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Abstract

Let X be a metric continuum and let Fn(X) be the nth symmetric product of X (Fn(X) is the hyper-
space of nonempty subsets of X with at most n points). In this paper we prove that if Fn(X) is home-
omorphic to Fn(Y ), where X is a finite graph and Y is a continuum, then X is homeomorphic to Y .
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A continuum is a nondegenerate, compact, connected metric space. We consider the
following hyperspaces of a continuum X:

2X = {A ⊂ X: A is closed and nonempty},
C(X) = {

A ∈ 2X: A is connected
}
, and if n is a positive integer,

Cn(X) = {
A ∈ 2X: A has at most n components

}
,

Fn(X) = {
A ∈ 2X: A has at most n points

}
.

All the hyperspaces are endowed with the Hausdorff metric H . The hyperspace Fn(X) is
also known as the nth symmetric product of X.
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It is easy to show that if two continua X and Y are homeomorphic, then each one of
the hyperspaces of X is homeomorphic to the respective hyperspace of Y. A very natural
problem in this area is to determine when this implication can be reversed. This problem
can be rephrased in the following way.

Problem 1.1. Suppose that H(Z) represents one of the hyperspaces 2Z , C(Z), Cn(Z) or
Fn(Z). Then, under what conditions we can assert that the following implication holds:
“H(X) and H(Y ) are homeomorphic implies that X and Y are homeomorphic”.

The implication contained in the above paragraph is not always true. For example, if
S represents a simple closed curve, then C([0,1]) and C(S) are 2-cells (see [19, Exam-
ple 5.1]), and 2[0,1] and 2S are homeomorphic to the Hilbert cube (see [19, Theorem 11.3]).
However, F2([0,1]) is a 2-cell and F2(S) is homeomorphic to the Möbius strip (see [6,
Theorem 6 and pp. 876–875]). It is also known that F3([0,1]) is a 3-cell [6, Theorem 6]
while F3(S) is homeomorphic to the 3-sphere [7]. So it is natural to ask if, for each positive
integer n, Fn([0,1]) is not homeomorphic to Fn(S). The main result of this paper implies
that if X and Y are non-homeomorphic finite graphs, then for each positive integer n,
Fn(X) and Fn(Y ) are not homeomorphic.

Next we give some definitions and a brief description of what has been done on Prob-
lem 1.1.

The continuum X is said to have unique hyperspace C(X) (respectively, 2X , Cn(X) and
Fn(X)) provided that if Y is a continuum and C(X) (respectively, 2X , Cn(X) and Fn(X))
is homeomorphic to C(Y ) (respectively, 2Y , Cn(Y ) and Fn(Y )), then X is homeomorphic
to Y . A class C of continua is known to be C-determined provided that if X,Y ∈ C and
C(X) is homeomorphic to C(Y ), then X is homeomorphic to Y .

The continua belonging to one of the following classes are known to have unique hy-
perspace C(X):

(a) Finite graphs different from an arc or a simple closed curve (Duda [9, 9.1], see [1,
Theorem 3.3]);

(b) Hereditarily indecomposable continua (Nadler [23, 0.60], see [1, Theorem 3.4]);
(c) Indecomposable continua such that all their proper nondegenerate subcontinua are arcs

(Macías [20]);
(d) Metric compactifications of the ray [0,∞) with nondegenerate remainder (Acosta [1,

Theorem 5.3]).

It is known (see [10, Corollary 3.3(c)]) that the class of smooth fans is C-determined.
Hereditarily indecomposable continua have unique hyperspace 2X (Macías [21]).
Finite graphs have unique hyperspace Cn(X), for each n > 1 (Illanes [16,17]).
A. Illanes has shown that the classes of chainable continua and fans are not C-determined

[14,15]. In [18] some results about uniqueness of the hyperspace F2(X) when X is a
dendrite are presented. In [12] Herrera, proved that if a dendrite X has a closed set of
end-points, then X has unique hyperspace C(X).

Some other results related to unique hyperspaces can be found in [1–5].
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The following questions remain open.

Question ([23, Question 0.62]). Is the class of circle-like continua C-determined?

Question ([18]). Do hereditarily indecomposable continua have unique hyperspace
F2(X)?

In this paper we prove that finite graphs have unique hyperspace Fn(X).
Next, we describe the general strategy followed in the proof of our main result. We start

with a positive integer n � 2, a finite graph X and a continuum Y such that Fn(X) and
Fn(Y ) are homeomorphic, with a homeomorphism h, we need to show that X and Y are
homeomorphic.

(a) It is know that a continuum Z is locally connected if and only if Fn(Z) is locally
connected (see [6, p. 877]). Thus we conclude that Y is locally connected.

(b) Now, for a locally connected continuum Z, we need to describe a topological property
P defined on Fn(Z) such that Z is a finite graph if and only if Fn(Z) has the property P.
This property P is given by Theorem 3.4. This property P is described in terms of the
set of elements in Fn(Z) having a neighborhood in Fn(Z) which is an n-cell. Since X

is a finite graph, Fn(X) has the property P. Thus Fn(Y ) has also property P and Y is
a finite graph.

(c) Now, for a finite graph Z, we need to describe a topological property Q defined for the
elements of Fn(Z) which is satisfied exactly by the singletons. That is, if A ∈ Fn(Z),
then Fn(Z) has property Q at A if and only if A = {z} for some z ∈ Z. Once we get
the property Q, we can say that h(F1(X)) = F1(Y ). Thus F1(X) is homeomorphic
to F1(Y ). Since X is homeomorphic to F1(X) and Y is homeomorphic to F1(Y ), we
conclude that X is homeomorphic to Y and we are done. So if it is possible to describe
such a property Q, then we have finished. We were able to find an appropriate property
Q only for the case n � 4 (Lemma 4.5).

(d) For the cases n = 2 and n = 3, we used another approach. For these cases we were
able to find a topological property R, defined for elements of Fn(Z) (where Z is a
finite graph) such that Fn(Z) has property R at an element A ∈ Fn(Z) if and only if
A = {v} for some ramification point v of Z (Lemma 5.5). In this way, we can give
a bijection between the ramification points of X and the ramification points of Y .
After that, counting the arcwise components of small neighborhoods of the element
{v} in Fn(X), where v is a ramification point of X, we are able to show an appropriate
bijection between the edges of X and the edges of Y to conclude that X and Y are
homeomorphic finite graphs.

Next, we use an example to illustrate why the topological structure of Fn(X) for n � 4
is different from that of Fn(X) for n ∈ {2,3}. It is the same type of behavior that was used
to show that F3([0,1]) is a 3-cell and F4([0,1]) cannot be embedded in the Euclidean
space R4 [6, Theorem 7]. This difference is used in the proof of the main result of this
paper (see Lemma 4.3).
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In the unit interval [0,1], consider three pairwise disjoint subarcs J1, J2 and J3 of
[0,1]. Consider the set S = {B ∈ F4([0,1]): B ⊂ J1 ∪ J2 ∪ J3 and B ∩ Ji �= ∅ for each
i ∈ {1,2,3}}. Let S1 = {B ∈ F4([0,1]): B ⊂ J1 ∪ J2 ∪ J3 and, B ∩ J2 and B ∩ J3 are
one-point sets}. In a similar way define S2 and S3. A typical element of S1 contains one
point in J2, one point in J3 and one or two points in J1, so it is easy to check that each Si

is homeomorphic to F2([0,1]) × [0,1] × [0,1]. Since F2([0,1]) is a 2-cell, each Si is a
4-cell. Let T = {B ∈ F4([0,1]): B ∩ J1, B ∩ J2 and B ∩ J3 are one-point sets}. Notice that
T = S1 ∩ S2 = S2 ∩ S3 = S1 ∩ S3 which is a 3-cell. Since S = S1 ∪ S2 ∪ S3. We have that S

is the union of three 4-cells such that each two of them meet at the 3-cell T. Thus S cannot
be embedded in R4 (the formal proof of this fact is contained in Lemma 4.3). Therefore,
F4([0,1]) cannot be embedded in R4. However, if we consider the respective situation in
F3([0,1]), we obtain two 3-cells that meet at one 2-cell and such a situation is permissible
in R3.

2. Conventions

A finite (connected) graph is a continuum which is a finite union of arcs such that every
two of them meet at a subset of their end points. If X is a finite graph, in X are defined
edges and vertices. The vertices of X are the end points of the edges of X. A finite graph
which is different from a simple closed curve is called an acircular graph. We are interested
in distinguishing the ramification points of the graph X from the rest of the points, so we
assume that each vertex of an acircular graph X is either an end point of X or a ramification
point of X. With this restriction the two end points of an edge of X may coincide and such
an edge is a simple closed curve. This kind of edges will be called loops. Thus the edges
of X are arcs or simple closed curves and in X there are only three kind of edges, namely:
loops, edges that contain some end point and edges joining ramification points. We assume
that the metric d in X is the metric of arc length and each edge of X has length equal to
one. The set of ramification points of X is denoted by R(X). Two different vertices p and q

of X are said to be adjacent provided that there is an edge J of X such that p and q are the
end points of J . A simple n-od Y is a finite graph which is the union of n arcs J1, . . . , Jn

such that there exists a point p ∈ Y with the property Ji ∩ Jj = {p}, if i �= j , and p is an
end point of each one of the arcs Ji . The point p is called the core of Y . A simple 3-od is
called a simple triod.

If A is a set, |A| denotes the cardinality of A. A Peano continuum is a locally connected
continuum. The set of positive integers is denoted by N.

Given a continuum Z and a subset A of Z, bdZ(A), clZ(A) and intZ(A) denote the
respective boundary, closure and interior of A in Z. Let Z be a continuum and p ∈ Z. Let
β be a cardinal number. We say that p is of order less than or equal to β in Z, written
ord(p,Z) � β provided that for each open subset U of Z such that p ∈ U , there exists an
open subset V of Z such that p ∈ V ⊂ U and |bdZ(V )| � β . We say the p is of order β ,
written ord(p,Z) = β , provided that ord(p,Z) � β and ord(p,Z) � α for any cardinal
number α < β . A point p ∈ Z is called an end point of Z provided that ord(p,Z) = 1.
A point p ∈ Z is called a ramification point of Z provided that ord(p,Z) � 3. If A is a



1438 E. Castañeda, A. Illanes / Topology and its Applications 153 (2006) 1434–1450
subset of Z, p ∈ Z and ε > 0, let BZ(ε,p) = {q ∈ Z: dZ(p,q) < ε} and NZ(ε,A) = {q ∈
Z: there exists p ∈ A such that dZ(p,q) < ε}.

Given a continuum Z, let En(Z) = {A ∈ Fn(Z): A has a neighborhood in Fn(Z) which
is an n-cell}. If C is a subset of Z, let Fn(C) = {A ∈ Fn(Z): A ⊂ C}. Given subsets
U1, . . . ,Um in Z, let 〈U1, . . . ,Um〉n = {A ∈ Fn(Z): A ⊂ U1 ∪ · · · ∪ Um and A ∩ Ui �= ∅
for each i ∈ {1, . . . ,m}}. It is known (see [23, Theorem 0.13]) that the sets of the form
〈U1, . . . ,Um〉n, where the sets U1, . . . ,Um are open, form a basis of the topology of Fn(Z).

3. Results on Peano continua

Lemma 3.1. If Z is a Peano continuum and A ∈ En(Z), then no point of A is the core of a
simple triod of Z.

Proof. Suppose, to the contrary, that A ∈ En(Z) and A contains a point p such that p is
the core of a simple triod T0 of Z. We will show that each neighborhood U of A in Fn(Z)

contains a topological copy of the product T × [0,1]n−1, where T is a simple triod. It
is easy to show that the Theorem on the Invariance of Domain [13, Theorem VI 9, §6,
Chapter 6, p. 95] imply that the space T × [0,1]n−1 is not embeddable in Rn, thus we will
have a contradiction.

Let ε > 0 be such that BFn(X)(ε,A) ⊂ U.
Suppose that A = {p,x2, . . . , xm}, where m � n and p,x2, . . . , xm are all different.

Choosing appropriate points close to xm, there exists B ∈ BFn(Z)(ε,A) such that B =
{p,x2, . . . , xn}, and the points p,x2, . . . , xn are all different.

Choose δ > 0 such that the sets BZ(δ,p),BZ(δ, x2), . . . ,BZ(δ, xn) are pairwise disjoint
and BFn(Z)(δ,B) ⊂ U. Choose arcs I2, . . . , In of Z such that xi ∈ Ii and diameter(Ii) < δ,
for each i ∈ {2, . . . , n}. Finally, choose a simple subtriod T of T0 such that p is
the core of T and diameter(T ) < δ. Then 〈T , I2, . . . , In〉n ⊂ BFn(Z)(δ,B) ⊂ U. Notice
that T , I2, . . . , In are pairwise disjoint. Thus T × I2 × · · · × In is homeomorphic to
〈T , I2, . . . , In〉n (using the homeomorphism that sends (t1, t2, . . . , tn) into {t1, t2, . . . , tn}).
Therefore, the space T ×I2 ×· · ·×In can be embedded in U. Hence U cannot be embedded
in Rn. This contradiction completes the proof of the lemma. �
Lemma 3.2. If Z is a Peano continuum which is not a finite graph, then for each k ∈ N,
Z contains a finite graph with at least k edges.

Proof. In the case that there exist arcs α and β in Z such that α ∩ β has infinitely many
components, we have that α − (α ∩ β) has infinitely many components. If we choose k

components J1, . . . , Jk of α − (α ∩ β), then β ∪ (J1 ∪ · · · ∪ Jk) is a finite graph with at
least k edges. So, in this case, we are done. Hence, we are going to assume that α ∩ β has
finitely many components for all arcs α and β in Z. Under this assumption, if α and β are
arcs in Z and α ∩ β �= ∅, we have that α ∪ β is a finite graph.

By [22, Theorem 9.10], Z has one of the following two properties:

(a) there exist infinitely many points p ∈ Z such that ord(p,Z) > 2,



E. Castañeda, A. Illanes / Topology and its Applications 153 (2006) 1434–1450 1439
(b) there exists a point q ∈ Z such that ord(q,Z) � ℵ0.

We first assume that (a) holds.
In this case there exists a sequence of points {pm}∞m=1 such that ord(pm,Z) > 2 for

each m ∈ N and the points pm are all different. By [11, Example 8 of §51 p. 277], for each
m ∈ N, there exists a simple triod Tm such that pm is the core of Tm.

Fix a point p ∈ Z. For each i ∈ {1, . . . , k + 1}, let αi be an arc joining p and pi . By the
assumption in the first paragraph of this proof, the continuum Y = α1 ∪ · · · ∪ αk+1 ∪ T1 ∪
· · · ∪ Tk+1 is a finite graph. Since each one of the points pi is a ramification point of Y ,
then Y contains at least k + 1 ramification points. Thus, Y contains at least k edges.

Now, suppose that (b) holds.
Then there exists a point q ∈ Z such that ord(q,Z) � ℵ0. From [11, Example 8 of §51

p. 277], q is the vertex of a simple k-od Y . Therefore, Y contains k edges. This finishes the
proof of the lemma. �

The next result easily follows from [8, Lemma 2.2].

Lemma 3.3. If α is an arc in Fn(Z) and α joins the elements A and B , then
⋃

α has a
finite number of components, each one of them is locally connected and intersects both sets
A and B .

Theorem 3.4. A Peano continuum Z is a finite graph if and only if, for some (each) n ∈ N,
En(Z) is an open dense subset of Fn(Z) with a finite number of components.

Proof. First suppose that there exists n ∈ N such that En(Z) is an open dense subset of
Fn(Z), with r components (r ∈ N) and Z is not a finite graph. Since Fn(Z) is a Peano
continuum, the components of En(Z) are arcwise connected. By Lemma 3.2 there exists a
finite graph Y ⊂ Z such that Y contains at least k = 2r + 1 edges. Choose different edges
J1, . . . , Jk of Y and points pi ∈ intY (Ji), for each i ∈ {1, . . . , k}. Choose open connected
and pairwise disjoint subsets V1, . . . , Vk of Z such that pi ∈ Vi and Vi ∩ Y ⊂ intY (Ji) for
each i ∈ {1, . . . , k}. Given i ∈ {1, . . . , k}, since {pi} ∈ 〈Vi〉n and En(Z) is dense, we can
choose an element Ai ∈ 〈Vi〉n ∩ En(Z).

Since En(Z) has r components and we have 2r + 1 sets A1, . . . ,A2r+1, by the box
principle, there exists a component C of En(Z) having three of the sets Ai . We may assume
that A1,A2 and A3 belong to C. Since C is arcwise connected, there exist arcs α1 and α2
in C such that α1 joins A3 and A1, and α2 joins A3 and A2. Choose a point x ∈ A3. Let
C1 and C2 be the components of

⋃
α1 and

⋃
α2, respectively, such that x ∈ C1 ∩ C2. By

Lemma 3.3, the set C = C1 ∪ C2 is a locally connected subcontinuum of (
⋃

α1) ∪ (
⋃

α2)

that intersects A1, A2 and A3.
Each point p ∈ C belongs to an element of En(Z). By Lemma 3.1, p is not the core

of any simple triod of Z. In particular, C is a Peano continuum without simple triods,
therefore C is an arc or a simple closed curve. In any case, we conclude that there exists
an arc in Z which intersects the three sets A1, A2 and A3. For the rest of the proof, we
may assume, without loss of generality that there exist an arc β ⊂ C and points a1 ∈ A1,
a2 ∈ A2 and a3 ∈ A3 ∩ β − {a1, a2} such that β joins a1 and a2. Since a3 ∈ V3 and V3 is
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arcwise connected, there exists an arc α in V3 that joins a3 and p3. Since the end points
of β are not in V3, the end points of β are not in α. Since the points of β are not cores
of simple triods of Z, we have that α ⊂ β . Thus, β intersects the edge J3 which is an arc
or a simple closed curve. Notice that J3 contains a vertex v of Y which is the core of a
simple triod in Z, thus v /∈ β . Thus J3 is not contained in β . Since β does not contain
the core of a simple triod, one of the end points of β belongs to J3. We may assume that
a1 ∈ J3. Then a1 ∈ V1 ∩J3. But V1 was chosen in such a way that V1 ∩Y ⊂ intY (J1). Thus
a1 ∈ J3 ∩ intY (J1). This is impossible since J1 and J3 are edges of the finite graph Y . This
contradiction proves that Z is a finite graph.

Now suppose that Z is a finite graph and let n be an arbitrary positive integer. We
are going to prove that En(Z) is an open dense subset of Fn(Z) with a finite number
of components. Let G = {A ∈ Fn(Z): A does not contain ramification points of X and
|A| = n}. Given A = {p1, . . . , pn} ∈ G, let J1, . . . , Jn be pairwise disjoint arcs of Z such
that J1 ∪ · · · ∪ Jn does not contain ramification points of Z and pi ∈ intZ(Ji) for each
i ∈ {1, . . . , n}. It is easy to show the map from J1 × · · · × Jn to 〈J1, . . . , Jn〉n which sends
(x1, . . . , xn) to {x1, . . . , xn} is a homeomorphism. Thus 〈J1, . . . , Jn〉n is an n-cell which is
a neighborhood of A is Fn(Z). Thus A ∈ En(Z). We have shown that G ⊂ En(Z). Clearly,
G is dense in Fn(Z). Therefore En(Z) is an open dense subset of Fn(Z).

Let E1, . . . ,Em be all different edges of Z, and K(i1, . . . , im) be the subset of Fn(Z)

such that each member of K(i1, . . . , im) has exactly ij elements in the interior of edge Ej

for each j ∈ {1, . . . ,m}. It is obvious that each K(i1, . . . , im) is connected. In the case that
i1 +· · ·+ im = n, K(i1, . . . , im) ⊂ G ⊂ En(Z), and the union of all sets K(i1, . . . , im), with
i1 +· · ·+ im = n, is dense in En(Z). Since En(Z) is an open subset of the Peano continuum
Fn(Z), En(Z) is locally arcwise connected. Thus each component of En(Z) intersects one
set of the form K(i1, . . . , im). Since there is only finitely many sets K(i1, . . . , im), En(Z)

has only finitely many components. The proof of the theorem is complete. �
Corollary 3.5. If continua X and Y have homeomorphic symmetric products Fn(X) and
Fn(Y ) for some n ∈ N, then X is a finite graph if and only if Y is.

4. The case n ��� 4

If S is a simple closed curve, let R(S) = ∅. Given a finite graph X and n ∈ N, let
Rn(X) = {A ∈ Fn(X): A ∩ R(X) �= ∅}. Notice that R1(X) = F1(R(X)).

Lemma 4.1. Let X be a finite graph and n ∈ N, then the components of Fn(X) − Rn(X)

are exactly the sets of the form 〈intX(I1), . . . , intX(Ir)〉n, where I1, . . . , Ir are pairwise
different edges of X and r ∈ {1, . . . , n}.

Proof. Take pairwise different edges I1, . . . , Ir . Then intX(I1), . . . , intX(Ir) are open con-
nected and pairwise disjoint. In order to see that 〈intX(I1), . . . , intX(Ir)〉n is connected,
consider the map f :Xn → Fn(X) given by f (x1, . . . , xn) = {x1, . . . , xn}. It is easy to
show that, if 〈intX(I1), . . . , intX(Ir)〉n �= ∅, then r � n and 〈intX(I1), . . . , intX(Ir )〉n =⋃{f (intX(Ii )×· · ·×intX(Iin)): {I1, . . . , Ir} = {Ii , . . . , Iin}}. Fix elements p1 ∈ intX(I1),
1 1
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. . . , pn ∈ intX(Ir). Then {p1, . . . , pr} is in the image of each set of the form f (intX(Ii1) ×
· · · × intX(Iin)), where {I1, . . . , Ir} = {Ii1, . . . , Iin}. Since f (intX(Ii1) × · · · × intX(Iin)) is
connected, we conclude that 〈intX(I1), . . . , intX(Ir )〉n is connected. Therefore, each set of
the form 〈intX(I1), . . . , intX(Ir)〉n is connected (and open).

It is easy to see that if {I1, . . . , Ir} �= {J1, . . . , Js}, then 〈intX(I1), . . . , intX(Ir)〉n ∩
〈intX(J1), . . . , intX(Js)〉n = ∅. Finally, since X − R(X) = ⋃{intX(J ): J is an edge X},
it follows that the union of all sets of the form 〈intX(I1), . . . , intX(Ir )〉n is equal to
Fn(X) − Rn(X). This completes the proof of the lemma. �

Proceeding as in the proof that G ⊂ En(X) in Theorem 3.4, the following lemma can be
proved.

Lemma 4.2. Let X be a finite graph and A ∈ Fn(X) − (Fn−1(X) ∪ Rn(X)). Then A has
a neighborhood in Fn(X) which is an n-cell (i.e. A ∈ En(X)).

Lemma 4.3. Let X be a finite graph, A ∈ Fn−1(X) and n � 4. Then no neighborhood of A

in Fn(X) can be embedded in Rn.

Proof. Let U be a neighborhood of A in Fn(X). Since A ∈ Fn−1(X), it is possible to find
different points p1, . . . , pn−1 of X and pairwise disjoint subarcs I1, . . . , In−1 of X such that
pi ∈ Ii , pi is not an end point of Ii , for each i ∈ {1, . . . , n−1} and 〈I1, I2, . . . , In−1〉n ⊂ U.

Given i ∈ {1, . . . , n − 1}, there exists a homeomorphism fi : [0,1]2 → F2(Ii) such that
fi([0,1] × {0}) = F1(Ii) and fi(

1
2 ,0) = {pi}. Let αi : [0,1] → F1(Ii) be given by αi(t) =

fi(t,0).
Let ϕ : [0,1]n−1 × [−1,1] → U be given by

ϕ(t1, t2, . . . , tn) =
{

f1(t1, tn) ∪ α2(t2) ∪ · · · ∪ αn−1(tn−1), if tn � 0,

α1(t1) ∪ f2(t2,−tn) ∪ α3(t3) ∪ · · · ∪ αn−1(tn−1), if tn � 0.

Clearly, ϕ is a well defined map and, for each z ∈ [0,1]n−1 × [−1,1], ϕ(z) ∈ 〈I1, I2, . . . ,

In−1〉n ⊂ U.
Now, we see that ϕ is one-to-one. Suppose that ϕ(t1, . . . , tn) = ϕ(s1, . . . , sn).
In the case that tn, sn � 0, we have f1(t1, tn) ∪ α2(t2) ∪ · · · ∪ αn−1(tn−1) = f1(s1, sn) ∪

α2(s2) ∪ · · · ∪ αn−1(sn−1). Since I1, . . . , In−1 are pairwise disjoint, f1(t1, tn) = f1(s1, sn),
f2(t2,0) = f2(s2,0), . . . , fn−1(tn−1,0) = fn−1(sn−1,0). Since each one of the maps
f1, f2, . . . , fn−1 is one-to-one, (t1, . . . , tn) = (s1, . . . , sn).

The case tn, sn � 0 is similar.
Finally, suppose that sn � 0 � tn. Then f1(t1, tn) ∪ α2(t2) ∪ · · · ∪ αn−1(tn−1) =

α1(s1) ∪ f2(s2,−sn) ∪ α3(s3) ∪ · · · ∪ αn−1(sn−1). Thus f1(t1, tn) = f1(s1,0), f2(t2,0) =
f2(s2,−sn), f3(t3,0) = f3(s3,0), . . . , fn−1(tn−1,0) = fn−1(sn−1,0). Hence (t1, . . . ,

tn−1) = (s1, . . . , sn−1) and tn = 0 = sn.
Therefore, ϕ is one-to-one.
Let C = Imϕ, so C is an n-cell in U. Consider the arc A = {p1,p2,p4, . . . , pn−1} ∪

f3({ 1
2 } × [0,1]). Clearly, A ⊂ U. Notice that the element ϕ( 1

2 , . . . , 1
2 ,0) = f1(

1
2 ,0) ∪

f2(
1
2 ,0) ∪ · · · ∪ fn−1(

1
2 ,0) = {p1, . . . , pn−1} belongs to A. On the other hand, if t > 0,

the set {p1,p2,p4, . . . , pn−1} ∪f3(
1 , t) has two different points in the arc I3 and, for each
2
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z = (t1, . . . , tn) ∈ [0,1]n−1 ×[−1,1], ϕ(z)∩ I3 = α3(t3) is a one-point set. We have shown
that A ∩ C = {ϕ( 1

2 , . . . , 1
2 ,0)}. Therefore, C ∪ A is the union of the n-cell C and the arc A

which intersects C only in one point which is an end point of A and it is in the manifold
interior of C (such spaces are called n-dimensional umbrellas). Theorem of the Invariance
of Domain imply that the space C∪A is not embeddable in Rn. We conclude that U cannot
be embeddable in Rn. �
Corollary 4.4. Let X be a finite graph and n � 4. Then En(X) = Fn(X) − (Rn(X) ∪
Fn−1(X))}.

The next lemma uses the fact that for every nondegenerate continuum X the hyperspace
Fn(X) is locally separated by Fn−1(X). Indeed, for example if A = {p,q} with n > 2 and
p �= q , then A has in its small neighborhoods both sets B ∈ Fn(X) − Fn−1(X) having the
point p and the rest near q , and sets C ∈ Fn(X) − Fn−1(X) having the point q and the
rest near p. However, there is no connected collection of sets in Fn(X) − Fn−1(X), each
near A, that contains B and C.

Lemma 4.5. Let X be a finite graph and n � 4. For every A ∈ Fn(X) the following condi-
tions are equivalent:

(a) A ∈ F1(X) − Rn(X);
(b) A /∈ En(X) and A has a basis B of neighborhoods in Fn(X) such that U ∩ En(X) is

arcwise connected for each U ∈ B.

Proof. ((b) ⇒ (a)) Suppose that A has a basis of neighborhoods B in Fn(X) such that, for
each U ∈ B, U ∩ En(X) is arcwise connected and A /∈ En(X). Since A /∈ En(X), then
A ∈ Rn(X) ∪ Fn−1(X). Let A = {p1,p2, . . . , pr}, where 1 � r � n and all the points
p1,p2, . . . , pr are different. Let δ1 > 0 be such that B(δ1,p1), . . . ,B(δ1,pr) are pairwise
disjoint A ∩ R(X) = (B(δ1,p1) ∪ · · · ∪ B(δ1,pr)) ∩ A and δ1 < 1

3 . Choose U ∈ B such
that U ⊂ B(δ1,A). Let δ > 0 be such that B(δ,A) ⊂ U.

First, we consider the case that A ∈ Rn(X). In this case, we may assume that pr ∈ R(X).
Let J and L be edges of X such that J �= L and pr ∈ J ∩ L. Choose two subsets
with n different points {x1, . . . , xn} and {y1, . . . , yn} of X − R(X) such that d(xi,pi) < δ,
d(yi,pi) < δ for each i ∈ {1, . . . , r − 1}, {xr , xr+1, . . . , xn} ⊂ BX(δ,pr) ∩ J and
{yr, yr+1, . . . , yn} ⊂ BX(δ,pr) ∩ L. Then the sets B = {x1, . . . , xn} and C = {y1, . . . , yn}
belong to U ∩ En(X). From the choice of B, there exists a map α : [0,1] → U ∩ En(X) ⊂
BFn(X)(δ1,A) such that α(0) = B and α(1) = C.

Notice that pr is a point that separates the set BX(δ1,pr) in two open subsets U and
V such that {xr, xr+1, . . . , xn} ⊂ U and {yr, yr+1, . . . , yn} ⊂ V . Given t ∈ [0,1], α(t) ∈
En(X), so α(t) does not contain ramification points and α(t) contains n different points. In
particular, pr /∈ α(t). Moreover, α(t) ∈ U, so α(t) ∈ B(δ1,A). Hence, α(t) ⊂ BX(δ1,p1)∪
· · · ∪ BX(δ1,pr−1) ∪ U ∪ V .

Let K1 = {t ∈ [0,1]: α(t) ⊂ BX(δ1,p1) ∪ · · · ∪ BX(δ1,pr−1) ∪ U} and K2 = {t ∈
[0,1]: α(t) ∩ V �= ∅}. Hence, [0,1] = K1 ∪ K2. Since V does not intersect BX(δ1,p1) ∪
· · ·∪BX(δ1,pr−1)∪U , we have K1 ∩K2 = ∅. Clearly, K1 and K2 are open in [0,1]. Since
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α(0) = B and α(1) = C, 0 ∈ K1 and 1 ∈ K2. Thus K1 and K2 is a separation of [0,1]. This
contradiction proves that A /∈ Rn(X).

Therefore, A ∈ Fn−1(X) − Rn(X).
Now, suppose that A is not degenerate. That is r > 1. Choose subsets {xr+1, . . . , xn} ∈

BX(δ,p1)−{p1} and {yr+1, . . . , yn} ∈ BX(δ,pr)−{pr}, where the points xr+1, . . . , xn are
all different and the same happens with yr+1, . . . , yn. Let B = {p1, . . . , pr , xr+1, . . . , xn}
and C = {p1, . . . , pr , yr+1, . . . , yn}. Then the sets B and C belong to U ∩ En(X). By the
choice of B, there exists a map α : [0,1] → U∩En(X) ⊂ BFn(X)(δ1,A) such that α(0) = B

and α(1) = C.
Let K1 = {t ∈ [0,1]: α(t) contains exactly one point in BX(δ1,p1)} and K2 = {t ∈

[0,1]: α(t) contains more than one point in BX(δ1,p1)}. Clearly, [0,1] = K1 ∪K2, 1 ∈ K1,
0 ∈ K2 and K1 ∩ K2 = ∅.

Next, we show that K1 and K2 are open in [0,1].
Given t ∈ K2, let α(t) = {w1, . . . ,wn}, where all the points w1, . . . ,wn are different.

We know that α(t) contains at least two elements in BX(δ1,p1). Suppose that w1 and w2

belong to BX(δ1,p1). Let δ0 > 0 be such that BX(δ0,w1), . . . ,BX(δ0,wn) are pairwise
disjoint and BX(δ0,w1) ∪ BX(δ0,w2) ⊂ BX(δ1,p1). If s is close to t , α(s) has an element
in BX(δ0,w1) and another one in BX(δ0,w2), both points are in BX(δ1,p1). Hence s ∈ K2.
We have shown that K2 is open.

Now take t ∈ K1. Suppose that α(t) = {w1, . . . ,wn}, where all the points w1, . . . ,wn

are different. Suppose that w1 is the only element of α(t) that belongs to BX(δ1,p1).
Since α(t) ∈ U, α(t) ⊂ BX(δ1,p1) ∪ · · · ∪ BX(δ1,pr). Thus we can take δ0 > 0 such
that the sets BX(δ0,w1), . . . ,BX(δ0,wn) are pairwise disjoint and each one of them is
contained in one set of the form BX(δ1,pj ). Since w1 is the only wi that belongs to
BX(δ1,p1), BX(δ1,p1) ∩ (BX(δ0,w2) ∪ · · · ∪ BX(δ0,wn)) = ∅. Let s ∈ [0,1] be such that
H(α(s),α(t)) < δ0. Then α(s) intersects each one of the sets of the form BX(δ0,wi) and it
is contained in their union. Thus α(s) has n− 1 elements in BX(δ0,w2)∪ · · ·∪BX(δ0,wn)

and one in BX(δ0,w1). Hence, α(s) has exactly one element in BX(δ1,p1). Hence s ∈ K1.
This completes the proof that K1 is open.

We have found a disconnection of [0,1]. This contradiction proves that A is degenerate.
Therefore, A ∈ F1(X) − Rn(X).
((a) ⇒ (b)) Suppose that A ∈ F1(X) − Rn(X). Thus A = {p} for some p ∈ A − R(X).

Hence, there exists δ > 0 such that BX(δ,p) is contained in some edge J of X and
BX(δ,p) ∩ R(X) = ∅. Thus BX(δ,p) is homeomorphic to a subinterval L of [0,1]. We
identify BX(δ,p) with L. Let B = {BFn(X)(η, {p}): 0 < η < δ}. We are going to prove
that if η > 0 and B,C ∈ BFn(X)(η, {p}) ∩ En(X). Then there exists an arc contained in
BFn(X)(η, {p})∩En(X) which joins B and C. Since B,C ⊂ N(δ,p) = L, we may assume
that B = {b1, . . . , bn} and C = {c1, . . . , cn}, where b1 < · · · < bn and c1 < · · · < cn. Thus
define α : [0,1] → BFn(X)(η, {p})∩En(X) by α(t) = {tb1 +(1− t)c1, . . . , tbn +(1− t)cn}.
Clearly, α is a map, α(0) = C and α(1) = B . Thus BFn(X)(η, {p})∩En(X) is arcwise con-
nected. Since A is degenerate, A /∈ En(X). This completes the proof of the theorem. �
Theorem 4.6. Let X and Y be finite graphs. Suppose that Fn(X) is homeomorphic to
Fn(Y ) and n � 4. Then X is homeomorphic to Y .
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Proof. Let h :Fn(X) → Fn(Y ) be a homeomorphism.
Notice that h(En(X)) = En(Y ). By Lemma 4.5, h(F1(X)−Rn(X)) = F1(Y )−Rn(Y ) ⊂

F1(Y ). Since F1(X) − Rn(X) is dense in F1(X) and F1(Y ) is compact, we have that
h(F1(X)) ⊂ F1(Y ). Similarly, h−1(F1(Y )) ⊂ F1(X). Thus, h(F1(X)) = F1(Y ). Hence
F1(X) is homeomorphic to F1(Y ). Therefore, X is homeomorphic to Y . �

5. The case n ��� 3

Lemma 5.1. Let X be a finite graph, n ∈ {2,3} and A ∈ Fn(X)−Rn(X). Then A ∈ En(X).

Proof. We only analyze the case that n = 3, the case n = 2 is simpler.
First suppose that A = {x} for some x ∈ X. Since x is not a ramification point of X,

there exists a neighborhood J of x such that J is an arc. Thus A ∈ 〈J 〉3 and 〈J 〉3 = F3(J )

is a neighborhood of A in F3(X) which is homeomorphic to [0,1]3 (see [6, Theorem 6]).
Now suppose that A = {x, y}, where x �= y. Let J1 and J2 be disjoint arcs in X − R(X)

such that J1 and J2 are neighborhoods of x and y, respectively. Thus 〈J1, J2〉3 is a neigh-
borhood of A in F3(X). For each i ∈ {1,2}, there exists a homeomorphism fi : [0,1]2 →
F2(Ji) such that fi([0,1] × {0}) = F1(Ji). Let ϕ : [0,1]2 × [−1,1] → 〈J1, J2〉3 be given
by

ϕ(t1, t2, t3) =
{

f1(t1, t3) ∪ f2(t2,0), if t3 � 0,

f1(t1,0) ∪ f2(t2,−t3), if t3 � 0.

It is easy to show that ϕ is a homeomorphism. Therefore, 〈J1, J2〉3 is a 3-cell.
The last case is A = {x, y, z}, where x, y and z are all different. This case follows from

Lemma 4.2. �
Let Z be a continuum and W an open subset of Z. For each open subset U of Z, let

c(U) = (number of components of U ∩ W), if this number is finite and c(U) = ∞, other-
wise. For each p ∈ clZ(W), define v(p) = min({m ∈ N: p has a basis of neighborhoods B

in Z such that c(U) = m for each U ∈ B} ∪ {∞}).

Lemma 5.2. Let Z be a continuum, p ∈ Z, W an open subset of Z and m ∈ N. Suppose
that p has a basis of neighborhoods B in Z such that, for each U ∈ B, c(U) = m and for
each component C of U ∩ W, p ∈ clZ(C). Then v(p) = m.

Proof. By the definition of v(p), v(p) � m and p has a basis of neighborhoods B1 in Z

such that c(U) = v(p) for each U ∈ B1. Let V ∈ B and U ∈ B1 be such that U ⊂ V . By
hypothesis V ∩W has m components C1, . . . ,Cm and p ∈ clZ(Ci) for each i ∈ {1, . . . ,m}.
Thus U ∩ Ci �= ∅ for each i ∈ {1, . . . ,m}. Hence U ∩ W = U ∩ V ∩ W = (U ∩ C1) ∪ · · · ∪
(U ∩Cm). Since the sets in this union are mutually separated and they are nonempty, U ∩W

has at least m components. Thus, v(p) = c(U) � m. Therefore, v(p) = m. �
For an acircular graph X, let vX be the index defined as before for the set E3(X). We

simply write v if it is not necessary to mention the space X.
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Lemma 5.3. Let X be a finite graph, let p,q, r,w,x and y be points of X such that
ord(p,X) = n � 3, ord(q,X) = m � 3, ord(r,X) = k � 3 and x, y and w are not ramifi-
cation points of X. Given A ∈ F3(X), then the possible values for v(A) are:

(a) if A = {p}, then v(A) = n + (
n
2

) + (
n
3

)
,

(b) if A = {p,x}, then v(A) = n + (
n
2

)
,

(c) if A = {p,x, y} and x �= y, then v(A) = n,
(d) if A = {p,q} and p �= q , then v(A) = n · (m

2

) + m · (n
2

) + n · m,
(e) if A = {p,q,w} and p �= q , then v(A) = n · m,
(f) if A = {p,q, r} and p, q and r are all different, then v(A) = n · m · k,
(g) if A ∈ F3(X) − R3(X), then v(A) = 1.

Proof. We use Lemma 5.2. Let δ0 > 0 be such that NX(δ0,A) ∩ R(X) = A ∩ R(X), and
NX(δ0,A) has as many components as the number of points of A and δ0 < 1

3 . Let B =
{BF3(X)(δ,A) ⊂ F3(X): 0 < δ < δ0}. Then B is a basis of neighborhoods of A in F3(X).

(a) Suppose that A = {p}. Let δ ∈ (0, δ0). Then clX(NX(δ,A)) is a simple n-od, so
clX(NX(δ,A)) = J1 ∪· · ·∪Jn, where Ji ∩Jj = {p}, if i �= j and each Ji is an arc with end
points p and a point ai . Notice that an element B ∈ F3(X) belongs to BF3(X)(δ,A) if and
only if B ⊂ NX(δ,A) = clX(NX(δ,A)) − {a1, . . . , an}. Thus B ∈ BF3(X)(δ,A) ∩ E3(X)

if and only if B ⊂ NX(δ,A) − {p} = (J1 − {p}) ∪ · · · ∪ (Jn − {p}). Proceeding as in
Lemma 4.1, we have that the components of BF3(X)(δ,A) ∩ E3(X) are the sets of the
form 〈Ji1 −{p}, . . . , Jir −{p}〉3, where i1, . . . , ir ∈ {1, . . . , n} are all different numbers and
r ∈ {1,2,3}. Thus c(BF3(X)(δ,A)) = n + (

n
2

) + (
n
3

)
. It is easy to show that A ∈ clX(〈Ji1 −

{p}, . . . , Jir − {p}〉3). Applying Lemma 5.2, we conclude that v(A) = n + (
n
2

) + (
n
3

)
.

The proofs of (b)–(g) are similar. �
The proof of the following lemma is similar to the proof of Lemma 5.3.

Lemma 5.4. Let X be a finite graph, let p,q and x be points of X such that ord(p,X) =
n � 3, ord(q,X) = m � 3 and x is not a ramification point of X. Given A ∈ F2(X), then
the possible values for v(A) (v(A) is defined as in the previous paragraph to Lemma 5.2
for the open set E2(X)) are:

(a) if A = {p}, then v(A) = n + (
n
2

)
,

(b) if A = {p,x}, then v(A) = n,
(c) if A = {p,q} and p �= q , then v(A) = n · m,
(d) if A ∈ F2(X) − R2(X), then v(A) = 1.

Lemma 5.5. Let X and Y be finite graphs and n ∈ {2,3}. Suppose that there exists a
homeomorphism h :Fn(X) → Fn(Y ). If p is a ramification point of X, then h({p}) = {u}
for some ramification point u of Y .

Proof. We only prove the lemma for n = 3, the proof for n = 2 is similar and simpler. By
Lemmas 3.1 and 5.1, h(R3(X)) = R3(Y ) and h(E3(X)) = E3(Y ). In particular, h({p}) ∈
R3(Y ). Notice that for each A ∈ F3(X), vX(A) = vY (h(A)).
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Given A ∈ F3(X), if A contains a point x ∈ X − R(X), then there exists an arc J in X

such that x ∈ J and J ∩R(X) = ∅. By Lemma 5.3, vX(A) = vX((A−{x})∪{u}), for each
u ∈ J . This shows that, for each neighborhood U of A in F3(X), vX(A) coincides with
vX(A1) for infinitely many elements A1 of U.

Given A ∈ F3(X), if A ⊂ R(X), then A is of one of the forms described in (a), (d) or (f)
of Lemma 5.3. If A is of the form described in (a), then the elements A1 of F3(X) which
are close to A and are different from A is of one of the forms described in (b), (c) or (g),
and for each one of them vX(A1) < vX(A). Hence vX attains an absolute local maximum
at A. Similarly, if A is of one of the forms (d) or (f), then vX(A) attains also an absolute
local maximum at A.

Therefore, if A ∈ F3(X), then A ⊂ R(X) if and only if vX(A) attains an absolute local
maximum at A.

Therefore, if A ∈ F3(X), then A ⊂ R(X) if and only if h(A) ⊂ R(Y ).
Hence, h({p}) is of one of the following forms: {u}, {u, z}, {u, z,w}, where u, z,w ∈

R(Y ) are all different.
First, we analyze the case that h({p}) = {u, z}, with u �= z, where ord(p,X) = k,

ord(u,Y ) = r and ord(z,Y ) = s. Since vX({p}) = vY ({u, z}), we have that

k +
(

k

2

)
+

(
k

3

)
= r ·

(
s

2

)
+ s ·

(
r

2

)
+ r · s.

According to Lemma 5.3, the possible values for vX in the elements different from {p}
and in a small neighborhood of {p} in F3(X) are k + (

k
2

)
, k and 1. On the other hand, the

possible values for vY in the elements different from {u, z} and in a small neighborhood
of {u, z} in F3(Y ) are r + (

r
2

)
, s + (

s
2

)
, r · s, r , s and 1. Since these two sets of values

must coincide, we obtain that r + (
r
2

)
and r belong to {k + (

k
2

)
, k}. Thus, r = k. Similarly,

s = k. But then r · s = k2 must be equal to either k + (
k
2

)
or k. Clearly, k2 �= k, and if

k2 = k + k(k−1)
2 , then k = 1, which is a contradiction. We have shown that it is impossible

that h({p}) = {u, z}.
Now, we analyze the case that h({p}) = {u, z,w}, where u, z,w are all differ-

ent, ord(p,X) = k, ord(u,Y ) = r , ord(z,Y ) = s and ord(w,Y ) = t . Since vX({p}) =
vY ({u, z,w}), we have that

k +
(

k

2

)
+

(
k

3

)
= r · s · t.

According to Lemma 5.3, the possible values for vX in the elements different from {p}
and in a small neighborhood of {p} in F3(X) are k + (

k
2

)
, k and 1. On the other hand, the

possible values of vY in the elements different from {u, z, y} and in a small neighborhood
of {u, z, y} in F3(Y ) are r , s, t , r · s, r · t , s · t and 1. Since these two sets of values must
coincide, we obtain that r and r ·s must belong to the set {k+(

k
2

)
, k}. Thus r = k. Similarly,

s = k = t . Hence, k2 = k + k(k−1)
2 . Thus k = 1 which is a contradiction. We have shown

that this case is also impossible.
Therefore, the only possibility is that h({p}) is of the form h({p}) = {u}, for some

u ∈ R(Y ). �
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Theorem 5.6. Let X and Y be acircular graphs different from an arc and n ∈ {2,3}. Sup-
pose that Fn(X) is homeomorphic to Fn(Y ). Then X is homeomorphic to Y .

Proof. We only prove the theorem for n = 3. The proof for n = 2 is simpler. Let
h :F3(X) → F3(Y ) be a homeomorphism. According to Lemma 5.5, for each point p ∈
R(X), there exists a point k(p) ∈ R(Y ) such that h({p}) = {k(p)}. Thus h−1({k(p)}) =
{p}. Applying again Lemma 5.5 to h−1, for each q ∈ R(Y ), there exists a point k′(q) ∈
R(X) such that h−1({q}) = {k′(q)}. Given p ∈ R(X), {k′(k(p))} = h−1({k(p)}) = {p}.
Thus k′(k(p)) = p. Similarly, k(k′(q)) = q for each q ∈ R(Y ). Hence k is a bijection be-
tween R(X) and R(Y ). As usual, k′ will be denoted by k−1. We are going to prove the
theorem by showing a series of claims.

Claim 1. Let p,x ∈ R(X). Then p and x are adjacent vertices in X if and only if k(p) and
k(x) are adjacent vertices in Y .

Clearly, we only need to show the necessity of Claim 1. Since p and x are adjacent, there
exists an edge L of X such that p and x are the end points of L. Let U = 〈intX(L)〉3. By
Lemma 4.1, U is open and it is a component of F3(X) − R3(X). By Lemmas 3.1 and 5.1,
h(F3(X) − R3(X)) = F3(Y ) − R3(Y ). Thus h(U) is a component of F3(Y ) − R3(Y ). By
Lemma 4.1, h(U) = 〈intY (J1), . . . , intY (Jr)〉3 for some edges J1, . . . , Jr of Y and some r ∈
{1,2,3}. Since {p}, {x} ∈ clF3(X)(U), {k(p)}, {k(q)} ∈ clF3(Y )(〈intY (J1), . . . , intY (Jr)〉3).
Hence there exists a sequence {Bn}∞n=1 in 〈intY (J1), . . . , intY (Jr)〉3 such that limBn =
{k(p)}. Since each Bn intersects J1 and J1 is closed, J1 intersects {k(p)}. Thus, k(p) ∈ J1.
Similarly, k(x) ∈ J1. Hence, k(p) and k(x) are adjacent.

Claim 2. Let p,x ∈ R(X) be adjacent vertices of X. Then the number of edges of X that
join p and x coincides with the number of edges of Y that join k(p) and k(x).

In order to prove Claim 2, let I1, . . . , Is be the different edges of X that join p and x.
Let C = 〈intX(L1), . . . , intX(Lr)〉3, be a component of F3(X) − R3(X) such that

{p}, {x} ∈ clF3(X)(C). Proceeding as in the proof of Claim 1, {p,x} ∈ L1 ∩· · ·∩Lr . Hence,
{L1, . . . ,Lr} is a nonempty subset of {I1, . . . , Is} with at most 3 elements.

On the other hand, if {L1, . . . ,Lr} is a nonempty subset of {I1, . . . , Is} with at most 3
elements, then {p}, {x} ∈ clF3(X)(〈intX(L1), . . . , intX(Lr)〉3).

Therefore, the number of components C of F3(X) − R3(X) such that {p}, {x} ∈
clF3(X)(C) is equal to s + (

s
2

) + (
s
3

)
.

Since h is a homeomorphism, this number must coincide with the number of compo-
nents of h(F3(X) − R3(X)) = F3(Y ) − R3(Y ) that contain h({p}) = {k(p)} and h({x}) =
{k(x)} in its closure. Which is equal to m + (

m
2

) + (
m
3

)
, where m is the number of edges

of Y that joins k(p) and k(x). Thus s + (
s
2

) + (
s
3

) = m + (
m
2

) + (
m
3

)
. Hence, s = m. This

completes the proof of Claim 2.

Claim 3. If p ∈ R(X) and ord(p,X) = r , then ord(k(p),Y ) = r .
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We prove Claim 3. By Lemmas 3.1 and 5.1, h(R3(X)) = R3(Y ) and h(E3(X)) = E3(Y ).
Thus, for each A ∈ F3(X), vX(A) = vY (h(A)). In particular, vX({p}) = vY ({k(p)}).

If m = ord(k(p),Y ), by Lemma 5.3, then r + (
r
2

) + (
r
3

) = vX({p}) = vY ({k(p)}) =
m + (

m
2

) + (
m
3

)
. Thus r = m. Therefore, Claim 3 is proved.

Claim 4. Let p ∈ R(X) be such that ord(p,X) = r . Suppose that the number of loops of
X (respectively, Y ) containing p (respectively, k(p)) is m (respectively, m′), the number
of end points of X (respectively, Y ) adjacent to p (respectively, k(p)) is t (respectively, t ′)
and the number of edges of X (respectively, Y ) joining p (respectively, k(p)) to another
ramification point of X (respectively, Y ) is s (respectively, s′). Then m = m′, t = t ′ and
s = s′.

We prove Claim 4. By Claim 3, ord(k(p),Y ) = r . Thus 2m+ t + s = r = 2m′ + t ′ + s′.
Let I1, . . . , Iu be the different edges of X that contain p. Then u = m + t + s.
Proceeding as in the proof of Claim 2, the number of components C of F3(X) − R3(X)

that satisfy {p} ∈ clF3(X)(C) is equal to the number of nonempty subsets of {I1, . . . , Iu}
with at most 3 elements. Hence, this number of components is equal to u + (

u
2

) + (
u
3

)
.

Since h is a homeomorphism, this number is equal to the number of components of
h(F3(X) − R3(X)) = F3(Y ) − R3(Y ) that contain h({p}) = {k(p)} in its closure which,
similarly, is equal to u′ +(

u′
2

)+(
u′
3

)
, where u′ is the number of edges of Y that contain k(p).

Thus u + (
u
2

) + (
u
3

) = u′ + (
u′
2

) + (
u′
3

)
. Hence, u = u′. Since u′ = m′ + t ′ + s′, m + t + s =

m′ + t ′ + s′. Since, we knew that 2m + t + s = 2m′ + t ′ + s′, we obtain that m = m′ and
t + s = t ′ + s′.

Using Claims 1 and 2 it follows that s = s′. Therefore, t = t ′.
We are ready to show that X and Y are equivalent graphs, and thus X and Y are home-

omorphic continua.
Given two different adjacent ramification points p and x in X, let A(p, x) = {J : J

is an edge of X and J joins p and x} and let A′(p, x) = {L: L is an edge of Y and L

joins k(p) and k(x)}. By Claim 2, we can choose a bijection k(p, x) from A(p, x) onto
A′(p, x). Given a ramification point p of X, let B(p) = {J : J is a loop of X and p ∈ J },
B′(p) = {L: L is a loop of Y and k(p) ∈ L}, C(p) = {J : J is an edge of X that joins
p and an end point of X} and C′(p) = {L: L is an edge of Y that joins k(p) and an end
point of Y }. By Claim 4, it is possible to choose bijections k1(p) :B(p) → B′(p) and
k2(p) :C(p) → C′(p).

Let S(X) (respectively, S(Y )) be the set of edges of X (respectively, Y ). Since varying
the points p and x we obtain disjoint sets A(p, x), B(p) and C(p) and the union of all of
them is S(X), we can define a common extension K :S(X) → S(Y ) of all the functions of
the form k(p, x), k1(p) and k2(p), and K is a bijection.

Let V(X) (respectively, V(Y )) be the set of vertices of X (respectively, Y ). Now, we
extend the function k (defined on the ramification points of X) to V(X). Given an end
point x of X, there exists an edge J of X that joins x and a ramification point p of X. Then
K(J ) contains exactly one end point y of Y . Then define k(x) = y. Hence k is a bijection.

Therefore, we have defined a bijection K :S(X) → S(Y ) and a bijection k :V(X) →
V(Y ) such that p ∈ J if and only if k(p) ∈ K(J ), and for each loop L of X, K(L) is a loop
of Y .
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This proves that the graphs X and Y are isomorphic as graphs. Therefore, X is homeo-
morphic to Y . �
Theorem 5.7. Let X be an arc or a simple closed curve. Let Y be a finite graph and
n ∈ {2,3}. Suppose that Fn(X) is homeomorphic to Fn(Y ). Then X is homeomorphic to Y .

Proof. Since X does not contain ramification points, R(X) = ∅. Let h :Fn(X) → Fn(Y )

be a homeomorphism. Then h(En(X)) = En(Y ). By Lemma 5.1, Fn(X) = En(X), by
Lemma 3.1, Y does not contain ramification points, so Y is an arc or a simple closed
curve. If X is an arc, then F2(X) is a 2-cell and F3(X) is a 3-cell [6, Theorem 6]. If X is a
simple closed curve, then F2(X) is homeomorphic to a Möbius strip and F3(X) is homeo-
morphic to the 3-dimensional sphere in R4 (see [7]). From these facts, the theorem is now
immediate. �
Corollary 5.8. Let X and Y finite graphs. Suppose that Fn(X) is homeomorphic to Fn(Y ).
Then X is homeomorphic to Y .

Using Corollary 3.5, we obtain the following result.

Corollary 5.9. Let X be a finite graph and Z a continuum. Suppose that Fn(X) is homeo-
morphic to Fn(Z). Then X is homeomorphic to Z.

Question 5.10. Do there exist a finite graph X, a continuum Z and numbers n,m ∈ N
such that Fn(X) is homeomorphic to Fm(Z) and m > 1 but X is not homeomorphic to Z?
By Corollary 5.9 if such continua X and Z do exist, then n �= m, moreover Z is a Peano
continuum and every nonempty open subset of Z has dimension greater than 1. Indeed,
since Z contains arcs, Fm(Z) contains m-cells. By the proof of Lemma 3.1 of [8] and
Theorem 3.4, each nonempty open subset of Fn(X) is n-dimensional. Thus m < n. If
there exists an open subset of Z of dimension 1, then there exists (again, by the proof of
Lemma 3.1 of [8]) a nonempty open subset U of Fm(Z) such that dim[U] � m, which is a
contradiction. Therefore, every nonempty open subset of Z has dimension greater than 1.
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