

SKA-31 2.9b 1.9b 2.9b

CyPPA >100c 14c 6c

NS309 0.6 0.8 0.9

NS13001 >10 1.8 0.14

ND, non-determined. All EC50 values indicated in mM. EC50 values for

NS13001 are from the data summarized in Figure 3D. EC50 values for

CyPPA are from (Hougaard et al., 2007). EC50 values for Riluzole,

1-EBIO, and NS309 are from in-house NeuroSearch data generated in

a similar manner as those for NS13001 and CyPPA. Data on 1-EBIO

and NS309 on SK2 is based on an extended data set compared to

previously published data (Pedarzani et al., 2005). The data for other

compounds are from the references as indicated.
aCao et al. (2001).
bSankaranarayanan et al. (2009).
cHougaard et al. (2007). See also Figure S2.

Chemistry & Biology

Modulator of SK Channels in SCA2 Mice
modulator NS309 and the SK3/SK2 modulator CyPPA restore

regular pacemaker activity of cerebellar PCs from SCA2 trans-

genic mice. We further report development of a more

potent and selective modulator of SK2/3 channels (NS13001)

and show that oral delivery of this compound resulted in sig-

nificant beneficial effects in the transgenic mouse model of

SCA2. We conclude that NS13001 holds promise as a potential

therapeutic agent for treatment of SCA2 and possibly other cere-

bellar ataxias.

RESULTS

SK2 Channels Play a Key Role in Control of PCs
Spontaneous Activity
SK channels play a key role in the control of pacemaking in PCs

(Womack and Khodakhah, 2003). To confirm that positive SK

modulators can exert a modulatory effect on PC firing, we per-

formed a series of whole-cell recordings of PC activity in rat

cerebellar slices using NS309 (3-oxime-6,7-dichloro-1H-indole-

2,3-dione), a high potency positive modulator of SK/IK channels

(Table 1) (Strøbaek et al., 2004). In the majority of experiments,

regular action potential (AP) firing of PCs occurring in the fre-

quency range 20–30 Hz (average frequency 23 ± 5 Hz [n = 6

PCs]) was recorded under control conditions resulting in an

interspike interval close to 50ms (Figures 1A and 1B). Bath appli-

cation of 3 mM NS309 caused a marked reduction in the firing

frequency to 9 ± 3 Hz (n = 6 PCs) (Figure 1A) and a concomitant

increase in the interspike interval to above 150 ms (Figure 1B).

The effect of NS309 was reversible and the spontaneous activity

of PCs was restored toward the initial frequency following wash-

out (Figure 1A). Prolonged exposure to NS309 frequently lead to

a complete silencing of the cell (not shown) but upon extended

wash-out, pacemaker activity could be restored. The bee venom

toxin apamin specifically blocks SK channels (Adelman et al.,

2012). Within minutes of application, 200 nM apamin changed

the firing pattern of PCs from tonic to regular frequency bursts
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separated by silent periods (Figure 1A). The interspike interval

within each burst was reduced to <15ms in the presence of apa-

min (Figure 1B). Three subtypes of SK channels are expressed in

the brain (Adelman et al., 2012; Patkó et al., 2003; Sailer et al.,

2002, 2004). The SK2 isoform is highly expressed in PCs (Cingo-

lani et al., 2002; Hosy et al., 2011; Sailer et al., 2004). In order

to evaluate the importance of this subtype for regulating the

intrinsic firing properties of PCs, we challenged regularly firing

cells with the highly potent and selective synthetic SK2 toxin

inhibitor Lei-Dab7 (Shakkottai et al., 2001). We confirmed the

subtype specificity of the Lei-Dab7 batch available for this

study (Figure S1 available online). In experiments with recombi-

nant channels we demonstrated that Lei-Dab7 inhibits hSK2

channels with IC50 equal to 7 ± 1 nM (n = 3). In contrast, Lei-

Dab7 inhibited recombinant hSK3 channels with IC50 equal to

1.8 ± 0.6 mM (n = 3) and recombinant hSK1 channels with IC50

equal to 27 ± 11 mM (n = 3). Thus, our batch of Lei-Dab7 is at least

200-fold more potent on SK2 channels when compared to SK1

and SK3 channels, in agreement with the published observations

(Shakkottai et al., 2001).Wediscovered that at 100nM,a concen-

tration that strongly inhibits SK2 but does not affect SK1 or SK3

channels (Figure S1), Lei-Dab7, like apamin, changed the rat

PC firing pattern from tonic into pronounced bursting (Figure 1C).

The results with Lei-Dab7 support the key role of SK2 channels in

control of PC pacemaking activity, in agreement with recently

reached conclusions (Hosy et al., 2011).

SK2/3 Modulators Normalize Firing Activity of PCs from
SCA2 Transgenic Mice
Previously, we discovered that cerebellar slices from aging

SCA2-58Q (58Q) transgenic mice have a significantly higher

fraction of bursting PCs when compared to slices from age-

matched wild-type mice (Kasumu et al., 2012). Consistent with

these findings, we found that most PCs (91 ± 10%) in slices

from 24-week-old wild-type mice exhibited tonic activity (Fig-

ure 2A) characterized by stable firing rates (Figure 2C). In

contrast, fewer PCs (64 ± 9%) in slices from 24-week-old 58Q

mice exhibited tonic activity. PCs in slices from 24-week-old

SCA2-58Q mice instead exhibited bursting activity (Figure 2B).

We observed various firing patterns in bursting 58Q PCs.

Some PCs fired regular high-frequency bursts separated by

brief silent periods, a pattern that we named ‘‘persistent

bursting’’ (Figures 2B and 2D). Other PCs displayed periods

of relatively constant frequency firing separated by short

periods of silence or increased frequency of firing. These cells

were classified as ‘‘transiently bursting.’’ In the previous study,

we reasoned that the burst firing pattern of SCA2 PCs

reflects the deteriorating health and loss of metabolic control

of these cells and that this might be causally connected

with the impaired motor performance of aging SCA2 mice

(Kasumu et al., 2012). Thus, agents that can switch bursting

SCA2 PCs to tonic firing may have a potential therapeutic value

for SCA2.

To investigate if modulators of SK channels can rescue the

abnormal firing of SCA2 PCs, we performed experiments with

slices from 24-week-old 58Q mice in the presence of the

pan-SK channel modulator NS309 and the selective SK2/3

modulator CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-

methyl-pyrimidin-4-yl]-amine) (Hougaard et al., 2007) (Table 1).
353, October 26, 2012 ª2012 Elsevier Ltd All rights reserved 1341



Figure 1. The Spontaneous Action Potential

Firing of Rat Purkinje Neurons Is Sensitive

to SK Channel Modulators

(A) Typical pacemaker-like spontaneous activity

recorded under control conditions or in the pres-

ence of the positive modulator NS309 (3 mM) or the

SK channel inhibitor apamin (200 nM).

(B) Histograms of interspike interval constructed

from 1 min periods either in the absence of

compound or following application of NS309 or

apamin.

(C) Typical pacemaker-like spontaneous activity is

reverted into burst firing by application of the SK2-

selective SK channel inhibitor Lei-Dab7 (100 nM).

Dotted lines indicate 0 mV.

See also Figure S1.
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Application of 5 mM NS309 switched ‘‘persistently bursting’’

58Q PCs to tonic firing pattern (Figure 2E; n = 11 of 11 PCs).

Application of 5 mM NS309 also switched ‘‘transiently bursting’’

58Q PCs to tonic firing pattern (Figure 2G; n = 7 of 7 PCs).

CyPPA was less effective than NS309 in experiments with

persistently bursting PCs because application of 5 mM CyPPA

failed to switch persistently bursting 58Q PCs to tonic firing

pattern in 6 out of 11 experiments (Figure 2F). However, similar

to NS309, application of 5 mM CyPPA switched transiently

bursting SCA2-58Q PCs to tonic firing pattern (Figure 2H;

n = 6 of 7 PCs). These experiments suggested that activation

of SK2 channels provides a potential strategy for restoring

tonic firing of PC cells in aging SCA2 mice. When compared

to NS309, the lower efficacy of CyPPA in these experiments is

likely to be due to the relatively lower potency of this compound

as an SK2 channel modulator (Hougaard et al., 2007) (see also

Table 1).

NS13001 Is a More Selective and Potent Positive
Modulator of SK2/3 Channels
The SK channel activators CHZ, 1-EBIO and SKA-31 used in pre-

vious studies with EA2 and SCA3 ataxic mice (Alviña and Khoda-

khah, 2010a, 2010b; Shakkottai et al., 2011; Walter et al., 2006)

have low potency and lack subtype selectivity (Table 1). CyPPA

(Figure 3A) is a well-characterized and selective positive modu-

lator of SK2/3 channels (SK3 > SK2 >>> SK1 = IK) (Hougaard

et al., 2007) (Table 1; Figure S2), whereas NS309 (Figure 3A) is

the potent pan-selective IK/SK channel modulator (IK > SK1 =

SK2 = SK3) (Strøbaek et al., 2004) (Table 1; Figure S2). In our

studies we set out to develop an SK channel modulator that

combines potency of NS309 and selectivity of CyPPA.

To achieve this goal, a chemical optimization program based

on the CyPPA scaffold was conducted at NeuroSearch (Palle

Christophersen, personal communication), leading to the com-

pound NS13001 (4-Chloro-phenyl)-[2-(3,5-dimethyl-pyrazol-1-

yl)-9-methyl-9H-purin-6-yl]-amine) (Figure 3A) (Eriksen et al.,

2008). The procedures for chemical synthesis of NS13001 (Fig-
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ure S3) are described in the Supple-

mental Experimental Procedures. In

experiments using inside-out patches,

1 mM NS13001 potently activated hSK3,

less potently hSK2 and had no activating
effect on hSK1 (Figure S2) or hIK channels (data not shown).

Thus, NS13001 recapitulates the basic subtype selectivity prop-

erties of the lead molecule CyPPA, but with the potency com-

parable to NS309. When compared to NS309 and CyPPA,

NS13001 also exerted less off-target effects. In the micromolar

concentration range NS309 blocks hERG channels (IC50 =

1.3 mM) (Strøbaek et al., 2004) and CyPPA blocks voltage-gated

sodium channels (IC50 = 11 mM) (Hougaard et al., 2007), whereas

NS13001 had no effect on these channels at concentrations as

high as 10 mM (data not shown).

NS13001 Is an Allosteric Modulator of SK2/3 Channels
The mechanism of NS13001 action was characterized in more

detail, using hSK3 channels. Figure 3B shows current-voltage

(I-V) relationships measured at symmetrical K+ and with Ca2+

buffered at 0.2 mM Ca2+ or 10 mM Ca2+ (solid lines). Application

of NS13001 in the range from 0.001 mM to 10 mM to the inside

of the patch at a [Ca2+]i of 0.2 mM resulted in a concentration-

dependent increase in the hSK3 current (Figure 3B, broken

lines). The maximal activation of hSK3 channels by NS13001

was 90% of the level observed at 10 mM cytosolic Ca2+ that acti-

vates SK channels maximally (Figure 3B). The characteristic

inward rectification of the current was maintained when the

channels were activated by NS13001 at low Ca2+ (Figure 3B).

Figure 3C depicts the hSK3 current recorded at �75 mV as

a function of time showing the effects of increasing concentra-

tions of NS13001. To quantify the concentration-dependence

of NS13001, a number of similar experiments were performed

with patches from hSK1, hSK2, and hSK3 expressing cells and

the current response in each experiment was normalized to the

size of the current recorded at 10 mM Ca2+ for the same patch.

The normalized data were averaged and plotted as a function

of NS13001 concentration for each hSK subtype (Figure 3D).

Data fitted by the Hill equation (solid line) yielded an EC50 value

for hSK3 activation of 0.14 mM, a Hill coefficient of 1 and an

efficacy of 91% (Figure 3D; Table 1). For hSK2 the EC50

was 1.6 mM, the Hill coefficient was 1.4 and the efficacy was
erved



Figure 2. Positive Modulators of SK Chan-

nels Revert Bursting Firing of PC Cells

from 24-Week-Old SCA2-58Q Mice

(A) Example of current records of tonically firing

58Q PCs (1 s trace).

(B) Example of current records of bursting 58Q PC

(1 s trace).

(C) Example of the firing rate plot of tonically firing

58Q PC (15 min recording). The current record

from the same cell is shown above the firing

rate plot.

(D) Example of the firing rate plot of bursting 58Q

PC (20 min recording). The current record from the

same cell is shown above the firing rate plot.

(E) Application of 5 mM NS309 reverted ‘‘persis-

tently bursting’’ 58Q PC to tonic firing pattern. The

firing rate plot (20 min recording) and the current

record for the same cell are shown. The time of

5 mM NS309 application is indicated by a bar.

(F) Application of 5 mMCyPPA often failed to revert

‘‘persistently bursting’’ 58Q PC to tonic firing

pattern. The firing rate plot (20 min recording) and

the current record for the same cell are shown.

The time of 5 mM CyPPA application is indicated

by a bar.

(G) Application of 5 mM NS309 reverted ‘‘tran-

siently bursting’’ 58Q PC to tonic firing pattern.

The firing rate plot (20 min recording) and the

current record for the same cell are shown.

The time of 5 mM NS309 application is indicated

by a bar.

(H) Application of 5 mM CyPPA reverted ‘‘tran-

siently bursting’’ 58Q PC to tonic firing pattern.

The firing rate plot (20 min recording) and the

current record for the same cell are shown.

The time of 5 mM CyPPA application is indicated

by a bar.
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90% (Figure 3D; Table 1), whereas concentrations of NS13001

higher than 10 mM were needed to induce only a marginal in-

crease in the hSK1 current (Figure 3D; Table 1). These results

confirmed that the subtype selectivity properties of NS13001 is

SK3 > SK2 >>> SK1.

To further understand the mechanism of NS13001 action, we

evaluated the Ca2+-dependence of its effects on SK channels. At

very low cytosolic Ca2+ concentrations (%0.01 mM Ca2+), the

application of 1 mM NS13001 did not result in increased activity

of hSK3 channels (Figures 3E and 3F). In contrast, in the middle

range Ca2+ concentrations (0.2 mM Ca2+), application of 1 mM

NS13001 induced a large, reversible increase in the current level

at all membrane potentials tested (Figures 3E and 3F). At high

cytosolic Ca2+ concentration (10 mM Ca2+), the application of

NS13001 induced a small, but significant reduction in the hSK3

current level (Figures 3E and 3F). To test the effects on the SK

Ca2+-dependence more generally, we determined the Ca2+-

activation curves of hSK1, hSK2 and hSK3 in the absence or

presence of 1 mM NS13001. In the absence of compound, the
Chemistry & Biology 19, 1340–1353, October 26, 2012 ª
Ca2+-dependence for all 3 SK channel

subtypes is virtually identical, with EC50

of 0.42 mM Ca2+ (Hougaard et al., 2007)

(Figure 3G, dashed line). The presence

of 1 mM NS13001 induced a pronounced
left-ward shift in the Ca2+-activation curve of hSK3, resulting in

an EC50 for Ca
2+ of 0.11 mM (Figure 3G). Presence of NS13001

also resulted in a small reduction in the maximal activity of

hSK3 channels at the highest Ca2+ concentrations (Figure 3G).

Similarly, 1 mM NS13001 also increased the apparent Ca2+-

sensitivity of hSK2, with a new EC50 = 0.18 mM (Figure 3G) and

induced a small reduction of the hSK2-mediated current at

high Ca2+ concentrations (Figure 3G). In contrast to hSK2 and

hSK3 channels, 1 mM NS13001 did not have any stimulating

effect on the Ca2+ dependence of hSK1 channels, but also re-

sulted in a reduction of the current at high concentrations of

Ca2+ (Figure 3G). Based on the obtained results, we conclude

that NS13001 primarily acts as a potent and selective positive

allosteric modulator of SK2 and SK3 channels.

Oral Treatment of SCA2 Mice with SK2/3 Positive
Modulators Improves Motor Performance
In order to test the effects of SK channel positive modulators

on the motor performance of symptomatic SCA2 mice, we
2012 Elsevier Ltd All rights reserved 1343



Figure 3. NS13001 Is a More Selective Allo-

steric Modulator of SK3 and SK2 Channels

(A) Chemical structures of CyPPA, NS309, and

NS13001.

(B) Current-voltage (I-V) relationships measured in

i-o patches from HEK293 cells expressing hSK3.

Currents recorded at 0.2 mMCa2+ and 10 mMCa2+

are shown by solid black lines. The currents

recorded at 0.2 mM Ca2+ in the presence of

increasing concentrations of NS13001 (indicated

in mM) are shown by dotted lines.

(C) hSK3 current at �75 mV obtained from the

voltage ramps (as in B) plotted as a function of

time. The patch was exposed to a cytosolic Ca2+

of 0.01 mM, 0.2 mM or 10 mM as indicated. At

0.2 mM Ca2+, NS13001 was applied at the con-

centrations indicated (in mM).

(D) Concentration-dependence of SK channel

activation by NS13001. The currents were mea-

sured in i-o patches at 0.2 mM Ca2+. The currents

at each NS13001 concentration were normalized

to the current in the same patch at 10 mM Ca2+,

averaged and shown at each NS13001 concen-

tration as mean ± SE (nR 3 experiments) for hSK1

(triangles), hSK2 (squares), and hSK3 (circles) ex-

pressing cells. The solid lines are the fit of the data

to the Hill equation (hSK3: EC50 = 0.14 mM, nH =

1.0; hSK2: EC50 = 1.8 mM and nH = 1.4; hSK1:

EC50 > 100 mM).

(E) I-V relationships at a cytosolic Ca2+ concen-

tration of 0.01 mM, 0.2 mM, or 10 mM in the absence

(Ctrl,) or presence (+NS) of 1 mM NS13001.

(F) hSK3 current at�75mV plotted as a function of

time. The patch was exposed to a cytosolic Ca2+

of 0.01 mM, 0.2 mM or 10 mM as indicated.

The times of 1 mMNS13001 application are shown

by bars.

(G) Ca2+-dependence of hSK channels in the presence of 1 mM NS13001. Ca2+-sensitivity of all three SK subtypes is identical in the absence of the compounds

(dashed line, EC50 = 0.42 mMCa2+, nH = 5.2). In the presence of 1 mMNS13001 the averaged data at each cytosolic Ca2+ concentration are shown as mean ± SE

(n R 3 experiments) for patches from hSK1 (triangles), hSK2 (squares), and hSK3 (circles) expressing cells. The solid lines are the fit of data to the Hill equation

(hSK3: EC50 = 0.11 mM Ca2+, nH = 3.0; hSK2: EC50 = 0.18 mM Ca2+ and nH = 4.0; hSK1: EC50 = 0.36 mM Ca2+ and nH = 3.5).

See also Figure S3.
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evaluated the effects of oral delivery of NS13001 and CyPPA

to a group of 9-month-old 58Q mice. NS309 was not utilized

in these studies as our pilot studies demonstrated that this

compound is less stable in vivo and has significantly inferior

pharmacokinetic and brain penetration properties compared to

NS13001 and CyPPA (data not shown). Thus, although NS309

provides a powerful tool for in vitro experiments with brain slices

(Figures 1 and 2), it is less appropriate for in vivo long term

studies with repeated dosing. The in vivo studies were designed

following the same general principles as in the previous evalua-

tion of dantrolene feeding and 5PP overexpression in 58Q mice

(Kasumu et al., 2012; Liu et al., 2009). Briefly, 9-month-old WT

and 58Q mice were subdivided into six treatment groups with

10–15 mice in each group (Table 2). We confirmed that the

average weight of the mice was similar for each group (Fig-

ure S4). The baseline motor performance was evaluated by

beamwalk (11 mm round and 5 mm square beams) and acceler-

ating rotarod assays. Consistent with the previous results

(Kasumu et al., 2012; Liu et al., 2009), 9-month-old 58Q mice

were impaired in both assays when compared to age-matched

wild-type mice (Figures 4 and S5). Following the baseline test,
1344 Chemistry & Biology 19, 1340–1353, October 26, 2012 ª2012 E
the mice were orally fed daily with 30 mg/kg NS13001 or

10 mg/kg CyPPA. The dose of CyPPA was chosen based on

the previous in vivo studies with this compound (Herrik et al.,

2012; Vick et al., 2010). The higher dose of NS13001 was chosen

based on its more favorable target selectivity profile. In pilot

experiments, we established that 1 hr after oral delivery of

30 mg/kg of NS13001 to adult mice the concentration in blood

plasma was 16 mM (8 mM after 6 hr). After 1 hr, the concentration

in the brain was 17 mM (data not shown).

The 58Q and WT mice were fed with the compound orally

starting at 9 months of age for 3 consecutive weeks with the

control mice fed with the vehicle alone. After 3 weeks on this

dosing regimen, feeding of the compounds was halted for

3 days. Following this brief washout period, motor coordination

of each mouse was retested using identical beamwalk and

rotarod assays. The average body weight for all six groups re-

mained constant after feeding with the compounds (Figure S4).

All three groups of WT mice displayed similar levels of motor

performance after drug treatment. The latency of crossing the

11 mm beam was reduced for all three groups of WT mice

(Figure 4A), presumably due to learning the task. There was no
lsevier Ltd All rights reserved



Table 2. Evaluation of NS13001 and CyPPA in SCA2 Mouse Model

Group Gen Compound No. of Animals

DCD Measurements

No. of PCs Counted Normal (%) Moderate (%) Severe (%)

1 WT Vehicle 10 (7) 258 72 ± 6 22 ± 3 7 ± 3

2 WT CyPPA 13 (9) 245 84 ± 3 10 ± 2 6 ± 2

3 WT NS13001 10 (7) 255 82 ± 8 11 ± 4 7 ± 5

4 58Q Vehicle 15 (11) 296 12 ± 3 51 ± 11 38 ± 10

5 58Q CyPPA 14 (10) 222 33 ± 5* 35 ± 6 33 ± 11

6 58Q NS13001 20 (16) 288 43 ± 5* 38 ± 7 19 ± 4

DCD, dark cell degeneration; PC, Purkinje cells. The number of mice in each group in the beginning of drug feeding is shown. The number of micewhich

survived until the end of the study is shown in parentheses. Two-tailed Student’s unpaired t test was used to judge differences between compound-

treated groups and the placebo groups.

*p < 0.001. See also Figure S4.
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difference in the number of foot slips that mice made crossing

the 11 mm beam (Figure 4B). Testing on the 5 mm square

beam revealed that the latency to cross and the number of foot

slips remained the same for all three groups of mice (Figure S5).

The control (vehicle-fed) group of 58Q mice traversed the

11 mm and 5 mm beams posttreatment similarly as prior to

treatment (Figures 4A and S5) and there was no significant

difference in the number of foot slips (Figures 4B and S5). The

rotarod performance of the vehicle-fed group of 58Q mice re-

mained the same as prior to treatment (Figure 4C). In contrast

to WT mice, NS13001-fed 58Q mice demonstrated significantly

improved performance following treatment with the compound.

In the 11 mm beam task a decrease in the latency to traverse the

beam (Figure 4A; p < 0.01) and a decreased number of foot slips

(Figure 4B; p < 0.05) were observed. Both effects were replicated

on the 5 mm beam (Figure S5). There was also a significant

increase in the latency to fall off the accelerating rod following

feeding of 58Q mice with NS13001 (Figure 4C; p < 0.05). Treat-

ment with CyPPA also resulted in improved motor performance

of 58Q mice, although beneficial effects were less pronounced

than for NS13001. Treatment of 58Q mice with CyPPA resulted

in a reduced latency (p < 0.05) to cross the 11 mm and 5 mm

beams (Figures 4A and S5) but had no significant effect on

the number of foot slips on either beam (Figure 4B; Figure S5)

or on the rotarod performance of these mice (Figure 4C). The

lower efficacy of CyPPA in these assays is probably explained

by its lower potency (Table 1) and lower dosing level in the

in vivo experiments. Following initial evaluation (Figures 4 and

S5), we attempted to determine if effects of the drugs were

reversible. All mice were returned to the home cages and re-

tested again 2 months later. However, at this time-point the

mice were 13 months old and many 58Q and WT had difficulty

completing the motor tasks due to inability to remain on the

balance beam or the rotating rod. For this reason we could not

clearly discern treatment reversibility from other effects in this

study.

Oral Treatment of SCA2 Mice with SK2/3 Positive
Modulators Alleviates Brain Pathology
At 13 months of age (2 months after drug treatment was

finished), all mice were sacrificed and processed for neuropath-

ological analysis. In previous studies, we demonstrated that

quantification of dark cell degeneration (DCD) provides the
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most reliable and most sensitive way to score excitotoxic PC

death in 58Q mice (Kasumu and Bezprozvanny, 2012; Kasumu

et al., 2012). DCD has also been used to quantify excitotoxic

PC death in SCA7 and SCA28 (Custer et al., 2006; Maltecca

et al., 2009). DCD is a form of PC death characterized by

morphological changes in PCs identifiable by transmission elec-

tron microscopy (TEM) of slices from 58Q mice (Figure 5A, right

panel). In contrast, most PCs in age-matched WT mice look

normal (Figure 5A, left panel). To analyze DCD, cerebellar

sections from each of the six experimental groups of mice (Table

2) were processed for TEM and the number of normal, moder-

ately, and severely degenerated PCs was quantified. According

to (Kasumu and Bezprozvanny, 2012; Kasumu et al., 2012), PCs

spherical in shape and with regular alignment in the PC layer

were classified as ‘‘normal’’ (Figure 5B, left panel). PCs with

slight shrinkage compared to surrounding PCs and with moder-

ately electron-dense cytosol that is not as dark as the nucleus,

were classified as ‘‘moderate’’ (Figure 5B, middle panel). PCs

with markedly shrunken and electron-dense cytosol with simi-

larly darkened nucleus were classified as ‘‘severe’’ (Figure 5C,

right panel). Consistent with our previous data (Kasumu and

Bezprozvanny, 2012; Kasumu et al., 2012), we found that in

samples from 58Q control mice, 12% of PCs were normal,

51%were moderately degenerated, and 38% were severely de-

generated (n = 296 PCs; Figure 5C; Table 2). Also consistent with

our previous data (Kasumu and Bezprozvanny, 2012; Kasumu

et al., 2012), most cells were healthy in samples from age-

matched WT control mice, in which 72% of PCs were scored

as normal, 22% were moderately degenerated and 7% were

severely degenerated (n = 258 PCs; Figure 5C; Table 2). The

WTmice treated with NS13001 or CyPPA did not exhibit a signif-

icant change in the number of normal cells and moderately

affected cells (Figure 5C; Table 2). In contrast, in the samples

from the 58Q mice exposed to NS13001, the fraction of

normal PCs was increased to 43%, moderately degenerated

cells reduced to 38% and degenerated cells reduced to 19%

(n = 288 PCs; Figure 5C; Table 2). Similarly, in samples from

CyPPA-treated 58Q mice the fraction of normal cells was

increased to 33%, the fractions of moderately degenerated cells

and severely degenerated cells were reduced to 35% and 33%,

respectively (n = 222 PCs; Figure 5C; Table 2). When compared

to vehicle-treated 58Q mice, the increase in the fraction of

normal cells in 58Q mice treated with NS13001 or CyPPA was
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Figure 4. Oral Treatment of Aging SCA2

Mice with SK2/3 Channel Positive Modula-

tors Improves Motor Performance

(A and B) At baseline, after drug treatment, mice

from all six groups were trained on the 17 mm,

11 mm, and 5 mm beams. Average time to

traverse the entire length of each beam is re-

corded. Mean latency to traverse 11 mm beams

before (white bars) and after (black bars) 3 weeks

of chronic drug treatment is plotted for each group

of mice as mean ± SE. The WT control mice (WT),

WT mice fed with CyPPA (WT-CyPPA), WT mice

fed with NS13001 (WT-NS13001), 58Q control

mice (58Q), the 58Q mice fed with CyPPA (58Q-

CyPPA), and the 58Q mice fed with NS13001

(58Q-NS13001) (A). Average number of foot slips

as the mice traverse the entire length of the 11 mm

beam was also recorded. Mean number of foot

slips as themice traverse the 11mmbeams before

(white bars) and after (black bars) 3 weeks of

chronic drug treatment is also plotted for each

group of mice (B).

(C) Mice were trained on the accelerating rotarod.

Mean latency to fall off rotarod before (white bars)

and after (black bars) 3 weeks of chronic drug

treatment is plotted for each group of mice as

mean ± SE. *p < 0.05; **p < 0.01 when compared

to baseline performance.

See also Figure S5.
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statistically significant (p < 0.001; Figure 5C; Table 2). Similar to

behavioral studies (Figures 4 and S5), the beneficial effects of

CyPPA in DCD assay with 58Q mice were less pronounced

than the beneficial effects of NS13001 in the same assay (Fig-

ure 5C; Table 2).

DISCUSSION

SK2 Channels as Targets for Treatment of Cerebellar
Ataxia
The cerebellum plays an essential role in learning and control of

coordinated movements. The precision and speed of these

movements requires exact timing of cerebellar output. The inhib-

itory projections from the PC to the deep cerebellar nuclei (DCN)

constitute the sole output of the cerebellar cortex (Ito, 2002).

Recent electrophysiological analysis confirmed that PC electri-

cal activity is tightly coordinated at millisecond resolution (de

Solages et al., 2008; Heck et al., 2007; Person and Raman,

2012). In slices, PCs spontaneously fire action potentials at a

constant frequency in the range 17–150 Hz (Llinás and Sugimori,

1980a, 1980b; Nam and Hockberger, 1997; Raman and Bean,
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1997, 1999; Smith and Otis, 2003;

Womack and Khodakhah, 2002). It is

generally believed that this endogenous

pacemaking activity of PCs represents

the crucial background activity for correct

encoding of the integrated cerebellar cor-

tex information to DCN and other motor

coordination areas. Cerebellar PCs are

affected in many ataxias (Carlson et al.,

2009; Matilla-Dueñas et al., 2010; Orr
and Zoghbi, 2007), and massive PC death is observed at the

end stage of disease for many ataxic patients. However, it is

becoming evident that early symptoms of ataxia may result not

from PCs death but from PCs dysfunction and loss of firing

precision. Consistent with this hypothesis, disruptions of regular

PCs pacemaking activity have been uncovered in studies with

mouse models of EA2 (Walter et al., 2006), SCA3 (Shakkottai

et al., 2011), and SCA2 (Kasumu et al., 2012). Based on these

findings, it has been argued that drugs that can normalize the

regular firing of PCs may provide therapeutic benefit for ataxic

patients (Rinaldo and Hansel, 2010; Shakkottai et al., 2004,

2011; Walter et al., 2006).

There are multiple ion conductances that control the sponta-

neous electrical activity of PCs (Llinás and Sugimori, 1980a,

1980b; Raman and Bean, 1997, 1999). Small conductance

Ca2+-activated K+ channels (SK channels) emerged as one of

the principle channel types involved in precise control of PC

pacemaking (Womack and Khodakhah, 2003). A number of

small molecule modulators of SK channels have previously

been identified (Table 1), enabling pharmacological manipula-

tion of SK channel activity in ataxic mouse models. The two
erved



Figure 5. Oral Treatment of Aging SCA2 Mice with SK2/3 Channels

Positive Modulators Improves SCA2 Pathology

(A and B) Examples of normal and affected PCs from WT and SCA2 mice as

revealed by DCD staining protocol.

(C) Average percentage of normal, moderate and severely degenerated PCs in

each group is plotted as mean ± SE. The chronic treatment of 58Q mice with

NS13001 or CyPPA improved the DCD status of PCs when compared to

vehicle treated 58Q mice (n = 222-296 PCs counted; ***p < 0.001).
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broad-specificity SK/IK channel activators chlorzoxazone (CHZ)

and 1-ethyl-2-benzimidazolinone (1-EBIO) normalized PC fir-

ing and exerted beneficial effects in a mouse model of EA2

(Alviña and Khodakhah, 2010a, 2010b; Walter et al., 2006).

Short-term exposure of SCA3 mice to SKA-31, a riluzole analog

optimized for positive modulation of SK channels (Table 1),

provided benefit in a mouse model of SCA3 (Shakkottai et al.,

2011). These results supported the hypothesis that positive

modulators of SK channels may offer therapeutic benefit for

treatment of ataxia. Indeed, riluzole yielded promising results in

a recent phase II study in a mixed population of ataxia patients

(Ristori et al., 2010), an effect that was interpreted as the ability

of riluzole to facilitate the activity of SK channels (Table 1).

Despite these promising results, most agents used in previous

studies of ataxia had low potency, poor specificity and subop-

timal blood brain permeability properties (Table 1).

Three subtypes of SK channels are expressed in the brain

(Adelman et al., 2012; Kuiper et al., 2012; Patkó et al., 2003;

Sailer et al., 2002; Stocker, 2004; Stocker and Pedarzani,

2000). The SK2 isoform is predominant in PCs (Cingolani et al.,
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2002; Hosy et al., 2011; Sailer et al., 2004), whereas high levels

of SK3 channels are expressed in cerebellar granule cells

(Stocker and Pedarzani, 2000). SK3 single knockout mice

lack a clear motor phenotype (Bond et al., 2000), but showed

increased dopamine release in the striatum and certain changes

in models of depression and anxiety (Jacobsen et al., 2009,

2008). A naturally occurring SK2 loss-of-function mutation

in mice (frissonant mice) causes prominent motor deficits

(Callizot et al., 2001). In experiments with the SK2-specific

synthetic toxin inhibitor Lei-Dab7 (Shakkottai et al., 2001) we

now demonstrate the essential role of SK2 channels in the

control of PCs spontaneous activity (Figure 1C). These results

are in agreement with a recent report (Hosy et al., 2011). Further-

more, we demonstrated that the potent pan-SK channel

modulator NS309 converted the ‘‘burst’’ firing pattern of aging

PC cells from SCA2 transgenic mouse model to a tonic firing

pattern (Figures 2E and 2G). The SK2/3-selective modulator

CyPPA was also able to restore the ‘‘tonic’’ firing pattern of

some SCA2-PCs but appeared less effective (Figures 2F and

2H). The difference between the effect of NS309 and CyPPA is

most likely due to the substantially lower potency of CyPPA in

activating SK2 channels (Table 1; Figure S2). Based on all

these results we concluded that the SK2 channel subtype is

the most attractive pharmacological target for treatment of

cerebellar ataxia. We therefore set out to develop a more selec-

tive and potent SK2/3 positive modulator with CyPPA as lead

molecule with improved pharmacokinetic and brain penetration

properties.

NS13001 as a Potential Therapeutic Agent for
Treatment of Cerebellar Ataxias
NS13001 is a molecule (Figure 3A) (Eriksen et al., 2008) identified

in an optimization program based on CyPPA (Palle Christo-

phersen, personal communication). Our electrophysiological

experiments revealed that NS13001 recapitulates the basic sub-

type selectivity properties of the lead molecule CyPPA (hSK3 >

hSK2>>>hSK1), with a potency comparable to NS309 (Figures

3 and S1; Table 1). Similar to CyPPA (Hougaard et al., 2007),

NS13001 acts as an allosteric modulator of SK2/3 channels,

which increases their sensitivity to activation by cytosolic Ca2+

(Figure 3G). NS13001 most likely binds in the binding pocket

formed at the interface between calmodulin and SK2/3 channels,

as has been recently suggested for CyPPA and NS309 based

on crystallographic analysis (Zhang et al., 2012). When com-

pared to CyPPA or NS309, NS13001 is considerably more stable

toward metabolic degradation by liver microsomes in vitro (data

not shown) and achieves significantly higher plasma and brain

concentrations following oral administration to rats (data not

shown). In our experiments, we evaluated a potential efficacy

of N13001 and CyPPA in a transgenic mouse model of SCA2.

In this mouse model human Atxn-58Q transgene is expressed

under control of a PC-specific promoter (Huynh et al., 2000),

resulting in progressive development of motor symptoms and

loss of PCs (Huynh et al., 2000; Kasumu and Bezprozvanny,

2012; Liu et al., 2009; Kasumu et al., 2012).

Both NS13001 (30 mg/kg) and CyPPA (10 mg/kg) were fed to

SCA2 mice for 3 consecutive weeks starting at 9 months of age.

The dose of CyPPA utilized in these studies was chosen based

on the previous in vivo studies with this compound (Herrik
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et al., 2012; Vick et al., 2010) and its potential off-target effects

(Hougaard et al., 2007). The higher dose of NS13001was chosen

based on its more favorable target selectivity profile. Following

drug treatment, thesemicewere evaluated inmotor coordination

assays (balance beam walk and accelerating rotarod). We dis-

covered that both NS13001 and CyPPA significantly improved

performance of SCA2 mice in beamwalk assays, although

effects of NS13001 were more pronounced (Figures 4A, 4B,

and S5). The effects were specific, as performance of age-

matched wild-type mice was not significantly affected by

either compound (Figures 4 and S5). NS13001, but not CyPPA,

demonstrated efficacy in the rotarod assay (Figure 4C).

Overall, these data strongly indicated that oral exposure to

positive modulators of SK2/3 channels have the potential of

improving motor performance of aging SCA2 mice. Much

to our surprise, the benefit of administering NS13001 and

CyPPA to SCA2 mice extended beyond improved motor perfor-

mance after 3 weeks. At the conclusion of the study, we

evaluated excitotoxic PC death in 13 months old SCA2 mice

by quantifying their dark cell degeneration (DCD) status (Kasumu

and Bezprozvanny, 2012; Kasumu et al., 2012). We found

that PCs in SCA2 mice were partially protected from DCD (Fig-

ure 5C; Table 2) by both NS13001 and CyPPA. Similar to the

behavioral assays, the degree of protection appeared to be

greater in NS13001-fedmice than in CyPPA-fedmice (Figure 5C;

Table 2).

What is an explanation of these findings? And what is the

physiological target of NS13001 and CyPPA in these experi-

ments? Both compounds have significantly higher selectivity

for SK3 than for SK2 (Table 1; Figures 3D and S1). However, in

contrast to SK2, SK3 channels are not prominently expressed

in PCs and the most likely molecular target of these compounds

are thus SK2 channels (Cingolani et al., 2002; Hosy et al., 2011;

Sailer et al., 2002, 2004). High levels of SK3 channels are ex-

pressed in cerebellar granule cells (Sailer et al., 2002, 2004;

Stocker and Pedarzani, 2000) and in dopaminergic neurons of

the substantia nigra (Sailer et al., 2002, 2004). In addition, both

SK3 and SK2 channels are present in DCN (Sailer et al., 2004;

Shakkottai et al., 2004; Stocker and Pedarzani, 2000). It cannot

be excluded that some of the behavioral effects of NS13001

and CyPPA are due to activation of SK3 channels in non-PC

neurons. However, as SK3 single knockout mice lack a clear

motor phenotype (Bond et al., 2000), this is not very likely.

Thus, we propose that the beneficial effects of NS13001 and

CyPPA in the SCA2 mouse model are primarily due to ability of

these compounds to potentiate activity of SK2 channels in PCs

of aging SCA2 mice.

There are also several potential explanations for the observed

beneficial effects. The first explanation is that NS13001 and

CyPPA converted ‘‘bursting’’ to ‘‘tonic’’ pattern of PCs in aging

SCA2 mice (Figure 2) and helped information processing in

cerebellum of these mice by restoring regular firing of PCs.

The second explanation is that NS13001 or CyPPA induced

low frequency tonic firing pattern of all PCs in aging SCA2

mice. PC action potentials are coupled to increases in the

intracellular Ca2+ concentration in PC soma and dendrites due

to opening of P-type voltage-gated Ca2+ channels (Sabatini

et al., 2001). Handling of this Ca2+-influx puts PCs in conditions

of latent metabolic stress, being proportional to the frequency
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of spontaneous firing, and likely to be strongly amplified during

periods of uncontrolled bursting. Decreased frequency of PCs

tonic firing and in particular reversion of bursting in the pres-

ence of NS13001 or CyPPA most likely reduces Ca2+ influx

and leads to much lower metabolic demand of these cells.

The reduction of Ca2+ influx is particularly critical for PCs in

SCA2 mice, which already have supranomal cytosolic Ca2+

signals due to pathogenic interactions between mutant ataxin-2

and InsP3R1 (Kasumu and Bezprozvanny, 2012; Liu et al.,

2009; Kasumu et al., 2012). It is possible that during the drug

administration period PCs in SCA2 mice were exposed to

a 3-week ‘‘metabolic holiday,’’ giving them a chance to recover

from Ca2+ overload and rejuvenate. This latter explanation is

consistent with DCD data collected 2 months after drug feeding

was discontinued (Figure 5C; Table 2), which demonstrated

long lasting neuroprotection in drug-exposed SCA2 mice.

These results lead us to suggest that NS13001 and related

compounds may exert not only symptomatic but also neuropro-

tective effects for cerebellar ataxia patients.

The proposed explanation of NS13001 or CyPPA ability to

protect PCs in SCA2 mice is consistent with studies in Parkin-

son’s disease (PD) field, where it was demonstrated that

reducing voltage-dependent Ca2+ influx during pacemaker

firing of substantia nigra (SNc) neurons leads to neuroprotection

in models of PD (Chan et al., 2009, 2010; Surmeier, 2007; Sur-

meier et al., 2010) and possibly in PD patients (Becker et al.,

2008; Ritz et al., 2010) (but see Louis et al., 2009; Simon et al.,

2010). In case of studies in PD models, the Ca2+ influx in SNc

neurons was reduced not by slowing down pacemaking activity

of these cells but by pharmacological block of CaV1.3 voltage-

gated Ca2+ channels which mediate most of Ca2+ influx in these

cells during spontaneous activity (Chan et al., 2010). Similar to

PCs, SK channels are involved in the control of firing rates of

dopaminergic neurons in the SN neurons (Johnson and Wu,

2004; Kuznetsov et al., 2006; Shepard and Bunney, 1988), which

express high levels of SK3 channels (Sailer et al., 2002, 2004).

Downregulation of SK channels and increased bursting fre-

quency of SN neurons have been related to PD-linked genetic

mutations (Bishop et al., 2010). If NS13001 indeed acted in our

experiments by reducing ‘‘metabolic burden’’ on SCA2 PC cells,

it is likely that NS13001 and related compounds may offer

potential benefit not only for cerebellar ataxias but also for

PD and for other neurodegenerative disorders that affect SK2

or SK3-expressing pacemaking neurons. This hypothesis is

consistent with recently reported neuroprotective effects of

CyPPA in experiments with dopaminergic neuronal cultures

(Benı́tez et al., 2011; Herrik et al., 2012) and with the recent

mathematical simulations (Drion et al., 2012). The data in the

current manuscript suggest that NS13001 should exert even

more potent protective effect than CyPPA on SNc neurons

both in vitro and in vivo. Evaluation of NS13001 in animal models

of PD and other neurodegenerative disorders will be required to

test these predictions.

The most serious potential side effects related to using modu-

lators of SK2/3 channels are likely to be related to potential

memory and learning impairments (Kuiper et al., 2012). Hippo-

campal-dependent memory tasks were potentiated by blocking

SK channels with apamin (Stackman et al., 2002; Vick et al.,

2010) and impaired by transgenic overexpression of SK2
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channels (Hammond et al., 2006; Stackman et al., 2008). Tran-

sient downregulation of SK2 and SK3 channels was reported

during spatial learning paradigm in rats (Mpari et al., 2010).

Moreover, systemic administration of 15 mg/kg of CyPPA re-

sulted in object memory encoding deficits in mice (Vick et al.,

2010). Based on these results it is likely that the ‘‘therapeutic

window’’ for usage of NS13001 and other SK2/3 modulators

for treatment of neurodegeneration will be eventually determined

by the balance between neuroprotective effects on bursting cells

(such as PC cells in ataxias, SNc cells in PD) andmemory impair-

ing effects in hippocampus. Future studies with animal models of

disease and human clinical trials will be needed to find an appro-

priate dosage and delivery regiment for these compounds to

achieve maximal benefit with minimal side-effects.

SIGNIFICANCE

Cerebellar ataxias are a group of genetic disorders that are

caused by progressive dysfunction and death of cerebellar

PCs. SK channels play a key role in control of PC firing rates

(Womack and Khodakhah, 2003) and a number of previous

studies suggested that pharmacological modulators of SK

channels may exert beneficial effects in cerebellar ataxia

mouse models (Alviña and Khodakhah, 2010a, 2010b; Shak-

kottai et al., 2011; Walter et al., 2006). Riluzole yielded prom-

ising results in a recent phase II study in a mixed population

of ataxia patients (Ristori et al., 2010), an effect that was sug-

gested to be related to the ability of riluzole to facilitate the

activity of SK channels. Despite these promising results,

most agents used in previous studies of ataxia had low

potency and poor specificity (Table 1). We report the devel-

opment of a compound NS13001 that acts as a more potent

and selective positive modulator of SK2/3 channels. We

demonstrate that SK2 channels play a key role in control of

pacemaking activity of cerebellar PCs and established that

application of SK modulators restores tonic firing pattern

of bursting PCs from aging mouse model of SCA2. We

demonstrated that 3 weeks oral feeding of NS13001 resulted

in improved performance of aging SCA2mice in motor coor-

dination assays and reduced PC degeneration in thesemice.

Similar, but less pronounced, positive effects were observed

in SCA2 mice fed with CyPPA. The most likely mechanism

responsible for beneficial effects of NS13001 and CyPPA is

a reduction in Ca2+ influx and related metabolic stress due

to normalized spontaneous activity of SCA2 PCs. From

these results we conclude that NS13001 holds promise

as a potential therapeutic agent for treatment of SCA2

and possibly other cerebellar ataxias. We reasoned that

NS13001 may also be useful for treatment of other neuro-

degenerative disorders that affect pacemaking cells ex-

pressing SK2/3 channels, such as for example dopaminergic

neurons in SNc (Benı́tez et al., 2011; Chan et al., 2009, 2010;

Surmeier, 2007; Surmeier et al., 2010; Drion et al., 2012).

Evaluation of NS13001 in animal models of ataxia, PD,

and other neurodegenerative disorders will be required to

test these predictions. The most serious potential side

effects related to using modulators of SK2/3 channels are

likely to be related to potential memory and learning impair-

ments (Hammond et al., 2006; Stackman et al., 2008; Vick
Chemistry & Biology 19, 1340–1
et al., 2010), which may eventually determine a limit on clin-

ically useful doses of these compounds for treatment of

neurodegeneration.

EXPERIMENTAL PROCEDURES

Compounds

Cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine

(CyPPA) and 3-Oxime-6,7-dichloro-1H-indole-2,3-dione (NS309) were previ-

ously described (Hougaard et al., 2007; Strøbaek et al., 2004). (4-Chloro-

phenyl)-[2-(3,5-dimethyl-pyrazol-1-yl)-9-methyl-9H-purin-6-yl]-amine (NS13001)

is a novel compound (Eriksen et al., 2008) and its synthesis is described in

SOM. Apamin was purchased from Sigma Aldrich. Lei-Dab7 was synthesized

in the Sabatier laboratory by following published procedures (Shakkottai et al.,

2001).

Animals

Procedures involving wild-type rats were conducted in strict accordance with

the guidelines described in the Guide for Care and Use of Laboratory Animals,

the policies adopted by the Society for Neuroscience, and the Danish

Committee for Experiments on Animals. SCA2-58Q mice on C57/B6 back-

ground (Huynh et al., 2000) were kindly provided to our laboratory by Dr. Stefan

Pulst (University of Utah) and have been used in our previous studies (Liu et al.,

2009). In these mice the expression of human Atx2-58Q transgene is driven by

the PC-specific L7/pcp2 promoter (Huynh et al., 2000). The mice were back-

crossed to FVB/N background for at least 6 generations in our laboratory

as previously described (Kasumu and Bezprozvanny, 2012; Kasumu et al.,

2012). The SCA2-58Q (FVB) male hemizygotous mice were bred to wild-type

(WT) FVB/N females to generate mixed litters. The pups were genotyped by

PCR for the presence of human Atxn2 transgene and parallel experiments

were performed with transgenic and wild-type littermates. All mice were

housed in a temperature-controlled room at 22�C–24�C with a 12 hr light/

dark cycle. Mice had access to standard chow andwater ad lib. All procedures

were approved by the Institutional Animal Care and Use Committee (IACUC) of

the UT Southwestern Medical Center at Dallas in accordance with the National

Institutes of Health guidelines for the Care and Use of Experimental Animals.

Cell Cultures

Human embryonic kidney (HEK) 293 cell lines stably expressing human SK1,

SK2, and SK3 proteins have been previously described (Hougaard et al.,

2009). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM,

GIBCO, Life Technologies, Nærum, Denmark) enriched with 10% fetal calf

serum (FCS, GIBCO) at 37�C and 5% CO2. One day prior to electrophysiolog-

ical experiments, the cells (�75% confluency) were washed once with phos-

phate buffered saline (PBS), harvested by TrypLE Express (GIBCO) treatment,

and transferred to Petri dishes containing cover 3.5 mm diameter coverslips

(VWR international, Herlev, Denmark).

Recordings of Recombinant SK Channel Activity

SK-mediated membrane currents were recorded at room temperature using

the inside-out configuration of the patch-clamp technique as previously

described (Hougaard et al., 2007). Glass patch pipettes of 2 MU resistance

were used in recordings using EPC-9 amplifier and Pulse software (HEKA,

Lambrecht, Germany). In all experiments a solution with a high K+ concentra-

tion was applied to the extracellular side of the membrane (in mM): 154 KCl, 2

CaCl2, 1 MgCl2, and 10 HEPES, pH adjusted to 7.4 with 1 M KOH. The intra-

cellular solutions contained (in mM): 154 KCl, 10 HEPES, 10 EGTA, or a combi-

nation of EGTA and NTA (10 mM in total). Concentrations of MgCl2 and CaCl2
required to obtain the desired free concentrations (Mg2+ always 1 mM, Ca2+

0.01–10 mM)were calculated (EqCal, Cambridge, UK) and added. The intracel-

lular solutions were adjusted to pH 7.2 with 1 M KOH. The currents were

elicited by applying a 200 ms linear voltage ramp from �80 to +80 mV every

5 s from a holding potential of 0 mV.

Recordings of Spontaneous PC Activity in Rat Cerebellar Slices

The recordings of PC activity from rat cerebellar slices were performed essen-

tially as described (Kaffashian et al., 2011). Briefly, Sprague-Dawley rats
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(14–18 days old; Taconic, Ry, Denmark) were decapitated and brains rapidly

dissected out into ice-cold artificial CSF (aCSF) of the following composition

(in mM): 124 NaCl, 4 KCl, 8 MgSO4, 2.5 CaCl2, 1.25 NaH2PO4, 26 NaHCO3,

11 glucose, saturated with 95% O2/5% CO2. Parasagittal cerebellar slices

(300 mm) were cut using a vibrating tissue slicer (VT1200 Leica, Ballerup,

Denmark) and placed in a home-made holding chamber at room temperature

in aCSF (composition like above except that MgSO4 was reduced to 1.2 mM),

bubbledwith 95%O2/5%CO2. Slices were left to recover for aminimumof 1 hr

prior to experiments. Individual slices were transferred to a submersion-style

recording chamber (Luigs & Neumann Ratingen, Germany) and perfused at

2 ml/min with aCSF maintained at 30�C using a feedback-controlled heater

(Warner Instruments, Hamden, CT). PCs for whole-cell current-clamp record-

ings were visualized at 403 using an upright Olympus microscope (BX51WI)

equipped with oblique illumination. Patch pipettes of resistance 3–7 MU

were filled with the pipette solutions containing (in mM): 135 CH3KSO4, 10

KCl, 10 HEPES, 1 MgCl2, 2 Na2-ATP, 0.4 Na-GTP, pH 7.2 with 1 M KOH.

Following high resistance seal formation the membrane was ruptured by

suction and recordings were performed using an EPC-9 amplifier (HEKA,

Lambrecht, Germany). Experimental control, data acquisition, and basic anal-

yses were done with the Patchmaster (HEKA) software package.

Recordings of Spontaneous PC Activity in Mouse Cerebellar Slices

Recordings of spontaneous PC activity fromWT and 58Q mice at 24 weeks of

age were performed as previously described (Kasumu et al., 2012). Briefly,

the mice were anesthetized with a ketamine/xylazine cocktail and transcar-

dially perfused with ice-cold aCSF containing (mM) 85 NaCl, 24 NaHCO3,

25 glucose, 2.5 KCl, 0.5 CaCl2, 4 MgCl2, 1 NaH2PO4, 75 sucrose. Solutions

were equilibrated with 95% O2/5% CO2. Subsequently, the cerebellum was

dissected and 300 mm thick sagittal slices were made with a VT1200S vibra-

tome (Leica). Slices were allowed to recover in aCSF containing (in mM)

119 NaCl, 26 NaHCO3, 11 glucose, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4

at 35�C for 30min and then transferred to room temperature before recordings

weremade. The external bath used for recording was the same as the recovery

aCSF in addition to containing 100 mM picrotoxin (PTX) and 10 mM 6,7-dinitro-

quinoxaline-2,3-dione (DNQX), equilibrated with 95% O2/5% CO2. All record-

ings were made within 5 hr after dissection. The recording chamber was

heated to 34�C–35�C using PH1 heated holder (Warner Instruments, Hamden,

CT). Loose-patch recordings were made according to (Häusser and Clark,

1997; Smith and Otis, 2003; Kasumu et al., 2012) to evaluate spontaneous

activity of PCs. Briefly, 1–3 MU glass pipettes were filled with the internal solu-

tion containing 140 mM NaCl buffered with 10 mM HEPES pH 7.3 and held at

0 mV. A loose patch (<100 MU) configuration was established at the PC soma

as close to the axon hillock as possible. Spontaneous action potential currents

were recorded for 5–60 min from each cell using AxonMulticlamp 700B ampli-

fier (Molecular Devices, Sunnyvale, CA). The 5 min recordings were analyzed

for tonic or burst firing as we previously described (Kasumu et al., 2012). Cells

were characterized as firing tonically if they fired repetitive nonhalting spike

trains for 5 min. A cell was characterized as bursting if it had more than 5%

of the interspike intervals that fell outside of 3 SD from themean of all interspike

intervals in that cell. The analysis of instantaneous firing rates was performed

using Clampfit 10.2 (Molecular Devices). Data was plotted as the instanta-

neous firing rate every 2 s for the entire recording duration. From the plot of

firing rates, bursting PCs were further categorized into two groups. Persis-

tently bursting PCs were identified by a continuous presentation of bursts,

each separated from the next by a period of silence (<1 min), throughout the

duration of the recording. Transiently bursting PCs were identified by the pres-

ence of long periods of relatively constant tonic firing separated by short inter-

mittent bursts. Once a burst firing pattern was observed during the first 5min of

recordings, the bath solution was switched to aCSF containing 5 mMNS309 or

5 mMCyPPA for at least 15min to determine the effect of the compound on the

firing pattern of that PC.

Motor Coordination Assessments in Mice

The drug feeding protocol was adapted from our previous study (Liu et al.,

2009). NS13001 (30mg/kg) or CyPPA (10mg/kg) was suspended in the vehicle

(0.5% HPMC-corn flour suspension). The mice were fed orally 5 consecutive

days (Monday to Friday) with 2 rest days (Saturday and Sunday) for 3 consec-

utive weeks starting at 9 months of age. Control groups of mice were fed with
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the vehicle (0.5%HPMC-corn flour suspension) alone. Rotarod and beamwalk

tasks were used to assess motor coordination as previously described

(Kasumu et al., 2012; Liu et al., 2009). At baseline (prior to drug feeding),

mice were trained on the beamwalk task to traverse three separate beams

of differing diameters. A round plastic 17 mm beam, a round plastic 11 mm

beam, and a wooden square 5 mm beam were used for training. Mice were

given three consecutive training trials on 3 consecutive days on each beam.

On the third day, the mean latencies to traverse the entire length of the

11 mm and 5 mm beams were recorded and analyzed for every animal in all

six groups. After testing on the beamwalk task, mice were given a 3 day

wait period and subsequently trained on the accelerating rotarod task. Mice

were trained to walk on a rotating rod accelerating at 0.2 rpm. Mice were

trained for 4 consecutive days with three consecutive trials per day. The

mean latency to fall off the accelerating rod was recorded and analyzed for

every animal in all six groups. After baseline testing, mice were fed for 3

consecutive weeks with the allotted compounds. Following drug feeding,

mice were left alone for 3 days and then retested in motor tasks. Specifically,

mice were trained on the beamwalk with three trials per beam on day 1 and

tested on day 2. After a 3 day waiting period, mice were trained on the accel-

erating rotarod (Columbus Instruments, Columbus, OH) with three consecutive

trials on day 6 and tested on day 7.

Dark Cell Degeneration Analyses

Quantification of dark cell degeneration (DCD) status was performed as previ-

ously described (Kasumu and Bezprozvanny, 2012; Kasumu et al., 2012).

Briefly, five to six mice in each group were sacrificed at 13 months of age.

Mice were euthanized with pentobarbital and transcardially perfused with

PBS followed by 2% paraformaldehyde/2% glutaraldehyde in 0.1 M cacody-

late buffer. The cerebellum was dissected out and cut into 1 mm3 sagittal

sections and postfixed in 1% osmium tetroxide. The specimen were subse-

quently stained en bloc with aqueous 1% uranyl acetate and lead citrate, de-

hydrated through a graded ethanol series, and embedded in EMbed 812 resin.

Each cerebellum was cut into thinner 70 mm-thick sections and placed on

copper grids, which were stained with aqueous 2% uranyl acetate and lead

citrate. Sections from each animal were examined on a FEI Tecnai G2 Spirit

Biotwin transmission electron microscope operated at 120 kV. Digital images

were captured with a SIS Morada 11 megapixel side mount CCD camera. At

least five mice were analyzed per group with two grids made from different

areas of the sections. PCs were judged to be in one of three stages—normal,

moderate, or severe. Normal PCs are spherical in shape and have regular

alignment in the PC layer. The nucleus is also distinctly darker than the cytosol.

Moderately degenerated PCs have slight shrinkage and moderately electron-

dense cytosol that is almost as dark as nucleus. Severely degenerated PCs

have markedly shrunken and electron-dense cytosol with similarly darkened

nucleus. These PCs are usually not regularly aligned in the PC layer. The pro-

cessing of samples for DCD analyses were performed by an investigator that

was blind to genotype and treatment group. Quantification of DCD status of

PCs was performed by an investigator that was also blind to mouse genotype

and treatment group. The average percentage of normal, moderate and

severely degenerated cells was calculated for each treatment group and

plotted.

Statistical Analyses

Differences between groups were judged by a two-tailed Student’s unpaired

t test using a significance level of 0.05.
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