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Abstract

Nanoparticles 10 to 100 nm in size can deliver large
payloads to molecular targets, but undergo slow dif-
fusion and/or slow transport through delivery barriers.
To examine the feasibility of nanoparticles targeting a
marker expressed in tumor cells, we used the binding
of cyclic arginine—glycine—aspartic acid (RGD) nano-
particle targeting integrins on BT-20 tumor as a model
system. The goals of this study were: 1) to use nano-
particles to image o33 integrins expressed in BT-20
tumor cells by fluorescence-based imaging and mag-
netic resonance imaging, and, 2) to identify factors
associated with the ability of nanoparticles to target
tumor cell integrins. Three factors were identified: 1)
tumor cell integrin expression (the o33 integrin was
expressed in BT-20 cells, but not in 9L cells); 2) nano-
particle pharmacokinetics (the cyclic RGD peptide
cross-linked iron oxide had a blood half-life of 180 min-
utes and was able to escape from the vasculature over
its long circulation time); and 3) tumor vascularization
(the tumor had a dense capillary bed, with distances of
<100 pm between capillaries). These results suggest
that nanoparticles could be targeted to the cell sur-
face markers expressed in tumor cells, at least in the
case wherein the nanoparticles and the tumor model
have characteristics similar to those of the BT-20 tu-
mor employed here.
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Introduction

The quest for more potent and selective tumor-targeted
diagnostic and therapeutic agents, and the widespread
interest in nanotechnology have led to recent proposals that
targeted nanoparticle-based pharmaceuticals might be
designed to fit this need (http://nano.cancer.gov/) [1-3].
Nanoparticles offer two key advantages as targeted agents:
inherent nanoparticle amplification and surface-mediated
multivalent affinity effects. Inherent nanoparticle amplifi-
cation refers to nanoparticle geometry consisting of a core,
typically with thousands of drug molecules or detectable
atoms (gold and iron), and a coating, typically consisting
of a much smaller number (1-50) of targeting peptides or
antibodies. For example, with magneto-fluorescent nano-

particles, there are 8000 Fe/nanoparticle [4] and 3 to 50 target-
ing proteins or peptides attached per nanoparticle [5,6]. A
second advantage of nanopatrticles is their multivalent affinity
enhancement. Although multivalency can result from a variety
of different mechanisms (e.g., see Figure 2 of Kitov and Bundle
[7]) [8—10], nanoparticles produce multivalent effects due to
multiple, simultaneous interactions between the surface of the
nanoparticle and the surface of the cell. The nanoparticle used
in the current study exhibits strong multivalent effects in endo-
thelial cell adhesion assays and antiproliferative assays (Montet
and Josephson, submitted for publication).

In spite of these intriguing advantages, the development of
targeted nanoparticles for a large class of targets (markers ex-
pressed in tumor cells) is limited by nanoparticle size, which
may limit delivery to tumor cells lying beyond the endothelial
barrier of the vascular compartment. The ability to target high-
molecular-weight compounds, such as monoclonal antibodies or
nanoparticles, to tumor cell targets is hindered by their slow
diffusion (in solution or through tissues) and/or slow transport
through delivery barriers such as endothelial cells [11,12]. Nano-
particles are typically defined as materials between 10 and
100 nm, are modestly larger than antibodies, and are far larger
than low-molecular-weight pharmaceuticals (<10 kDa). (IgG
antibodies have a diameter of 10 nm; see Table 1 of Reynolds
et al. [4]). Nanoparticles have been used to image integrins in
endothelial cells, particularly the endothelial cells of angiogenic
blood vessels [13—-19], or to image nonintegrin targets where
escape from the vasculature is not required [18,20,21].

The goals of this study were: 1) to establish that nano-
particles could be used to image a molecular marker expressed
in tumor cells using an arginine—glycine—aspartic acid (RGD)
magneto-optical nanoparticle as a model system and integrin-
expressing tumor cells, and 2) to describe the factors that
might allow materials as large as nanoparticles to reach tumor
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cell markers. Our results indicate that magneto-fluorescent
RGD nanoparticles were targeted to ayBs-expressing
tumor cells in vivo and were detectable by fluorescence
reflectance imaging (FRI), fluorescence molecular tomog-
raphy (FMT), and magnetic resonance imaging (MRI). Fac-
tors permitting the imaging of tumor integrins included the
vascularized nature of the BT-20 tumor, the long nano-
particle blood half-life, and the ability of nanoparticles to
slowly escape the vasculature.

Materials and Methods

Peptide synthesis was performed with Fmoc chemistry to
obtain a linear RGD peptide (IRGD) GSSK(FI)/GGGCRGDC
and a scrambled RGD peptide (scrRGD) GSSK(FI)-
GGGCDRGC as C-terminal amides. A disulfide-linked cyclic
RGD peptide (cCRGD) was obtained by oxidation (bubbling
air) of IRGD peptide at room temperature at 0.2 to 0.4 mg/ml
peptide in 0.1 M ammonium bicarbonate for 24 hours.

To synthesize peptide—nanoparticle conjugates, amino
cross-linked iron oxide (CLIO) nanoparticle, synthesized as
described [22,23], was first reacted with the N-hydroxysuc-
cinimide ester of Cy5.5 or Cy3.5 (Amersham Biosciences
Corp., Piscataway, NJ) [24]. There were approximately
250 amines per amino-CLIO nanoparticle, at 8000 Fe/
nanoparticle [4], with 8 to 10 amines consumed by the at-

tachment of Cy5.5 (Figure 1C). This leaves the remaining
amines for peptide attachment using disuccinimidyl suber-
imidate [25]. With the nomenclature of cRGD-CLIO(Cy5.5)
for the nanoparticle, the attached peptide is given first (cyclic
RGD, cRGD), followed by the CLIO abbreviation to indicate
the origin of the nanoparticle, followed by the fluorochrome
(Cy5.5) attached directly to the CLIO and given in paren-
theses. Fluorescein, attached to peptides before conjuga-
tion to the nanoparticle, does not appear in this notation; it
allows characterization of the peptide/iron ratio based on its
absorption at 493 nm and permits the determination of cell-
associated peptide or peptide—nanoparticle as immunore-
active fluorescein [26]. When cRGD-CLIO(Cy5.5) is treated
with dithiothreitol (DTT), the disulfide bond is broken and
the resulting nanoparticle is denoted as IRGD-CLIO(Cy5.5)
(see Figure 1B).

BT-20 (a human breast carcinoma cell line) and 9L (a rat
gliosarcoma cell line) were obtained from the American Tis-
sue Culture Collection (Manassas, VA) and were cultured
according to the manufacturer’s instructions.

To characterize the presence of ay33 on BT-20 cells
(Figure 2), cells were trypsinized and incubated in culture
media (at 37°C for 30 minutes) with Cy5.5-labeled anti-ay33
antibody (Abcam, Inc., Cambridge, MA) and cRGD at a final
concentration of 1 pg/ml. The samples were analyzed for
fluorescein and Cy5.5 fluorescence with a FACScalibur
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Figure 1. Design, synthesis, and properties of nanoparticles. (A) schematic diagram of nanoparticle components and functions. (B) Synthesis of nanoparticles.
DTT linearizes the disulfide-linked cRGD, linearizing the peptide to IRGD. (C) Physical properties of the nanopatrticles used in this study.
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Figure 2. Expression of 35 on tumor cells. (A) Dual-wavelength FACS analysis of the binding of cRGD and anti-a\/35 to BT-20 tumor. BT-20 cells bind anti-«\,33
and cRGD, but not the control. (B) Uptake of the cRGD-CLIO nanopatrticle by BT-20 cells. DTT treatment linearized the peptide and reduced affinity. (C) Binding of
the cRGD to BT-20 and 9L cells determined as cell-associated fluorescein from fluorescein immunoassay. Values of apparent affinity constant (Ky) and binding per

1,000,000 cells are shown.

cytometer (Becton Dickinson, Franklin Lakes, NJ). A Cy5.5-
labeled anti-CD31 antibody (Santa Cruz Biotechnology, Santa
Cruz, CA) was used as a control for nonspecific binding.

To determine cell-associated RGD peptide or peptide—
nanoparticle (Figure 2), BT-20 cells were incubated with
various peptide or peptide—nanoparticle concentrations in
the media mentioned above (30 minutes, 37°C, and 5%
CO,) in six-well plates at about 1 million cells/well. Cells
were then washed thrice with Hanks balanced salt solution
(Mediatech, Inc., Herndon, VA) and lysed with phosphate-
buffered saline containing 0.1% Triton X-100 and 1 mM
8-anilino-1-naphthalenesulfonic acid. Fluorescein isothiocy-
thiocyanateanate concentration was determined [26]. Each
experiment was performed thrice, with data points deter-
mined in triplicate.

To obtain tumors, 1 million BT-20 or 9L cells were im-
planted in the rear flank or mammary fat pads of nude mice
(~25 g) and were imaged when tumors had reached a diam-
eter of 3to 4 mm (6—9 days postimplantation). Animals were
then anesthesized (gas anesthesia, 2% isoflurane), and a
mixture of cRGD-CLIO(Cy5.5) and scrRGD-CLIO(Cy3.5)
nanoparticles was injected through the tail vein. For tissue
fluorescence studies (Figure 3), the iron dose from both
nanoparticles was 5 mg/kg, with the amount of each nano-
particle adjusted so that the same fluorescence from each
probe was used. Animals were sacrificed 24 hours post-
injection. Slices of tissues (about 1.5 mm) were place on a
dark plate, and Cy5.5 and Cy3.5 tissue fluorescence was

obtained with a custom-built mouse optical imaging system
[27, 28], which is capable of multichannel fluorescent im-
aging without significant spectral overlap. Fluorescence was
determined using operator-defined regions-of-interest (ROI)
measurements on tissues from injected (fluorescence) and
uninjected animals (autofluorescence). With autofluores-
cence subtracted, the Cy5.5/Cy3.5 fluorescence ratio was
determined. The significance of P values was evaluated with
ANOVA and Bonferroni test. Animals were sacrificed with
injection of pentobarbital sodium (100 mg/kg, ip). All experi-
ments were performed in accordance with the MGH Animal
Care Committee.

To determine tumor/background ratios (Figure 4), three
ROI were drawn. ROI were placed on the tumor (the white
light image was used to place the ROI) and on the normal
skin to measure signal intensity (Sl). A third ROl was placed
outside the animal to determine system noise. Tumor/back-
ground ratio was determined as:

Tumor  (Shumor — Noise)
background  (Slgkin — Noise)

For FMT, we used a modular home-built scanner, the
components of which have been described [29]. Image data
sets were reconstructed using a normalized Born forward
model [30]. Details of the algorithm have been published
[31]. Excitation laser diode sources included a 672-nm laser
and a 748-nm laser (BW Tek, Newark, DE). The excitation
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Figure 3. Molecular specificity of the cRGD-CLIO(Cy5.5) nanopatrticle in vivo by dual-channel tissue FRI. A mixture of cRGD-CLIO(Cy5.5) and scrRGD-
CLIO(Cy3.5) was injected. (A) Cy3.5 channel fluorescence of dissected tissues. (B) Cy5.5 channel tissue fluorescence. (C) Ratio of tissue fluorescence in the
Cy5.5 and Cy3.5 channels. Only the BT-20 tumor has a high ratio of Cy5.5/Cy3.5 fluorescence. The BT-20 tumor was different from all other tissues and from the

9L tumor at P < .001.
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Figure 4. Imaging the accumulation of the cRGD-CLIO(Cy5.5) nanopatrticle by fluorescence and magnetic resonance. (A) White light and fluorescence reflectance
images of implanted BT-20 tumors (two per animal). (B) Time dependence of tumor fluorescence determined by fluorescence reflectance, as shown in (A). (C) FMT
images at indicated depths. Relative nanoparticle concentration in each plane. (D) MR imaging of nanoparticle accumulation in the tumor. Tumors are presented as
colorized T2 maps superimposed over a T2-weighted MR image (TR = 2000; TE = 50) at 24 hours postinjection. Values are average tumor T2 values + 1 SD.
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system consisted of 46 fibers spread over a 20 x 20 matrix
in a slab geometry imaging chamber. For each fiber, four
different sets of data were acquired (intrinsic fluorescence,
extrinsic fluorescence, intrinsic noise, and fluorescence
noise) through an ultralow-noise cooled charge-coupled
device camera (Model 7471; Roper Scientific, Trenton, NJ).
Images were acquired using a scattering medium consist-
ing of 1% intralipid and 0.5% ink. Image acquisition time per
animal was 3 to 5 minutes, and reconstruction time was ap-
proximately 10 minutes.

MR images were acquired on a 4.7-T Bruker imaging
system (Pharmascan, Karlsruhe, Germany). T2-weighted
sequences were obtained before and 24 hours after injec-
tion of cRGD-CLIO(Cy5.5) (3 mg/kg Fe). T2-weighted se-
quences were acquired with the following parameters: TR =
2000 milliseconds; TE = 6.5 to 104 milliseconds (16 dif-
ferent values); flip angle = 90°; matrix size = 128 x 64;
average number = 4; field of view = 4.24 x 2.12 cm; slice
thickness = 0.8 mm.

To visualize cRGD-CLIO(Cy5.5) tissue distribution
(Figure 5), tissues were excised, snap-frozen, and cut into
10-pm sections. Air-dried slides were fixed in acetone at 4°C
for 5 minutes. Fluorescence microscopy was performed on
an Axiovert 100 TV system.

Avidin—biotin—based immunohistochemistry was used
to identify endothelial cells (CD31), macrophages (CD11b),
and a3 integrins. Sections were stained with primary anti-

A Cy5.5

uondalul-aly

uondalui-isoy

m

bodies (anti-CD31 antibody from Santa Cruz Biotechnology;
anti-CD11b from Serotec, Raleigh, NC; and anti-a/33 from
Abcam, Inc.) and revealed with a biotinylated secondary
antibody (Abcam, Inc.). Enzyme activity was developed for
8 minutes using Vectastain Elite ABC kit (Vector Laborato-
ries, Burlingame, CA). Control sections were processed iden-
tically (omitting incubation with the primary antibody) and
showed no staining.

For intravital microscopy (Figure 6), 10 nmol of the fluo-
rochrome of cRGD-CLIO(Cy5.5) or cRGD was injected into
nude mice through the tail vein. After median laparotomy, a
section of sigmoid colon was exposed and imaged using a
multichannel Radiance 2100 system (Bio-Rad, Richmond,
CA) equipped with four lasers (x4 dry Nikon objective).
Vessel fluorescence was recorded over time by operator-
defined regions of blood vessel intensity, which were distin-
guishable from interstitial fluorescence by clearly defined
anatomic margins. Blood half-life was then determined by
fitting the data to a single exponential equation using Graph-
Pad Prism (GraphPad Software, San Diego, CA).

Results

The components and functions of the cRGD-CLIO(Cy5.5)
nanoparticle are shown schematically in Figure 1A. Figure 1B
shows the syntheses and terminology for the peptides and
nanoparticles used. For in vitro experiments (Figure 2B),

100

pm

Figure 5. Nanoparticle uptake by tumor cells of the BT-20 tumor. (A) The distribution of cRGD-CLIO(Cy5.5) within the tumor by iron stain or Cy5.5 fluorescence.
After nanoparticle injection, iron and fluorescence are broadly distributed throughout the tumor. (B) Distribution of CD31 (endothelial cells) at low magnification.
The tumor is highly vascularized. (C) Distribution of CD31 (endothelial cells), CD11b (macrophages), and «\33 by immunohistochemistry. There are a few
macrophages in the tumor (CD11b). However, o33 expressed in tumor cells is broadly distributed throughout the tumor, such as iron or Cy5.5 fluorescence from

the nanoparticle.
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Figure 6. Intravital microscopy of the exposed sigmoid colon after injection of the cRGD-CLIO(Cy5.5) nanopatrticle or the cRGD. (A) Vessel and interstitial
fluorescence 30 minutes after injection of cRGD-CLIO(Cy5.5). Nanoparticles are confined to the vasculature (vertical arrows). (B) Vessel and interstitial
fluorescence at 120 minutes after nanoparticle injection. Nanoparticles are present in both the interstitium (horizontal arrows) and the vasculature (vertical arrows).
(C) Time dependence of vessel fluorescence and interstitial fluorescence after injection of cRGD-CLIO(CY5.5). Images from (A) and (B) plus additional time points
were used. (D) Vessel and interstitial fluorescence 4 minutes after injection of the cRGD. The peptide is already present in both the interstitium (horizontal arrow)
and the vasculature (vertical arrow). (E) Vessel and interstitial fluorescence at 8 minutes after peptide injection. (F) Time dependence of vessel fluorescence and
interstitial fluorescence after injection of the cRGD. Images from (D) and (E) plus additional time points were used.

a control nanoparticle with reduced affinity for integrin
was created by linearization of the cRGD with DTT. The
Cy5.5 (or Cy3.5) fluorochrome and the superparamagnetic
iron oxide core allow imaging of the nanoparticle in vivo by
either fluorescence-based imaging or MRI. The cRGD can
be linearized by treatment with DTT after conjugation to the
nanoparticle, providing two nanopatrticles that are matched
in size, charge, and linking group, but differing in the confor-
mation of the binding ligand. The RGD sequence is found
in the loops of proteins [32], and cRGDs have roughly 10 to
100 higher affinity for their receptors than corresponding
linear forms [33—-35]. Decreased affinity on linearization
provides a convenient method of demonstrating integrin-
mediated uptake, especially because the monovalent cRGD
does not block the uptake of the multivalent cRGD-CLIO
nanoparticle due to multivalent interactions (Montet and
Josephson, unpublished observations). However, the IRGD
retained some affinity for cells; thus, for in vitro specificity
studies (Figure 3), a scrambled linear peptide was employed
(scrRGD). The physical properties of the nanoparticles are
provided in Figure 1C, along with the biologic properties of
blood half-life. cRGD-CLIO(Cy5.5) has a blood half-life of
180 minutes, compared to the blood half-life of the parent
CLIO nanoparticle, which was 640 minutes using an radio-
labeled nanoparticle [36] and 508 minutes using the intra-
vital vessel fluorescence method employed here.

We examined BT-20 cells for their expression of the a3
integrin and their ability to bind cRGD (the cyclic peptide used

Neoplasia e Vol. 8, No. 3, 2006

in nanoparticle synthesis), using a dual-wavelength fluores-
cence-activated cell sorter (FACS), as shown in Figure 2A.
ayPs Integrins are expressed in endothelial cells [37,38],
but they are also present in a variety of tumor cells [39,40].
BT-20 cells bound both anti-ay33 and the cRGD to high levels,
but not anti-CD31—an antibody to a marker expressed in
endothelial cells. The expression of ayB3 on BT-20 cells
was also evident from the binding of cRGD-CLIO(Cy5.5) with
an ECso of 0.0113 pM, as shown in Figure 2B. When the
nanoparticle was treated with DTT to linearize the peptide,
the ECso dropped by about 40-fold, as was expected based
on the higher affinity of cRGD (see above). As shown in
Figure 2C, the 9L tumor expressed about 20% of the cRGD
binding obtained with BT-20 cells, as determined by analysis
of the data for maximum binding.

We then determined the molecular specificity of cRGD-
CLIO(Cy5.5) for ayB3 in vivo by injecting 5 mg/kg Fe
of a mixture of the integrin-targeted nanoparticle cRGD-
CLIO(Cy5.5) and control scrRGD-CLIO(Cy3.5) in animals
bearing either the BT-20 or the 9L tumors. (The same
amount of fluorescence from each fluorochrome was in-
jected.) Figure 3, A and B, shows tissue fluorescence in
the Cy5.5 and Cy3.5 channels of injected and uninjected
animals, whereas Figure 3C shows the ratio of the two
amounts of fluorescence (autofluorescence subtracted) in
these channels. The BT-20 tumor had a uniquely high
Cy5.5/Cy3.5 fluorescence ratio of 6.5, whereas the liver
and spleen, which accumulated both nanoparticles to high
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concentrations, had fluorescence ratios around 1, corre-
sponding to nonspecific uptake of both nanoparticles. The
Cy5.5/Cy3.5 fluorescence ratio of BT-20 tumors differed
from all organs and from the 9L tumor at a level of P < .001.
The 9L tumor, with about 20% of the integrin of the BT-20
tumor, had a Cy5.5/Cy3.5 fluorescence ratio of 1.8, which
was higher than the ratio of fluorescence of the organs, but
this value did not reach the significant level (P > .50).

We then imaged a\(33 integrin expression in the BT-20
tumor by FRI, FMT, and MRI after injection of the nanopar-
ticle mixture used in Figure 3. As shown in Figure 4A, FRI
showed a higher fluorescence in the Cy5.5 channel than in
the Cy3.5 channel, as was expected from fluorescence re-
flectance data on dissected tumor tissues (Figure 3C). The
time course of BT-20 tumor fluorescence by FRI for the
Cy5.5 and Cy3.5 channels is shown in Figure 4B. Because
the blood half-life of the agent is 180 minutes (see below
and Figure 1C), tumor fluorescence from early time points
reflects the nanoparticle in the vasculature (Figure 6). By
1500 minutes postinjection, the agent was no longer in the
vasculature, and the tumor fluorescence was due to nano-
particle accumulation in tumor cells (see Figure 5A). We then
injected 3 mg/kg Fe of cRGD-CLIO(Cy5.5) to obtain FMT
images at various depths (Figure 4C), showing the con-
centration of nanoparticle in each plane. A T2-weighted MR
image of the BT-20 tumors at 3 mg/kg Fe of the BT-20 tumor
is shown in Figure 4D. The mean tumor T2 dropped from 77
to 66 milliseconds with the uptake of the nanoparticle.

The distribution of the cRGD-CLIO(Cy5.5) nanoparticle in
the BT-20 tumor was examined with iron staining and fluo-
rescence microscopy, as shown in Figure 5A. Tumors from
uninjected animals showed no visible Cy5.5 fluorescence or
iron accumulation, whereas tumors from injected animals
showed both iron and Cy5.5 fluorescence throughout the
tumor. We next characterized the vascularity of the tumor
using CD31 (endothelial cell marker) at low magnification,
as shown in Figure 5B. The BT-20 tumor is highly vascu-
larized, with numerous small capillaries separated by dis-
tances of <100 pm in-between. We then characterized the
BT-20 tumor for the presence of CD11b (a macrophage
marker) and CD31 (an endothelial cell maker), as well as
for a3z at higher magnifications, as shown in Figure 5C.
As expected based on the presence of ay(3 integrins on
BT-20 cells determined by FACS (Figure 2A), the a\33 in-
tegrin was widely distributed through the tumor. The dif-
fuse pattern of iron and Cy5.5 fluorescence after injection
of the cRGD-CLIO(Cy5.5) nanoparticle correlated with ay(33
expression on tumor cells and is further discussed below.

Intravital microscopy of the exposed sigmoid colon
was employed to visualize the disposition of the cRGD-
CLIO(Cy5.5) nanoparticle and to compare the disposition
of the nanoparticle and cRGD, as shown in Figure 6. At
30 minutes postinjection (Figure 6A), the nanoparticle
was still in the vasculature (vertical arrows); by 120 min-
utes (Figure 6B), it was present in the vasculature (ver-
tical arrows) and interstitium (horizontal arrows). The time
course of vessel and interstitial fluorescence is shown in
Figure 6C. Vessel fluorescence was analyzed according to

a single exponential decay model and yielded a half-life of
180 minutes. Interstitial fluorescence increased steadily up
to 220 minutes—the longest time point obtained. In con-
trast, the cRGD was present in both the vasculature and
the interstitium at 4 minutes postinjection (Figure 6D). By
8 minutes postinjection (Figure 6E), the peptide had largely
cleared from the vessel and interstitium, and had a blood
half-life of 13 minutes. cRGD-CLIO(Cy5.5) had a moderately
long blood half-life of 180 minutes and escaped from the
vasculature. As control, the blood half-life of amino-CLIO
was determined to be 508 minutes, which compared well
with a half-life of 640 minutes determined earlier with a
radiolabeled amino-CLIO [36].

Discussion

The molecular specificity of cRGD-CLIO(Cy5.5) nanoparticle
in vitro was indicated by the reduced affinity of the nano-
particle with the IRGD (Figure 2), and in vivo by the high ratio
of cRGD-CLIO(Cy5.5)/scrRGD-CLIO(Cy3.5) accumulation
in the BT-20 tumor (Figure 3C). The dual nanoparticle/
fluorescence ratio method is useful for determining molecu-
lar specificity in vivo because targeting is defined as the
“extra” accumulation of targeted versus nontargeted nano-
particles. Nontargeted magnetic nanoparticles accumulate
not only in the major organs of the reticuloendothelial sys-
tem (liver and spleen), but also in tumors [41—-43] and many
tissues when inflamed [44—-47]. Because of strong multi-
valent affinity enhancement, the binding of the cRGD-CLIO
nanoparticle to cells cannot be blocked by monovalent RGD
(Montet and Josephson, in preparation).

Our results indicate that the predominant cell internaliz-
ing the cRGD-CLIO(Cy5.5) nanoparticle in the BT-20 tumor is
the tumor cell. First, the a3 integrin (not CD31) was present
on cultured BT-20 cells as determined by FACS (Figure 2),
and tumor cells internalized cRGD-CLIO(Cy5.5) (see Fig-
ure 2). Second, immunohistochemistry indicated that the
ayf integrin was broadly distributed throughout the tumor
(Figure 6C), whereas endothelial cells, visualized by CD31,
were present as discrete structures within the tumor (i.e.,
as capillaries) (Figure 6B). The distribution of the cRGD-
CLIO(Cy5.5) nanoparticle, examined by either iron stain or
fluorescence microscopy, was broad and dissimilar from the
distribution of CD31/endothelial cells. These results do not
imply that the cRGD-CLIO(Cy5.5) is not internalized by
endothelial cells, but that the major cell accumulating the
cRGD-CLIO(Cy5.5) in the BT-20 tumor is the tumor cell.

The cRGD-CLIO(Cy5.5) nanoparticle was readily detect-
able by fluorescence-based imaging (FRI and FMT) and
MR-based imaging at a dose (3 mg/kg Fe) compatible with
human use. To avoid iron-related toxicity in humans, the dose
of iron-based diagnostic agents is generally kept below 3 mg/
kg Fe (54 pmol/kg Fe), or about 5% of the total body iron
(70-kg male with 4000 mg of Fe) [48]. The limit on iron dose,
together with limits on the amount of fluorochrome that can
be attached to the nanoparticle, confines the dose of fluo-
rochrome. The number of fluorochromes per nanoparticle is
limited by intrafluorochrome-related quenching (Josephson
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and Reynolds, unpublished observations), so that the fluo-
rochromef/iron ratio is typically about one fluorochrome per
1000 Fe (eight per nanoparticle at 8000 Fe/nanoparticle, or
54 nmol/kg at 3 mg/kg Fe). Thus, for targeted magneto-
optical nanoparticles to be considered for clinical use, they
must be detectable by fluorescent and MRI modalities at iron
doses below 3 mg/kg Fe.

Our results also suggest that nanoparticles could be
targeted to molecular markers (other than integrins) that
are expressed in tumor cells, if the nanoparticle and the
tumor have characteristics similar to those employed here.
We identified three factors associated with the ability of
the cRGD-CLIO(Cy5.5) nanoparticle to target integrins ex-
pressed in tumor cells:

Tumor cell integrin expression: a3z integrin was ex-

pressed in BT-20 tumor cells, and these cells internal-

ized the nanoparticle with a low ECso for nanoparticles
in vitro. Using both dissected tissue fluorescence reflec-
tance measurements (Figure 3C) and in vivo tumor fluo-
rescence reflectance (Figure 4B), the accumulation of
cRGD-CLIO(Cy5.5) by the BT-20 tumor exceeded that
of the 9L tumor; this, in turn, correlated with the higher
expression of a3 by the BT-20 tumor (Figure 2C). Both

tumors were used during the rapid growth phase (with a

diameter of approximately 1 to 2 mm) and had a high

density of capillaries.

Nanoparticle pharmacokinetics: The blood half-life of the

cRGD-CLIO(Cy5.5) was 180 minutes (Figure 1C), which

was sufficient to allow vascular escape (Figure 6C) and
targeting of the nanoparticle to the a3 expressed in tu-
mor cells (Figures 2C and 4D). The nanoparticle was too
large to undergo renal elimination characteristic of low-
molecular-weight materials and was eventually cleared
from the blood by macrophages of the liver and spleen.

The accumulation of iron oxide—based nanoparticles

(such as those employed here) by the liver and spleen

was typically without toxic effects because such organs

are involved in normal iron storage and degradation.

After accumulation in the liver and spleen, iron oxide—

based nanoparticles, such as those employed here, were

degraded and the iron was incorporated into red blood

cells [49].

Tumor vascularization: The BT-20 tumor had a dense

capillary bed (Figure 5B), with distances of <100 pm

between capillaries.

Our finding that the cRGD-CLIO(Cy5.5) nanoparticle can
image integrins expressed in tumor cells suggests a variety
of approaches that may be possible for a tumor-targeted
RGD nanoparticle—based diagnostic agent:

Continued development of magneto-fluorescent nano-

particles targeted to the V33 integrin: Integrin-targeted

magneto-fluorescent nanoparticles can provide precon-
trast MR images and intraoperative fluorescent images—

a paradigm that might be useful for a more accurate mar-

gin delineation [50]. Continued development of a nano-

particle-based fluorescent or magnetic imaging agent

could involve replacing disulfide-linked cRGD with a

low-molecular-weight head-to-tail cRGD [51] or with an
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RGD peptidomimetic [52,53]. Head-to-tail cyclized RGD
may have higher affinities for integrins than the disulfide-
linked cRGD we employed due to greater conformational
rigidity, optimization of amino acids adjacent to the RGD
sequence, or resistance to formation of IRGDs, which
have lower affinities for integrins.

Development of a magnetic nanoparticle targeted to the
ayfz integrin: The fluorochrome, used to follow nanopar-
ticle disposition in vitro or in vivo, might be removed
and a peptide may be attached to a dextran-coated iron
oxide core. Dextran-coated iron oxides are the basis of
approved MR contrast agents and iron preparation used
for the treatment of anemia, suggesting that RGD nano-
particles for clinical use could be based on a modification
of the basic design shown in Figure 1A.

Development of a fluorescent nanoparticle targeted to the
a3 integrin: Non—iron-bearing fluorescent nanoparticles
have been described with several different designs and
have been used in animal imaging [54—-56].
Development of a multifunctional (therapeutic and di-
agnostic) nanoparticle targeted to the ay33 integrin: Fi-
nally, the RGD-CLIO(Cy5.5) nanoparticle is highly active
in the antiendothelial cell adhesion assay used to as-
sess the potency of integrin-targeted antiangiogenic
therapeutic agents (Montet and Josephson, submitted
for publication). The ability to image the disposition of an
RGD-therapeutic agent may assist in the prediction of its
effectiveness in specific individuals.
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