

Available online at www.sciencedirect.com



Topology and its Applications 153 (2006) 1434-1450

Topology and its Applications

www.elsevier.com/locate/topol

# Finite graphs have unique symmetric products

Enrique Castañeda, Alejandro Illanes\*

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico Received 17 March 2003; received in revised form 25 April 2005; accepted 25 April 2005

#### Abstract

Let *X* be a metric continuum and let  $F_n(X)$  be the *n*th symmetric product of  $X(F_n(X))$  is the hyperspace of nonempty subsets of *X* with at most *n* points). In this paper we prove that if  $F_n(X)$  is homeomorphic to  $F_n(Y)$ , where *X* is a finite graph and *Y* is a continuum, then *X* is homeomorphic to *Y*. © 2005 Elsevier B.V. All rights reserved.

MSC: 54B20; 54F15

Keywords: Continuum; Finite graphs; Hyperspaces; Symmetric products; Unique hyperspaces

## 1. Introduction

A *continuum* is a nondegenerate, compact, connected metric space. We consider the following hyperspaces of a continuum X:

 $2^{X} = \{A \subset X: A \text{ is closed and nonempty}\},\$   $C(X) = \{A \in 2^{X}: A \text{ is connected}\}, \text{ and if } n \text{ is a positive integer},\$   $C_{n}(X) = \{A \in 2^{X}: A \text{ has at most } n \text{ components}\},\$   $F_{n}(X) = \{A \in 2^{X}: A \text{ has at most } n \text{ points}\}.$ 

All the hyperspaces are endowed with the Hausdorff metric H. The hyperspace  $F_n(X)$  is also known as the *n*th symmetric product of X.

<sup>&</sup>lt;sup>\*</sup> Corresponding author. *E-mail addresses:* eca@uaemex.mx (E. Castañeda), illanes@matem.unam.mx (A. Illanes).

<sup>0166-8641/</sup>\$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2005.04.006

It is easy to show that if two continua X and Y are homeomorphic, then each one of the hyperspaces of X is homeomorphic to the respective hyperspace of Y. A very natural problem in this area is to determine when this implication can be reversed. This problem can be rephrased in the following way.

**Problem 1.1.** Suppose that  $\mathcal{H}(Z)$  represents one of the hyperspaces  $2^Z$ , C(Z),  $C_n(Z)$  or  $F_n(Z)$ . Then, under what conditions we can assert that the following implication holds: " $\mathcal{H}(X)$  and  $\mathcal{H}(Y)$  are homeomorphic implies that X and Y are homeomorphic".

The implication contained in the above paragraph is not always true. For example, if *S* represents a simple closed curve, then C([0, 1]) and C(S) are 2-cells (see [19, Example 5.1]), and  $2^{[0,1]}$  and  $2^S$  are homeomorphic to the Hilbert cube (see [19, Theorem 11.3]). However,  $F_2([0, 1])$  is a 2-cell and  $F_2(S)$  is homeomorphic to the Möbius strip (see [6, Theorem 6 and pp. 876–875]). It is also known that  $F_3([0, 1])$  is a 3-cell [6, Theorem 6] while  $F_3(S)$  is homeomorphic to the 3-sphere [7]. So it is natural to ask if, for each positive integer *n*,  $F_n([0, 1])$  is not homeomorphic to  $F_n(S)$ . The main result of this paper implies that if *X* and *Y* are non-homeomorphic finite graphs, then for each positive integer *n*,  $F_n(X)$  and  $F_n(Y)$  are not homeomorphic.

Next we give some definitions and a brief description of what has been done on Problem 1.1.

The continuum X is said to have *unique hyperspace* C(X) (respectively,  $2^X$ ,  $C_n(X)$  and  $F_n(X)$ ) provided that if Y is a continuum and C(X) (respectively,  $2^X$ ,  $C_n(X)$  and  $F_n(X)$ ) is homeomorphic to C(Y) (respectively,  $2^Y$ ,  $C_n(Y)$  and  $F_n(Y)$ ), then X is homeomorphic to Y. A class  $\mathcal{C}$  of continua is known to be *C*-determined provided that if X,  $Y \in \mathcal{C}$  and C(X) is homeomorphic to C(Y), then X is homeomorphic to Y.

The continua belonging to one of the following classes are known to have unique hyperspace C(X):

- (a) Finite graphs different from an arc or a simple closed curve (Duda [9, 9.1], see [1, Theorem 3.3]);
- (b) Hereditarily indecomposable continua (Nadler [23, 0.60], see [1, Theorem 3.4]);
- (c) Indecomposable continua such that all their proper nondegenerate subcontinua are arcs (Macías [20]);
- (d) Metric compactifications of the ray [0, ∞) with nondegenerate remainder (Acosta [1, Theorem 5.3]).
- It is known (see [10, Corollary 3.3(c)]) that the class of smooth fans is C-determined. Hereditarily indecomposable continua have unique hyperspace  $2^X$  (Macías [21]). Finite graphs have unique hyperspace  $C_n(X)$ , for each n > 1 (Illanes [16,17]).

A. Illanes has shown that the classes of chainable continua and fans are not C-determined [14,15]. In [18] some results about uniqueness of the hyperspace  $F_2(X)$  when X is a dendrite are presented. In [12] Herrera, proved that if a dendrite X has a closed set of end-points, then X has unique hyperspace C(X).

Some other results related to unique hyperspaces can be found in [1-5].

The following questions remain open.

Question ([23, Question 0.62]). Is the class of circle-like continua C-determined?

**Question** ([18]). Do hereditarily indecomposable continua have unique hyperspace  $F_2(X)$ ?

In this paper we prove that finite graphs have unique hyperspace  $F_n(X)$ .

Next, we describe the general strategy followed in the proof of our main result. We start with a positive integer  $n \ge 2$ , a finite graph X and a continuum Y such that  $F_n(X)$  and  $F_n(Y)$  are homeomorphic, with a homeomorphism h, we need to show that X and Y are homeomorphic.

- (a) It is know that a continuum Z is locally connected if and only if  $F_n(Z)$  is locally connected (see [6, p. 877]). Thus we conclude that Y is locally connected.
- (b) Now, for a locally connected continuum Z, we need to describe a topological property  $\mathcal{P}$  defined on  $F_n(Z)$  such that Z is a finite graph if and only if  $F_n(Z)$  has the property  $\mathcal{P}$ . This property  $\mathcal{P}$  is given by Theorem 3.4. This property  $\mathcal{P}$  is described in terms of the set of elements in  $F_n(Z)$  having a neighborhood in  $F_n(Z)$  which is an *n*-cell. Since X is a finite graph,  $F_n(X)$  has the property  $\mathcal{P}$ . Thus  $F_n(Y)$  has also property  $\mathcal{P}$  and Y is a finite graph.
- (c) Now, for a finite graph Z, we need to describe a topological property  $\Omega$  defined for the elements of  $F_n(Z)$  which is satisfied exactly by the singletons. That is, if  $A \in F_n(Z)$ , then  $F_n(Z)$  has property  $\Omega$  at A if and only if  $A = \{z\}$  for some  $z \in Z$ . Once we get the property  $\Omega$ , we can say that  $h(F_1(X)) = F_1(Y)$ . Thus  $F_1(X)$  is homeomorphic to  $F_1(Y)$ . Since X is homeomorphic to  $F_1(X)$  and Y is homeomorphic to  $F_1(Y)$ , we conclude that X is homeomorphic to Y and we are done. So if it is possible to describe such a property  $\Omega$ , then we have finished. We were able to find an appropriate property  $\Omega$  only for the case  $n \ge 4$  (Lemma 4.5).
- (d) For the cases n = 2 and n = 3, we used another approach. For these cases we were able to find a topological property  $\mathcal{R}$ , defined for elements of  $F_n(Z)$  (where Z is a finite graph) such that  $F_n(Z)$  has property  $\mathcal{R}$  at an element  $A \in F_n(Z)$  if and only if  $A = \{v\}$  for some ramification point v of Z (Lemma 5.5). In this way, we can give a bijection between the ramification points of X and the ramification points of Y. After that, counting the arcwise components of small neighborhoods of the element  $\{v\}$  in  $F_n(X)$ , where v is a ramification point of X, we are able to show an appropriate bijection between the edges of X and the edges of Y to conclude that X and Y are homeomorphic finite graphs.

Next, we use an example to illustrate why the topological structure of  $F_n(X)$  for  $n \ge 4$  is different from that of  $F_n(X)$  for  $n \in \{2, 3\}$ . It is the same type of behavior that was used to show that  $F_3([0, 1])$  is a 3-cell and  $F_4([0, 1])$  cannot be embedded in the Euclidean space  $\mathbb{R}^4$  [6, Theorem 7]. This difference is used in the proof of the main result of this paper (see Lemma 4.3).

1437

In the unit interval [0, 1], consider three pairwise disjoint subarcs  $J_1$ ,  $J_2$  and  $J_3$  of [0, 1]. Consider the set  $S = \{B \in F_4([0, 1]): B \subset J_1 \cup J_2 \cup J_3 \text{ and } B \cap J_i \neq \emptyset$  for each  $i \in \{1, 2, 3\}\}$ . Let  $S_1 = \{B \in F_4([0, 1]): B \subset J_1 \cup J_2 \cup J_3 \text{ and}, B \cap J_2 \text{ and } B \cap J_3 \text{ are}$  one-point sets}. In a similar way define  $S_2$  and  $S_3$ . A typical element of  $S_1$  contains one point in  $J_2$ , one point in  $J_3$  and one or two points in  $J_1$ , so it is easy to check that each  $S_i$  is homeomorphic to  $F_2([0, 1]) \times [0, 1] \times [0, 1]$ . Since  $F_2([0, 1])$  is a 2-cell, each  $S_i$  is a 4-cell. Let  $\mathcal{T} = \{B \in F_4([0, 1]): B \cap J_1, B \cap J_2 \text{ and } B \cap J_3 \text{ are one-point sets}\}$ . Notice that  $\mathcal{T} = S_1 \cap S_2 = S_2 \cap S_3 = S_1 \cap S_3$  which is a 3-cell. Since  $S = S_1 \cup S_2 \cup S_3$ . We have that S is the union of three 4-cells such that each two of them meet at the 3-cell  $\mathcal{T}$ . Thus S cannot be embedded in  $\mathbb{R}^4$  (the formal proof of this fact is contained in Lemma 4.3). Therefore,  $F_4([0, 1])$  cannot be embedded in  $\mathbb{R}^4$ . However, if we consider the respective situation in  $F_3([0, 1])$ , we obtain two 3-cells that meet at one 2-cell and such a situation is permissible in  $\mathbb{R}^3$ .

# 2. Conventions

A finite (connected) graph is a continuum which is a finite union of arcs such that every two of them meet at a subset of their end points. If X is a finite graph, in X are defined *edges* and *vertices*. The vertices of X are the end points of the edges of X. A finite graph which is different from a simple closed curve is called an *acircular graph*. We are interested in distinguishing the ramification points of the graph X from the rest of the points, so we assume that each vertex of an acircular graph X is either an end point of X or a ramification point of X. With this restriction the two end points of an edge of X may coincide and such an edge is a simple closed curve. This kind of edges will be called *loops*. Thus the edges of X are arcs or simple closed curves and in X there are only three kind of edges, namely: loops, edges that contain some end point and edges joining ramification points. We assume that the metric d in X is the metric of arc length and each edge of X has length equal to one. The set of ramification points of X is denoted by R(X). Two different vertices p and q of X are said to be *adjacent* provided that there is an edge J of X such that p and q are the end points of J. A simple n-od Y is a finite graph which is the union of n arcs  $J_1, \ldots, J_n$ such that there exists a point  $p \in Y$  with the property  $J_i \cap J_i = \{p\}$ , if  $i \neq j$ , and p is an end point of each one of the arcs  $J_i$ . The point p is called the *core of* Y. A simple 3-od is called a simple triod.

If A is a set, |A| denotes the cardinality of A. A *Peano* continuum is a locally connected continuum. The set of positive integers is denoted by  $\mathbb{N}$ .

Given a continuum Z and a subset A of Z,  $bd_Z(A)$ ,  $cl_Z(A)$  and  $int_Z(A)$  denote the respective boundary, closure and interior of A in Z. Let Z be a continuum and  $p \in Z$ . Let  $\beta$  be a cardinal number. We say that p is of order less than or equal to  $\beta$  in Z, written  $ord(p, Z) \leq \beta$  provided that for each open subset U of Z such that  $p \in U$ , there exists an open subset V of Z such that  $p \in V \subset U$  and  $|bd_Z(V)| \leq \beta$ . We say the p is of order  $\beta$ , written  $ord(p, Z) = \beta$ , provided that  $ord(p, Z) \leq \beta$  and  $ord(p, Z) \leq \alpha$  for any cardinal number  $\alpha < \beta$ . A point  $p \in Z$  is called an *end point of* Z provided that ord(p, Z) = 1. A point  $p \in Z$  is called a *ramification point of* Z provided that  $ord(p, Z) \geq 3$ . If A is a

subset of Z,  $p \in Z$  and  $\varepsilon > 0$ , let  $B_Z(\varepsilon, p) = \{q \in Z : d_Z(p,q) < \varepsilon\}$  and  $N_Z(\varepsilon, A) = \{q \in Z : \text{there exists } p \in A \text{ such that } d_Z(p,q) < \varepsilon\}.$ 

Given a continuum Z, let  $\mathcal{E}_n(Z) = \{A \in F_n(Z): A \text{ has a neighborhood in } F_n(Z) \text{ which}$ is an *n*-cell}. If C is a subset of Z, let  $F_n(C) = \{A \in F_n(Z): A \subset C\}$ . Given subsets  $U_1, \ldots, U_m$  in Z, let  $\langle U_1, \ldots, U_m \rangle_n = \{A \in F_n(Z): A \subset U_1 \cup \cdots \cup U_m \text{ and } A \cap U_i \neq \emptyset$ for each  $i \in \{1, \ldots, m\}$ . It is known (see [23, Theorem 0.13]) that the sets of the form  $\langle U_1, \ldots, U_m \rangle_n$ , where the sets  $U_1, \ldots, U_m$  are open, form a basis of the topology of  $F_n(Z)$ .

#### 3. Results on Peano continua

**Lemma 3.1.** If Z is a Peano continuum and  $A \in \mathcal{E}_n(Z)$ , then no point of A is the core of a simple triod of Z.

**Proof.** Suppose, to the contrary, that  $A \in \mathcal{E}_n(Z)$  and A contains a point p such that p is the core of a simple triod  $T_0$  of Z. We will show that each neighborhood  $\mathcal{U}$  of A in  $F_n(Z)$  contains a topological copy of the product  $T \times [0, 1]^{n-1}$ , where T is a simple triod. It is easy to show that the Theorem on the Invariance of Domain [13, Theorem VI 9, §6, Chapter 6, p. 95] imply that the space  $T \times [0, 1]^{n-1}$  is not embeddable in  $\mathbb{R}^n$ , thus we will have a contradiction.

Let  $\varepsilon > 0$  be such that  $B_{F_n(X)}(\varepsilon, A) \subset \mathcal{U}$ .

Suppose that  $A = \{p, x_2, ..., x_m\}$ , where  $m \le n$  and  $p, x_2, ..., x_m$  are all different. Choosing appropriate points close to  $x_m$ , there exists  $B \in B_{F_n(Z)}(\varepsilon, A)$  such that  $B = \{p, x_2, ..., x_n\}$ , and the points  $p, x_2, ..., x_n$  are all different.

Choose  $\delta > 0$  such that the sets  $B_Z(\delta, p)$ ,  $B_Z(\delta, x_2)$ , ...,  $B_Z(\delta, x_n)$  are pairwise disjoint and  $B_{F_n(Z)}(\delta, B) \subset \mathcal{U}$ . Choose arcs  $I_2, \ldots, I_n$  of Z such that  $x_i \in I_i$  and diameter( $I_i$ )  $< \delta$ , for each  $i \in \{2, \ldots, n\}$ . Finally, choose a simple subtriod T of  $T_0$  such that p is the core of T and diameter(T)  $< \delta$ . Then  $\langle T, I_2, \ldots, I_n \rangle_n \subset B_{F_n(Z)}(\delta, B) \subset \mathcal{U}$ . Notice that  $T, I_2, \ldots, I_n$  are pairwise disjoint. Thus  $T \times I_2 \times \cdots \times I_n$  is homeomorphic to  $\langle T, I_2, \ldots, I_n \rangle_n$  (using the homeomorphism that sends  $(t_1, t_2, \ldots, t_n)$  into  $\{t_1, t_2, \ldots, t_n\}$ ). Therefore, the space  $T \times I_2 \times \cdots \times I_n$  can be embedded in  $\mathcal{U}$ . Hence  $\mathcal{U}$  cannot be embedded in  $\mathbb{R}^n$ . This contradiction completes the proof of the lemma.  $\Box$ 

**Lemma 3.2.** If Z is a Peano continuum which is not a finite graph, then for each  $k \in \mathbb{N}$ , Z contains a finite graph with at least k edges.

**Proof.** In the case that there exist arcs  $\alpha$  and  $\beta$  in Z such that  $\alpha \cap \beta$  has infinitely many components, we have that  $\alpha - (\alpha \cap \beta)$  has infinitely many components. If we choose k components  $J_1, \ldots, J_k$  of  $\alpha - (\alpha \cap \beta)$ , then  $\beta \cup (J_1 \cup \cdots \cup J_k)$  is a finite graph with at least k edges. So, in this case, we are done. Hence, we are going to assume that  $\alpha \cap \beta$  has finitely many components for all arcs  $\alpha$  and  $\beta$  in Z. Under this assumption, if  $\alpha$  and  $\beta$  are arcs in Z and  $\alpha \cap \beta \neq \emptyset$ , we have that  $\alpha \cup \beta$  is a finite graph.

By [22, Theorem 9.10], Z has one of the following two properties:

(a) there exist infinitely many points  $p \in Z$  such that ord(p, Z) > 2,

(b) there exists a point  $q \in Z$  such that  $\operatorname{ord}(q, Z) \ge \aleph_0$ .

We first assume that (a) holds.

In this case there exists a sequence of points  $\{p_m\}_{m=1}^{\infty}$  such that  $\operatorname{ord}(p_m, Z) > 2$  for each  $m \in \mathbb{N}$  and the points  $p_m$  are all different. By [11, Example 8 of §51 p. 277], for each  $m \in \mathbb{N}$ , there exists a simple triod  $T_m$  such that  $p_m$  is the core of  $T_m$ .

Fix a point  $p \in Z$ . For each  $i \in \{1, ..., k + 1\}$ , let  $\alpha_i$  be an arc joining p and  $p_i$ . By the assumption in the first paragraph of this proof, the continuum  $Y = \alpha_1 \cup \cdots \cup \alpha_{k+1} \cup T_1 \cup \cdots \cup T_{k+1}$  is a finite graph. Since each one of the points  $p_i$  is a ramification point of Y, then Y contains at least k + 1 ramification points. Thus, Y contains at least k edges.

Now, suppose that (b) holds.

Then there exists a point  $q \in Z$  such that  $\operatorname{ord}(q, Z) \ge \aleph_0$ . From [11, Example 8 of §51 p. 277], q is the vertex of a simple k-od Y. Therefore, Y contains k edges. This finishes the proof of the lemma.  $\Box$ 

The next result easily follows from [8, Lemma 2.2].

**Lemma 3.3.** If  $\alpha$  is an arc in  $F_n(Z)$  and  $\alpha$  joins the elements A and B, then  $\bigcup \alpha$  has a finite number of components, each one of them is locally connected and intersects both sets A and B.

**Theorem 3.4.** A Peano continuum Z is a finite graph if and only if, for some (each)  $n \in \mathbb{N}$ ,  $\mathcal{E}_n(Z)$  is an open dense subset of  $F_n(Z)$  with a finite number of components.

**Proof.** First suppose that there exists  $n \in \mathbb{N}$  such that  $\mathcal{E}_n(Z)$  is an open dense subset of  $F_n(Z)$ , with r components  $(r \in \mathbb{N})$  and Z is not a finite graph. Since  $F_n(Z)$  is a Peano continuum, the components of  $\mathcal{E}_n(Z)$  are arcwise connected. By Lemma 3.2 there exists a finite graph  $Y \subset Z$  such that Y contains at least k = 2r + 1 edges. Choose different edges  $J_1, \ldots, J_k$  of Y and points  $p_i \in int_Y(J_i)$ , for each  $i \in \{1, \ldots, k\}$ . Choose open connected and pairwise disjoint subsets  $V_1, \ldots, V_k$  of Z such that  $p_i \in V_i$  and  $V_i \cap Y \subset int_Y(J_i)$  for each  $i \in \{1, \ldots, k\}$ . Given  $i \in \{1, \ldots, k\}$ , since  $\{p_i\} \in \langle V_i \rangle_n$  and  $\mathcal{E}_n(Z)$  is dense, we can choose an element  $A_i \in \langle V_i \rangle_n \cap \mathcal{E}_n(Z)$ .

Since  $\mathcal{E}_n(Z)$  has *r* components and we have 2r + 1 sets  $A_1, \ldots, A_{2r+1}$ , by the box principle, there exists a component  $\mathcal{C}$  of  $\mathcal{E}_n(Z)$  having three of the sets  $A_i$ . We may assume that  $A_1, A_2$  and  $A_3$  belong to  $\mathcal{C}$ . Since  $\mathcal{C}$  is arcwise connected, there exist arcs  $\alpha_1$  and  $\alpha_2$ in  $\mathcal{C}$  such that  $\alpha_1$  joins  $A_3$  and  $A_1$ , and  $\alpha_2$  joins  $A_3$  and  $A_2$ . Choose a point  $x \in A_3$ . Let  $C_1$  and  $C_2$  be the components of  $\bigcup \alpha_1$  and  $\bigcup \alpha_2$ , respectively, such that  $x \in C_1 \cap C_2$ . By Lemma 3.3, the set  $C = C_1 \cup C_2$  is a locally connected subcontinuum of  $(\bigcup \alpha_1) \cup (\bigcup \alpha_2)$ that intersects  $A_1, A_2$  and  $A_3$ .

Each point  $p \in C$  belongs to an element of  $\mathcal{E}_n(Z)$ . By Lemma 3.1, p is not the core of any simple triod of Z. In particular, C is a Peano continuum without simple triods, therefore C is an arc or a simple closed curve. In any case, we conclude that there exists an arc in Z which intersects the three sets  $A_1$ ,  $A_2$  and  $A_3$ . For the rest of the proof, we may assume, without loss of generality that there exist an arc  $\beta \subset C$  and points  $a_1 \in A_1$ ,  $a_2 \in A_2$  and  $a_3 \in A_3 \cap \beta - \{a_1, a_2\}$  such that  $\beta$  joins  $a_1$  and  $a_2$ . Since  $a_3 \in V_3$  and  $V_3$  is arcwise connected, there exists an arc  $\alpha$  in  $V_3$  that joins  $a_3$  and  $p_3$ . Since the end points of  $\beta$  are not in  $V_3$ , the end points of  $\beta$  are not in  $\alpha$ . Since the points of  $\beta$  are not cores of simple triods of Z, we have that  $\alpha \subset \beta$ . Thus,  $\beta$  intersects the edge  $J_3$  which is an arc or a simple closed curve. Notice that  $J_3$  contains a vertex v of Y which is the core of a simple triod in Z, thus  $v \notin \beta$ . Thus  $J_3$  is not contained in  $\beta$ . Since  $\beta$  does not contain the core of a simple triod, one of the end points of  $\beta$  belongs to  $J_3$ . We may assume that  $a_1 \in J_3$ . Then  $a_1 \in V_1 \cap J_3$ . But  $V_1$  was chosen in such a way that  $V_1 \cap Y \subset \operatorname{int}_Y(J_1)$ . Thus  $a_1 \in J_3 \cap \operatorname{int}_Y(J_1)$ . This is impossible since  $J_1$  and  $J_3$  are edges of the finite graph Y. This contradiction proves that Z is a finite graph.

Now suppose that Z is a finite graph and let n be an arbitrary positive integer. We are going to prove that  $\mathcal{E}_n(Z)$  is an open dense subset of  $F_n(Z)$  with a finite number of components. Let  $\mathcal{G} = \{A \in F_n(Z): A \text{ does not contain ramification points of } X \text{ and } |A| = n\}$ . Given  $A = \{p_1, \ldots, p_n\} \in \mathcal{G}$ , let  $J_1, \ldots, J_n$  be pairwise disjoint arcs of Z such that  $J_1 \cup \cdots \cup J_n$  does not contain ramification points of Z and  $p_i \in \text{int}_Z(J_i)$  for each  $i \in \{1, \ldots, n\}$ . It is easy to show the map from  $J_1 \times \cdots \times J_n$  to  $\langle J_1, \ldots, J_n \rangle_n$  which sends  $(x_1, \ldots, x_n)$  to  $\{x_1, \ldots, x_n\}$  is a homeomorphism. Thus  $\langle J_1, \ldots, J_n \rangle_n$  is an n-cell which is a neighborhood of A is  $F_n(Z)$ . Thus  $A \in \mathcal{E}_n(Z)$ . We have shown that  $\mathcal{G} \subset \mathcal{E}_n(Z)$ . Clearly,  $\mathcal{G}$  is dense in  $F_n(Z)$ . Therefore  $\mathcal{E}_n(Z)$  is an open dense subset of  $F_n(Z)$ .

Let  $E_1, \ldots, E_m$  be all different edges of Z, and  $\mathcal{K}(i_1, \ldots, i_m)$  be the subset of  $F_n(Z)$ such that each member of  $\mathcal{K}(i_1, \ldots, i_m)$  has exactly  $i_j$  elements in the interior of edge  $E_j$ for each  $j \in \{1, \ldots, m\}$ . It is obvious that each  $\mathcal{K}(i_1, \ldots, i_m)$  is connected. In the case that  $i_1 + \cdots + i_m = n$ ,  $\mathcal{K}(i_1, \ldots, i_m) \subset \mathcal{G} \subset \mathcal{E}_n(Z)$ , and the union of all sets  $\mathcal{K}(i_1, \ldots, i_m)$ , with  $i_1 + \cdots + i_m = n$ , is dense in  $\mathcal{E}_n(Z)$ . Since  $\mathcal{E}_n(Z)$  is an open subset of the Peano continuum  $F_n(Z), \mathcal{E}_n(Z)$  is locally arcwise connected. Thus each component of  $\mathcal{E}_n(Z)$  intersects one set of the form  $\mathcal{K}(i_1, \ldots, i_m)$ . Since there is only finitely many sets  $\mathcal{K}(i_1, \ldots, i_m), \mathcal{E}_n(Z)$ has only finitely many components. The proof of the theorem is complete.  $\Box$ 

**Corollary 3.5.** If continua X and Y have homeomorphic symmetric products  $F_n(X)$  and  $F_n(Y)$  for some  $n \in \mathbb{N}$ , then X is a finite graph if and only if Y is.

#### 4. The case $n \ge 4$

If *S* is a simple closed curve, let  $R(S) = \emptyset$ . Given a finite graph *X* and  $n \in \mathbb{N}$ , let  $R_n(X) = \{A \in F_n(X): A \cap R(X) \neq \emptyset\}$ . Notice that  $R_1(X) = F_1(R(X))$ .

**Lemma 4.1.** Let X be a finite graph and  $n \in \mathbb{N}$ , then the components of  $F_n(X) - R_n(X)$  are exactly the sets of the form  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n$ , where  $I_1, \ldots, I_r$  are pairwise different edges of X and  $r \in \{1, \ldots, n\}$ .

**Proof.** Take pairwise different edges  $I_1, \ldots, I_r$ . Then  $\operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r)$  are open connected and pairwise disjoint. In order to see that  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n$  is connected, consider the map  $f: X^n \to F_n(X)$  given by  $f(x_1, \ldots, x_n) = \{x_1, \ldots, x_n\}$ . It is easy to show that, if  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n \neq \emptyset$ , then  $r \leq n$  and  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n = \bigcup \{f(\operatorname{int}_X(I_{i_1}) \times \cdots \times \operatorname{int}_X(I_{i_n})): \{I_1, \ldots, I_r\} = \{I_{i_1}, \ldots, I_{i_n}\}\}$ . Fix elements  $p_1 \in \operatorname{int}_X(I_1)$ ,

...,  $p_n \in int_X(I_r)$ . Then  $\{p_1, ..., p_r\}$  is in the image of each set of the form  $f(int_X(I_{i_1}) \times \cdots \times int_X(I_{i_n}))$ , where  $\{I_1, ..., I_r\} = \{I_{i_1}, ..., I_{i_n}\}$ . Since  $f(int_X(I_{i_1}) \times \cdots \times int_X(I_{i_n}))$  is connected, we conclude that  $\langle int_X(I_1), ..., int_X(I_r) \rangle_n$  is connected. Therefore, each set of the form  $\langle int_X(I_1), ..., int_X(I_r) \rangle_n$  is connected (and open).

It is easy to see that if  $\{I_1, \ldots, I_r\} \neq \{J_1, \ldots, J_s\}$ , then  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n \cap \langle \operatorname{int}_X(J_1), \ldots, \operatorname{int}_X(J_s) \rangle_n = \emptyset$ . Finally, since  $X - R(X) = \bigcup \{\operatorname{int}_X(J): J \text{ is an edge } X\}$ , it follows that the union of all sets of the form  $\langle \operatorname{int}_X(I_1), \ldots, \operatorname{int}_X(I_r) \rangle_n$  is equal to  $F_n(X) - R_n(X)$ . This completes the proof of the lemma.  $\Box$ 

Proceeding as in the proof that  $\mathcal{G} \subset \mathcal{E}_n(X)$  in Theorem 3.4, the following lemma can be proved.

**Lemma 4.2.** Let X be a finite graph and  $A \in F_n(X) - (F_{n-1}(X) \cup R_n(X))$ . Then A has a neighborhood in  $F_n(X)$  which is an n-cell (i.e.  $A \in \mathcal{E}_n(X)$ ).

**Lemma 4.3.** Let X be a finite graph,  $A \in F_{n-1}(X)$  and  $n \ge 4$ . Then no neighborhood of A in  $F_n(X)$  can be embedded in  $\mathbb{R}^n$ .

**Proof.** Let  $\mathcal{U}$  be a neighborhood of A in  $F_n(X)$ . Since  $A \in F_{n-1}(X)$ , it is possible to find different points  $p_1, \ldots, p_{n-1}$  of X and pairwise disjoint subarcs  $I_1, \ldots, I_{n-1}$  of X such that  $p_i \in I_i, p_i$  is not an end point of  $I_i$ , for each  $i \in \{1, \ldots, n-1\}$  and  $\langle I_1, I_2, \ldots, I_{n-1} \rangle_n \subset \mathcal{U}$ .

Given  $i \in \{1, ..., n-1\}$ , there exists a homeomorphism  $f_i : [0, 1]^2 \rightarrow F_2(I_i)$  such that  $f_i([0, 1] \times \{0\}) = F_1(I_i)$  and  $f_i(\frac{1}{2}, 0) = \{p_i\}$ . Let  $\alpha_i : [0, 1] \rightarrow F_1(I_i)$  be given by  $\alpha_i(t) = f_i(t, 0)$ .

Let  $\varphi: [0,1]^{n-1} \times [-1,1] \to \mathcal{U}$  be given by

$$\varphi(t_1, t_2, \dots, t_n) = \begin{cases} f_1(t_1, t_n) \cup \alpha_2(t_2) \cup \dots \cup \alpha_{n-1}(t_{n-1}), & \text{if } t_n \ge 0, \\ \alpha_1(t_1) \cup f_2(t_2, -t_n) \cup \alpha_3(t_3) \cup \dots \cup \alpha_{n-1}(t_{n-1}), & \text{if } t_n \le 0. \end{cases}$$

Clearly,  $\varphi$  is a well defined map and, for each  $z \in [0, 1]^{n-1} \times [-1, 1]$ ,  $\varphi(z) \in \langle I_1, I_2, \dots, I_{n-1} \rangle_n \subset \mathcal{U}$ .

Now, we see that  $\varphi$  is one-to-one. Suppose that  $\varphi(t_1, \ldots, t_n) = \varphi(s_1, \ldots, s_n)$ .

In the case that  $t_n, s_n \ge 0$ , we have  $f_1(t_1, t_n) \cup \alpha_2(t_2) \cup \cdots \cup \alpha_{n-1}(t_{n-1}) = f_1(s_1, s_n) \cup \alpha_2(s_2) \cup \cdots \cup \alpha_{n-1}(s_{n-1})$ . Since  $I_1, \ldots, I_{n-1}$  are pairwise disjoint,  $f_1(t_1, t_n) = f_1(s_1, s_n)$ ,  $f_2(t_2, 0) = f_2(s_2, 0), \ldots, f_{n-1}(t_{n-1}, 0) = f_{n-1}(s_{n-1}, 0)$ . Since each one of the maps  $f_1, f_2, \ldots, f_{n-1}$  is one-to-one,  $(t_1, \ldots, t_n) = (s_1, \ldots, s_n)$ .

The case  $t_n$ ,  $s_n \leq 0$  is similar.

Finally, suppose that  $s_n \leq 0 \leq t_n$ . Then  $f_1(t_1, t_n) \cup \alpha_2(t_2) \cup \cdots \cup \alpha_{n-1}(t_{n-1}) = \alpha_1(s_1) \cup f_2(s_2, -s_n) \cup \alpha_3(s_3) \cup \cdots \cup \alpha_{n-1}(s_{n-1})$ . Thus  $f_1(t_1, t_n) = f_1(s_1, 0), f_2(t_2, 0) = f_2(s_2, -s_n), f_3(t_3, 0) = f_3(s_3, 0), \ldots, f_{n-1}(t_{n-1}, 0) = f_{n-1}(s_{n-1}, 0)$ . Hence  $(t_1, \ldots, t_{n-1}) = (s_1, \ldots, s_{n-1})$  and  $t_n = 0 = s_n$ .

Therefore,  $\varphi$  is one-to-one.

Let  $\mathcal{C} = \operatorname{Im} \varphi$ , so  $\mathcal{C}$  is an *n*-cell in  $\mathcal{U}$ . Consider the arc  $\mathcal{A} = \{p_1, p_2, p_4, \dots, p_{n-1}\} \cup f_3(\{\frac{1}{2}\} \times [0, 1])$ . Clearly,  $\mathcal{A} \subset \mathcal{U}$ . Notice that the element  $\varphi(\frac{1}{2}, \dots, \frac{1}{2}, 0) = f_1(\frac{1}{2}, 0) \cup f_2(\frac{1}{2}, 0) \cup \dots \cup f_{n-1}(\frac{1}{2}, 0) = \{p_1, \dots, p_{n-1}\}$  belongs to  $\mathcal{A}$ . On the other hand, if t > 0, the set  $\{p_1, p_2, p_4, \dots, p_{n-1}\} \cup f_3(\frac{1}{2}, t)$  has two different points in the arc  $I_3$  and, for each

 $z = (t_1, \ldots, t_n) \in [0, 1]^{n-1} \times [-1, 1], \varphi(z) \cap I_3 = \alpha_3(t_3)$  is a one-point set. We have shown that  $\mathcal{A} \cap \mathcal{C} = \{\varphi(\frac{1}{2}, \ldots, \frac{1}{2}, 0)\}$ . Therefore,  $\mathcal{C} \cup \mathcal{A}$  is the union of the *n*-cell  $\mathcal{C}$  and the arc  $\mathcal{A}$  which intersects  $\mathcal{C}$  only in one point which is an end point of  $\mathcal{A}$  and it is in the manifold interior of  $\mathcal{C}$  (such spaces are called *n*-dimensional umbrellas). Theorem of the Invariance of Domain imply that the space  $\mathcal{C} \cup \mathcal{A}$  is not embeddable in  $\mathbb{R}^n$ . We conclude that  $\mathcal{U}$  cannot be embeddable in  $\mathbb{R}^n$ .  $\Box$ 

**Corollary 4.4.** Let X be a finite graph and  $n \ge 4$ . Then  $\mathcal{E}_n(X) = F_n(X) - (R_n(X) \cup F_{n-1}(X))$ .

The next lemma uses the fact that for every nondegenerate continuum X the hyperspace  $F_n(X)$  is locally separated by  $F_{n-1}(X)$ . Indeed, for example if  $A = \{p, q\}$  with n > 2 and  $p \neq q$ , then A has in its small neighborhoods both sets  $B \in F_n(X) - F_{n-1}(X)$  having the point p and the rest near q, and sets  $C \in F_n(X) - F_{n-1}(X)$  having the point q and the rest near p. However, there is no connected collection of sets in  $F_n(X) - F_{n-1}(X)$ , each near A, that contains B and C.

**Lemma 4.5.** Let X be a finite graph and  $n \ge 4$ . For every  $A \in F_n(X)$  the following conditions are equivalent:

- (a)  $A \in F_1(X) R_n(X);$
- (b)  $A \notin \mathcal{E}_n(X)$  and A has a basis  $\mathcal{B}$  of neighborhoods in  $F_n(X)$  such that  $\mathcal{U} \cap \mathcal{E}_n(X)$  is arcwise connected for each  $\mathcal{U} \in \mathcal{B}$ .

**Proof.** ((b)  $\Rightarrow$  (a)) Suppose that *A* has a basis of neighborhoods  $\mathcal{B}$  in  $F_n(X)$  such that, for each  $\mathcal{U} \in \mathcal{B}, \mathcal{U} \cap \mathcal{E}_n(X)$  is arcwise connected and  $A \notin \mathcal{E}_n(X)$ . Since  $A \notin \mathcal{E}_n(X)$ , then  $A \in R_n(X) \cup F_{n-1}(X)$ . Let  $A = \{p_1, p_2, \dots, p_r\}$ , where  $1 \leq r \leq n$  and all the points  $p_1, p_2, \dots, p_r$  are different. Let  $\delta_1 > 0$  be such that  $B(\delta_1, p_1), \dots, B(\delta_1, p_r)$  are pairwise disjoint  $A \cap R(X) = (B(\delta_1, p_1) \cup \dots \cup B(\delta_1, p_r)) \cap A$  and  $\delta_1 < \frac{1}{3}$ . Choose  $\mathcal{U} \in \mathcal{B}$  such that  $\mathcal{U} \subset B(\delta_1, A)$ . Let  $\delta > 0$  be such that  $B(\delta, A) \subset \mathcal{U}$ .

First, we consider the case that  $A \in R_n(X)$ . In this case, we may assume that  $p_r \in R(X)$ . Let *J* and *L* be edges of *X* such that  $J \neq L$  and  $p_r \in J \cap L$ . Choose two subsets with *n* different points  $\{x_1, \ldots, x_n\}$  and  $\{y_1, \ldots, y_n\}$  of X - R(X) such that  $d(x_i, p_i) < \delta$ ,  $d(y_i, p_i) < \delta$  for each  $i \in \{1, \ldots, r - 1\}$ ,  $\{x_r, x_{r+1}, \ldots, x_n\} \subset B_X(\delta, p_r) \cap J$  and  $\{y_r, y_{r+1}, \ldots, y_n\} \subset B_X(\delta, p_r) \cap L$ . Then the sets  $B = \{x_1, \ldots, x_n\}$  and  $C = \{y_1, \ldots, y_n\}$ belong to  $\mathcal{U} \cap \mathcal{E}_n(X)$ . From the choice of  $\mathcal{B}$ , there exists a map  $\alpha : [0, 1] \rightarrow \mathcal{U} \cap \mathcal{E}_n(X) \subset B_{F_n(X)}(\delta_1, A)$  such that  $\alpha(0) = B$  and  $\alpha(1) = C$ .

Notice that  $p_r$  is a point that separates the set  $B_X(\delta_1, p_r)$  in two open subsets U and V such that  $\{x_r, x_{r+1}, \ldots, x_n\} \subset U$  and  $\{y_r, y_{r+1}, \ldots, y_n\} \subset V$ . Given  $t \in [0, 1], \alpha(t) \in \mathcal{E}_n(X)$ , so  $\alpha(t)$  does not contain ramification points and  $\alpha(t)$  contains n different points. In particular,  $p_r \notin \alpha(t)$ . Moreover,  $\alpha(t) \in \mathcal{U}$ , so  $\alpha(t) \in B(\delta_1, A)$ . Hence,  $\alpha(t) \subset B_X(\delta_1, p_1) \cup \cdots \cup B_X(\delta_1, p_{r-1}) \cup U \cup V$ .

Let  $K_1 = \{t \in [0, 1]: \alpha(t) \subset B_X(\delta_1, p_1) \cup \cdots \cup B_X(\delta_1, p_{r-1}) \cup U\}$  and  $K_2 = \{t \in [0, 1]: \alpha(t) \cap V \neq \emptyset\}$ . Hence,  $[0, 1] = K_1 \cup K_2$ . Since V does not intersect  $B_X(\delta_1, p_1) \cup \cdots \cup B_X(\delta_1, p_{r-1}) \cup U$ , we have  $K_1 \cap K_2 = \emptyset$ . Clearly,  $K_1$  and  $K_2$  are open in [0, 1]. Since

 $\alpha(0) = B$  and  $\alpha(1) = C$ ,  $0 \in K_1$  and  $1 \in K_2$ . Thus  $K_1$  and  $K_2$  is a separation of [0, 1]. This contradiction proves that  $A \notin R_n(X)$ .

Therefore,  $A \in F_{n-1}(X) - R_n(X)$ .

Now, suppose that *A* is not degenerate. That is r > 1. Choose subsets  $\{x_{r+1}, \ldots, x_n\} \in B_X(\delta, p_1) - \{p_1\}$  and  $\{y_{r+1}, \ldots, y_n\} \in B_X(\delta, p_r) - \{p_r\}$ , where the points  $x_{r+1}, \ldots, x_n$  are all different and the same happens with  $y_{r+1}, \ldots, y_n$ . Let  $B = \{p_1, \ldots, p_r, x_{r+1}, \ldots, x_n\}$  and  $C = \{p_1, \ldots, p_r, y_{r+1}, \ldots, y_n\}$ . Then the sets *B* and *C* belong to  $\mathcal{U} \cap \mathcal{E}_n(X)$ . By the choice of  $\mathcal{B}$ , there exists a map  $\alpha : [0, 1] \rightarrow \mathcal{U} \cap \mathcal{E}_n(X) \subset B_{F_n(X)}(\delta_1, A)$  such that  $\alpha(0) = B$  and  $\alpha(1) = C$ .

Let  $K_1 = \{t \in [0, 1]: \alpha(t) \text{ contains exactly one point in } B_X(\delta_1, p_1)\}$  and  $K_2 = \{t \in [0, 1]: \alpha(t) \text{ contains more than one point in } B_X(\delta_1, p_1)\}$ . Clearly,  $[0, 1] = K_1 \cup K_2$ ,  $1 \in K_1$ ,  $0 \in K_2$  and  $K_1 \cap K_2 = \emptyset$ .

Next, we show that  $K_1$  and  $K_2$  are open in [0, 1].

Given  $t \in K_2$ , let  $\alpha(t) = \{w_1, \ldots, w_n\}$ , where all the points  $w_1, \ldots, w_n$  are different. We know that  $\alpha(t)$  contains at least two elements in  $B_X(\delta_1, p_1)$ . Suppose that  $w_1$  and  $w_2$  belong to  $B_X(\delta_1, p_1)$ . Let  $\delta_0 > 0$  be such that  $B_X(\delta_0, w_1), \ldots, B_X(\delta_0, w_n)$  are pairwise disjoint and  $B_X(\delta_0, w_1) \cup B_X(\delta_0, w_2) \subset B_X(\delta_1, p_1)$ . If *s* is close to *t*,  $\alpha(s)$  has an element in  $B_X(\delta_0, w_1)$  and another one in  $B_X(\delta_0, w_2)$ , both points are in  $B_X(\delta_1, p_1)$ . Hence  $s \in K_2$ . We have shown that  $K_2$  is open.

Now take  $t \in K_1$ . Suppose that  $\alpha(t) = \{w_1, \dots, w_n\}$ , where all the points  $w_1, \dots, w_n$ are different. Suppose that  $w_1$  is the only element of  $\alpha(t)$  that belongs to  $B_X(\delta_1, p_1)$ . Since  $\alpha(t) \in \mathcal{U}, \alpha(t) \subset B_X(\delta_1, p_1) \cup \dots \cup B_X(\delta_1, p_r)$ . Thus we can take  $\delta_0 > 0$  such that the sets  $B_X(\delta_0, w_1), \dots, B_X(\delta_0, w_n)$  are pairwise disjoint and each one of them is contained in one set of the form  $B_X(\delta_1, p_j)$ . Since  $w_1$  is the only  $w_i$  that belongs to  $B_X(\delta_1, p_1), B_X(\delta_1, p_1) \cap (B_X(\delta_0, w_2) \cup \dots \cup B_X(\delta_0, w_n)) = \emptyset$ . Let  $s \in [0, 1]$  be such that  $H(\alpha(s), \alpha(t)) < \delta_0$ . Then  $\alpha(s)$  intersects each one of the sets of the form  $B_X(\delta_0, w_i)$  and it is contained in their union. Thus  $\alpha(s)$  has n - 1 elements in  $B_X(\delta_0, w_2) \cup \dots \cup B_X(\delta_0, w_n)$ and one in  $B_X(\delta_0, w_1)$ . Hence,  $\alpha(s)$  has exactly one element in  $B_X(\delta_1, p_1)$ . Hence  $s \in K_1$ . This completes the proof that  $K_1$  is open.

We have found a disconnection of [0, 1]. This contradiction proves that *A* is degenerate. Therefore,  $A \in F_1(X) - R_n(X)$ .

 $((a) \Rightarrow (b))$  Suppose that  $A \in F_1(X) - R_n(X)$ . Thus  $A = \{p\}$  for some  $p \in A - R(X)$ . Hence, there exists  $\delta > 0$  such that  $B_X(\delta, p)$  is contained in some edge J of X and  $B_X(\delta, p) \cap R(X) = \emptyset$ . Thus  $B_X(\delta, p)$  is homeomorphic to a subinterval L of [0, 1]. We identify  $B_X(\delta, p)$  with L. Let  $\mathcal{B} = \{B_{F_n(X)}(\eta, \{p\}): 0 < \eta < \delta\}$ . We are going to prove that if  $\eta > 0$  and  $B, C \in B_{F_n(X)}(\eta, \{p\}) \cap \mathcal{E}_n(X)$ . Then there exists an arc contained in  $B_{F_n(X)}(\eta, \{p\}) \cap \mathcal{E}_n(X)$  which joins B and C. Since  $B, C \subset N(\delta, p) = L$ , we may assume that  $B = \{b_1, \ldots, b_n\}$  and  $C = \{c_1, \ldots, c_n\}$ , where  $b_1 < \cdots < b_n$  and  $c_1 < \cdots < c_n$ . Thus define  $\alpha : [0, 1] \rightarrow B_{F_n(X)}(\eta, \{p\}) \cap \mathcal{E}_n(X)$  by  $\alpha(t) = \{tb_1 + (1-t)c_1, \ldots, tb_n + (1-t)c_n\}$ . Clearly,  $\alpha$  is a map,  $\alpha(0) = C$  and  $\alpha(1) = B$ . Thus  $B_{F_n(X)}(\eta, \{p\}) \cap \mathcal{E}_n(X)$  is arcwise connected. Since A is degenerate,  $A \notin \mathcal{E}_n(X)$ . This completes the proof of the theorem.  $\Box$ 

**Theorem 4.6.** Let X and Y be finite graphs. Suppose that  $F_n(X)$  is homeomorphic to  $F_n(Y)$  and  $n \ge 4$ . Then X is homeomorphic to Y.

**Proof.** Let  $h: F_n(X) \to F_n(Y)$  be a homeomorphism.

Notice that  $h(\mathcal{E}_n(X)) = \mathcal{E}_n(Y)$ . By Lemma 4.5,  $h(F_1(X) - R_n(X)) = F_1(Y) - R_n(Y) \subset F_1(Y)$ . Since  $F_1(X) - R_n(X)$  is dense in  $F_1(X)$  and  $F_1(Y)$  is compact, we have that  $h(F_1(X)) \subset F_1(Y)$ . Similarly,  $h^{-1}(F_1(Y)) \subset F_1(X)$ . Thus,  $h(F_1(X)) = F_1(Y)$ . Hence  $F_1(X)$  is homeomorphic to  $F_1(Y)$ . Therefore, X is homeomorphic to Y.  $\Box$ 

5. The case  $n \leq 3$ 

**Lemma 5.1.** Let X be a finite graph,  $n \in \{2, 3\}$  and  $A \in F_n(X) - R_n(X)$ . Then  $A \in \mathcal{E}_n(X)$ .

**Proof.** We only analyze the case that n = 3, the case n = 2 is simpler.

First suppose that  $A = \{x\}$  for some  $x \in X$ . Since x is not a ramification point of X, there exists a neighborhood J of x such that J is an arc. Thus  $A \in \langle J \rangle_3$  and  $\langle J \rangle_3 = F_3(J)$  is a neighborhood of A in  $F_3(X)$  which is homeomorphic to  $[0, 1]^3$  (see [6, Theorem 6]).

Now suppose that  $A = \{x, y\}$ , where  $x \neq y$ . Let  $J_1$  and  $J_2$  be disjoint arcs in X - R(X) such that  $J_1$  and  $J_2$  are neighborhoods of x and y, respectively. Thus  $\langle J_1, J_2 \rangle_3$  is a neighborhood of A in  $F_3(X)$ . For each  $i \in \{1, 2\}$ , there exists a homeomorphism  $f_i : [0, 1]^2 \rightarrow F_2(J_i)$  such that  $f_i([0, 1] \times \{0\}) = F_1(J_i)$ . Let  $\varphi : [0, 1]^2 \times [-1, 1] \rightarrow \langle J_1, J_2 \rangle_3$  be given by

$$\varphi(t_1, t_2, t_3) = \begin{cases} f_1(t_1, t_3) \cup f_2(t_2, 0), & \text{if } t_3 \ge 0, \\ f_1(t_1, 0) \cup f_2(t_2, -t_3), & \text{if } t_3 \le 0. \end{cases}$$

It is easy to show that  $\varphi$  is a homeomorphism. Therefore,  $\langle J_1, J_2 \rangle_3$  is a 3-cell.

The last case is  $A = \{x, y, z\}$ , where x, y and z are all different. This case follows from Lemma 4.2.  $\Box$ 

Let Z be a continuum and W an open subset of Z. For each open subset U of Z, let c(U) = (number of components of  $U \cap W )$ , if this number is finite and  $c(U) = \infty$ , otherwise. For each  $p \in cl_Z(W)$ , define  $v(p) = min(\{m \in \mathbb{N}: p \text{ has a basis of neighborhoods } \mathcal{B} \text{ in } Z \text{ such that } c(U) = m \text{ for each } U \in \mathcal{B} \} \cup \{\infty\} ).$ 

**Lemma 5.2.** Let Z be a continuum,  $p \in Z$ , W an open subset of Z and  $m \in \mathbb{N}$ . Suppose that p has a basis of neighborhoods  $\mathbb{B}$  in Z such that, for each  $U \in \mathbb{B}$ , c(U) = m and for each component C of  $U \cap W$ ,  $p \in cl_Z(C)$ . Then v(p) = m.

**Proof.** By the definition of v(p),  $v(p) \le m$  and p has a basis of neighborhoods  $\mathcal{B}_1$  in Z such that c(U) = v(p) for each  $U \in \mathcal{B}_1$ . Let  $V \in \mathcal{B}$  and  $U \in \mathcal{B}_1$  be such that  $U \subset V$ . By hypothesis  $V \cap W$  has m components  $C_1, \ldots, C_m$  and  $p \in cl_Z(C_i)$  for each  $i \in \{1, \ldots, m\}$ . Thus  $U \cap C_i \ne \emptyset$  for each  $i \in \{1, \ldots, m\}$ . Hence  $U \cap W = U \cap V \cap W = (U \cap C_1) \cup \cdots \cup (U \cap C_m)$ . Since the sets in this union are mutually separated and they are nonempty,  $U \cap W$  has at least m components. Thus,  $v(p) = c(U) \ge m$ . Therefore, v(p) = m.  $\Box$ 

For an acircular graph X, let  $v_X$  be the index defined as before for the set  $\mathcal{E}_3(X)$ . We simply write v if it is not necessary to mention the space X.

**Lemma 5.3.** Let X be a finite graph, let p, q, r, w, x and y be points of X such that  $ord(p, X) = n \ge 3$ ,  $ord(q, X) = m \ge 3$ ,  $ord(r, X) = k \ge 3$  and x, y and w are not ramification points of X. Given  $A \in F_3(X)$ , then the possible values for v(A) are:

(a) if  $A = \{p\}$ , then  $v(A) = n + {n \choose 2} + {n \choose 3}$ , (b) if  $A = \{p, x\}$ , then  $v(A) = n + {n \choose 2}$ , (c) if  $A = \{p, x, y\}$  and  $x \neq y$ , then v(A) = n, (d) if  $A = \{p, q\}$  and  $p \neq q$ , then  $v(A) = n \cdot {m \choose 2} + m \cdot {n \choose 2} + n \cdot m$ , (e) if  $A = \{p, q, w\}$  and  $p \neq q$ , then  $v(A) = n \cdot m$ , (f) if  $A = \{p, q, r\}$  and p, q and r are all different, then  $v(A) = n \cdot m \cdot k$ , (g) if  $A \in F_3(X) - R_3(X)$ , then v(A) = 1.

**Proof.** We use Lemma 5.2. Let  $\delta_0 > 0$  be such that  $N_X(\delta_0, A) \cap R(X) = A \cap R(X)$ , and  $N_X(\delta_0, A)$  has as many components as the number of points of A and  $\delta_0 < \frac{1}{3}$ . Let  $\mathcal{B} = \{B_{F_3(X)}(\delta, A) \subset F_3(X): 0 < \delta < \delta_0\}$ . Then  $\mathcal{B}$  is a basis of neighborhoods of A in  $F_3(X)$ .

(a) Suppose that  $A = \{p\}$ . Let  $\delta \in (0, \delta_0)$ . Then  $cl_X(N_X(\delta, A))$  is a simple *n*-od, so  $cl_X(N_X(\delta, A)) = J_1 \cup \cdots \cup J_n$ , where  $J_i \cap J_j = \{p\}$ , if  $i \neq j$  and each  $J_i$  is an arc with end points *p* and a point  $a_i$ . Notice that an element  $B \in F_3(X)$  belongs to  $B_{F_3(X)}(\delta, A)$  if and only if  $B \subset N_X(\delta, A) = cl_X(N_X(\delta, A)) - \{a_1, \ldots, a_n\}$ . Thus  $B \in B_{F_3(X)}(\delta, A) \cap \mathcal{E}_3(X)$  if and only if  $B \subset N_X(\delta, A) - \{p\} = (J_1 - \{p\}) \cup \cdots \cup (J_n - \{p\})$ . Proceeding as in Lemma 4.1, we have that the components of  $B_{F_3(X)}(\delta, A) \cap \mathcal{E}_3(X)$  are the sets of the form  $\langle J_{i_1} - \{p\}, \ldots, J_{i_r} - \{p\}\rangle_3$ , where  $i_1, \ldots, i_r \in \{1, \ldots, n\}$  are all different numbers and  $r \in \{1, 2, 3\}$ . Thus  $c(B_{F_3(X)}(\delta, A)) = n + {n \choose 2} + {n \choose 3}$ . It is easy to show that  $A \in cl_X(\langle J_{i_1} - \{p\}, \ldots, J_{i_r} - \{p\}\rangle_3)$ . Applying Lemma 5.2, we conclude that  $v(A) = n + {n \choose 2} + {n \choose 3}$ .

The proofs of (b)–(g) are similar.  $\Box$ 

The proof of the following lemma is similar to the proof of Lemma 5.3.

**Lemma 5.4.** Let X be a finite graph, let p, q and x be points of X such that  $ord(p, X) = n \ge 3$ ,  $ord(q, X) = m \ge 3$  and x is not a ramification point of X. Given  $A \in F_2(X)$ , then the possible values for v(A) (v(A) is defined as in the previous paragraph to Lemma 5.2 for the open set  $\mathcal{E}_2(X)$ ) are:

- (a) if  $A = \{p\}$ , then  $v(A) = n + {n \choose 2}$ , (b) if  $A = \{p, x\}$ , then v(A) = n,
- (c) if  $A = \{p, q\}$  and  $p \neq q$ , then  $v(A) = n \cdot m$ ,
- (d) if  $A \in F_2(X) R_2(X)$ , then v(A) = 1.

**Lemma 5.5.** Let X and Y be finite graphs and  $n \in \{2, 3\}$ . Suppose that there exists a homeomorphism  $h: F_n(X) \to F_n(Y)$ . If p is a ramification point of X, then  $h(\{p\}) = \{u\}$  for some ramification point u of Y.

**Proof.** We only prove the lemma for n = 3, the proof for n = 2 is similar and simpler. By Lemmas 3.1 and 5.1,  $h(R_3(X)) = R_3(Y)$  and  $h(\mathcal{E}_3(X)) = \mathcal{E}_3(Y)$ . In particular,  $h(\{p\}) \in R_3(Y)$ . Notice that for each  $A \in F_3(X)$ ,  $v_X(A) = v_Y(h(A))$ .

Given  $A \in F_3(X)$ , if A contains a point  $x \in X - R(X)$ , then there exists an arc J in X such that  $x \in J$  and  $J \cap R(X) = \emptyset$ . By Lemma 5.3,  $v_X(A) = v_X((A - \{x\}) \cup \{u\})$ , for each  $u \in J$ . This shows that, for each neighborhood  $\mathcal{U}$  of A in  $F_3(X)$ ,  $v_X(A)$  coincides with  $v_X(A_1)$  for infinitely many elements  $A_1$  of  $\mathcal{U}$ .

Given  $A \in F_3(X)$ , if  $A \subset R(X)$ , then A is of one of the forms described in (a), (d) or (f) of Lemma 5.3. If A is of the form described in (a), then the elements  $A_1$  of  $F_3(X)$  which are close to A and are different from A is of one of the forms described in (b), (c) or (g), and for each one of them  $v_X(A_1) < v_X(A)$ . Hence  $v_X$  attains an absolute local maximum at A. Similarly, if A is of one of the forms (d) or (f), then  $v_X(A)$  attains also an absolute local maximum at A.

Therefore, if  $A \in F_3(X)$ , then  $A \subset R(X)$  if and only if  $v_X(A)$  attains an absolute local maximum at A.

Therefore, if  $A \in F_3(X)$ , then  $A \subset R(X)$  if and only if  $h(A) \subset R(Y)$ .

Hence,  $h(\{p\})$  is of one of the following forms:  $\{u\}, \{u, z\}, \{u, z, w\}$ , where  $u, z, w \in R(Y)$  are all different.

First, we analyze the case that  $h(\{p\}) = \{u, z\}$ , with  $u \neq z$ , where ord(p, X) = k, ord(u, Y) = r and ord(z, Y) = s. Since  $v_X(\{p\}) = v_Y(\{u, z\})$ , we have that

$$k + \binom{k}{2} + \binom{k}{3} = r \cdot \binom{s}{2} + s \cdot \binom{r}{2} + r \cdot s.$$

According to Lemma 5.3, the possible values for  $v_X$  in the elements different from  $\{p\}$  and in a small neighborhood of  $\{p\}$  in  $F_3(X)$  are  $k + \binom{k}{2}$ , k and 1. On the other hand, the possible values for  $v_Y$  in the elements different from  $\{u, z\}$  and in a small neighborhood of  $\{u, z\}$  in  $F_3(Y)$  are  $r + \binom{r}{2}$ ,  $s + \binom{s}{2}$ ,  $r \cdot s$ , r, s and 1. Since these two sets of values must coincide, we obtain that  $r + \binom{r}{2}$  and r belong to  $\{k + \binom{k}{2}, k\}$ . Thus, r = k. Similarly, s = k. But then  $r \cdot s = k^2$  must be equal to either  $k + \binom{k}{2}$  or k. Clearly,  $k^2 \neq k$ , and if  $k^2 = k + \frac{k(k-1)}{2}$ , then k = 1, which is a contradiction. We have shown that it is impossible that  $h(\{p\}) = \{u, z\}$ .

Now, we analyze the case that  $h(\{p\}) = \{u, z, w\}$ , where u, z, w are all different, ord(p, X) = k, ord(u, Y) = r, ord(z, Y) = s and ord(w, Y) = t. Since  $v_X(\{p\}) = v_Y(\{u, z, w\})$ , we have that

$$k + \binom{k}{2} + \binom{k}{3} = r \cdot s \cdot t.$$

According to Lemma 5.3, the possible values for  $v_X$  in the elements different from  $\{p\}$  and in a small neighborhood of  $\{p\}$  in  $F_3(X)$  are  $k + {k \choose 2}$ , k and 1. On the other hand, the possible values of  $v_Y$  in the elements different from  $\{u, z, y\}$  and in a small neighborhood of  $\{u, z, y\}$  in  $F_3(Y)$  are  $r, s, t, r \cdot s, r \cdot t, s \cdot t$  and 1. Since these two sets of values must coincide, we obtain that r and  $r \cdot s$  must belong to the set  $\{k + {k \choose 2}, k\}$ . Thus r = k. Similarly, s = k = t. Hence,  $k^2 = k + \frac{k(k-1)}{2}$ . Thus k = 1 which is a contradiction. We have shown that this case is also impossible.

Therefore, the only possibility is that  $h(\{p\})$  is of the form  $h(\{p\}) = \{u\}$ , for some  $u \in R(Y)$ .  $\Box$ 

1447

**Theorem 5.6.** Let X and Y be acircular graphs different from an arc and  $n \in \{2, 3\}$ . Suppose that  $F_n(X)$  is homeomorphic to  $F_n(Y)$ . Then X is homeomorphic to Y.

**Proof.** We only prove the theorem for n = 3. The proof for n = 2 is simpler. Let  $h: F_3(X) \to F_3(Y)$  be a homeomorphism. According to Lemma 5.5, for each point  $p \in R(X)$ , there exists a point  $k(p) \in R(Y)$  such that  $h(\{p\}) = \{k(p)\}$ . Thus  $h^{-1}(\{k(p)\}) = \{p\}$ . Applying again Lemma 5.5 to  $h^{-1}$ , for each  $q \in R(Y)$ , there exists a point  $k'(q) \in R(X)$  such that  $h^{-1}(\{q\}) = \{k'(q)\}$ . Given  $p \in R(X)$ ,  $\{k'(k(p))\} = h^{-1}(\{k(p)\}) = \{p\}$ . Thus k'(k(p)) = p. Similarly, k(k'(q)) = q for each  $q \in R(Y)$ . Hence k is a bijection between R(X) and R(Y). As usual, k' will be denoted by  $k^{-1}$ . We are going to prove the theorem by showing a series of claims.

**Claim 1.** Let  $p, x \in R(X)$ . Then p and x are adjacent vertices in X if and only if k(p) and k(x) are adjacent vertices in Y.

Clearly, we only need to show the necessity of Claim 1. Since p and x are adjacent, there exists an edge L of X such that p and x are the end points of L. Let  $\mathcal{U} = \langle \operatorname{int}_X(L) \rangle_3$ . By Lemma 4.1,  $\mathcal{U}$  is open and it is a component of  $F_3(X) - R_3(X)$ . By Lemmas 3.1 and 5.1,  $h(F_3(X) - R_3(X)) = F_3(Y) - R_3(Y)$ . Thus  $h(\mathcal{U})$  is a component of  $F_3(Y) - R_3(Y)$ . By Lemma 4.1,  $h(\mathcal{U}) = \langle \operatorname{int}_Y(J_1), \ldots, \operatorname{int}_Y(J_r) \rangle_3$  for some edges  $J_1, \ldots, J_r$  of Y and some  $r \in \{1, 2, 3\}$ . Since  $\{p\}, \{x\} \in \operatorname{cl}_{F_3(X)}(\mathcal{U}), \{k(p)\}, \{k(q)\} \in \operatorname{cl}_{F_3(Y)}(\langle \operatorname{int}_Y(J_1), \ldots, \operatorname{int}_Y(J_r) \rangle_3)$ . Hence there exists a sequence  $\{B_n\}_{n=1}^{\infty}$  in  $\langle \operatorname{int}_Y(J_1), \ldots, \operatorname{int}_Y(J_r) \rangle_3$  such that  $\lim B_n = \{k(p)\}$ . Since each  $B_n$  intersects  $J_1$  and  $J_1$  is closed,  $J_1$  intersects  $\{k(p)\}$ . Thus,  $k(p) \in J_1$ . Similarly,  $k(x) \in J_1$ . Hence, k(p) and k(x) are adjacent.

**Claim 2.** Let  $p, x \in R(X)$  be adjacent vertices of X. Then the number of edges of X that join p and x coincides with the number of edges of Y that join k(p) and k(x).

In order to prove Claim 2, let  $I_1, \ldots, I_s$  be the different edges of X that join p and x.

Let  $\mathcal{C} = \langle \operatorname{int}_X(L_1), \dots, \operatorname{int}_X(L_r) \rangle_3$ , be a component of  $F_3(X) - R_3(X)$  such that  $\{p\}, \{x\} \in \operatorname{cl}_{F_3(X)}(\mathcal{C})$ . Proceeding as in the proof of Claim 1,  $\{p, x\} \in L_1 \cap \cdots \cap L_r$ . Hence,  $\{L_1, \dots, L_r\}$  is a nonempty subset of  $\{I_1, \dots, I_s\}$  with at most 3 elements.

On the other hand, if  $\{L_1, \ldots, L_r\}$  is a nonempty subset of  $\{I_1, \ldots, I_s\}$  with at most 3 elements, then  $\{p\}, \{x\} \in cl_{F_3(X)}(\langle int_X(L_1), \ldots, int_X(L_r) \rangle_3)$ .

Therefore, the number of components  $\mathcal{C}$  of  $F_3(X) - R_3(X)$  such that  $\{p\}, \{x\} \in cl_{F_3(X)}(\mathcal{C})$  is equal to  $s + {s \choose 2} + {s \choose 3}$ .

Since *h* is a homeomorphism, this number must coincide with the number of components of  $h(F_3(X) - R_3(X)) = F_3(Y) - R_3(Y)$  that contain  $h(\{p\}) = \{k(p)\}$  and  $h(\{x\}) = \{k(x)\}$  in its closure. Which is equal to  $m + \binom{m}{2} + \binom{m}{3}$ , where *m* is the number of edges of *Y* that joins k(p) and k(x). Thus  $s + \binom{s}{2} + \binom{s}{3} = m + \binom{m}{2} + \binom{m}{3}$ . Hence, s = m. This completes the proof of Claim 2.

**Claim 3.** If  $p \in R(X)$  and ord(p, X) = r, then ord(k(p), Y) = r.

We prove Claim 3. By Lemmas 3.1 and 5.1,  $h(R_3(X)) = R_3(Y)$  and  $h(\mathcal{E}_3(X)) = \mathcal{E}_3(Y)$ . Thus, for each  $A \in F_3(X)$ ,  $v_X(A) = v_Y(h(A))$ . In particular,  $v_X(\{p\}) = v_Y(\{k(p)\})$ .

If  $m = \operatorname{ord}(k(p), Y)$ , by Lemma 5.3, then  $r + \binom{r}{2} + \binom{r}{3} = v_X(\{p\}) = v_Y(\{k(p)\}) = m + \binom{m}{2} + \binom{m}{3}$ . Thus r = m. Therefore, Claim 3 is proved.

**Claim 4.** Let  $p \in R(X)$  be such that ord(p, X) = r. Suppose that the number of loops of X (respectively, Y) containing p (respectively, k(p)) is m (respectively, m'), the number of end points of X (respectively, Y) adjacent to p (respectively, k(p)) is t (respectively, t') and the number of edges of X (respectively, Y) joining p (respectively, k(p)) to another ramification point of X (respectively, Y) is s (respectively, s'). Then m = m', t = t' and s = s'.

We prove Claim 4. By Claim 3,  $\operatorname{ord}(k(p), Y) = r$ . Thus 2m + t + s = r = 2m' + t' + s'. Let  $I_1, \ldots, I_u$  be the different edges of X that contain p. Then u = m + t + s.

Proceeding as in the proof of Claim 2, the number of components  $\mathcal{C}$  of  $F_3(X) - R_3(X)$  that satisfy  $\{p\} \in cl_{F_3(X)}(\mathcal{C})$  is equal to the number of nonempty subsets of  $\{I_1, \ldots, I_u\}$  with at most 3 elements. Hence, this number of components is equal to  $u + {\binom{u}{2}} + {\binom{u}{3}}$ .

Since *h* is a homeomorphism, this number is equal to the number of components of  $h(F_3(X) - R_3(X)) = F_3(Y) - R_3(Y)$  that contain  $h(\{p\}) = \{k(p)\}$  in its closure which, similarly, is equal to  $u' + \binom{u'}{2} + \binom{u'}{3}$ , where *u'* is the number of edges of *Y* that contain k(p). Thus  $u + \binom{u}{2} + \binom{u}{3} = u' + \binom{u'}{2} + \binom{u'}{3}$ . Hence, u = u'. Since u' = m' + t' + s', m + t + s = m' + t' + s'. Since, we knew that 2m + t + s = 2m' + t' + s', we obtain that m = m' and t + s = t' + s'.

Using Claims 1 and 2 it follows that s = s'. Therefore, t = t'.

We are ready to show that X and Y are equivalent graphs, and thus X and Y are homeomorphic continua.

Given two different adjacent ramification points p and x in X, let  $\mathcal{A}(p, x) = \{J: J \text{ is an edge of } X \text{ and } J \text{ joins } p \text{ and } x\}$  and let  $\mathcal{A}'(p, x) = \{L: L \text{ is an edge of } Y \text{ and } L \text{ joins } k(p) \text{ and } k(x)\}$ . By Claim 2, we can choose a bijection k(p, x) from  $\mathcal{A}(p, x)$  onto  $\mathcal{A}'(p, x)$ . Given a ramification point p of X, let  $\mathcal{B}(p) = \{J: J \text{ is a loop of } X \text{ and } p \in J\}$ ,  $\mathcal{B}'(p) = \{L: L \text{ is a loop of } Y \text{ and } k(p) \in L\}$ ,  $\mathcal{C}(p) = \{J: J \text{ is an edge of } X \text{ that joins } p \text{ and an end point of } X\}$  and  $\mathcal{C}'(p) = \{L: L \text{ is an edge of } Y \text{ that joins } k(p) \text{ and an end point of } X\}$  and  $\mathcal{C}'(p) = \{L: L \text{ is an edge of } Y \text{ that joins } k(p) \text{ and an end point of } X\}$ . By Claim 4, it is possible to choose bijections  $k_1(p): \mathcal{B}(p) \to \mathcal{B}'(p)$  and  $k_2(p): \mathcal{C}(p) \to \mathcal{C}'(p)$ .

Let S(X) (respectively, S(Y)) be the set of edges of X (respectively, Y). Since varying the points p and x we obtain disjoint sets  $\mathcal{A}(p, x)$ ,  $\mathcal{B}(p)$  and  $\mathcal{C}(p)$  and the union of all of them is S(X), we can define a common extension  $K : S(X) \to S(Y)$  of all the functions of the form k(p, x),  $k_1(p)$  and  $k_2(p)$ , and K is a bijection.

Let  $\mathcal{V}(X)$  (respectively,  $\mathcal{V}(Y)$ ) be the set of vertices of X (respectively, Y). Now, we extend the function k (defined on the ramification points of X) to  $\mathcal{V}(X)$ . Given an end point x of X, there exists an edge J of X that joins x and a ramification point p of X. Then K(J) contains exactly one end point y of Y. Then define k(x) = y. Hence k is a bijection.

Therefore, we have defined a bijection  $K : S(X) \to S(Y)$  and a bijection  $k : V(X) \to V(Y)$  such that  $p \in J$  if and only if  $k(p) \in K(J)$ , and for each loop L of X, K(L) is a loop of Y.

This proves that the graphs X and Y are isomorphic as graphs. Therefore, X is homeomorphic to Y.  $\Box$ 

**Theorem 5.7.** Let X be an arc or a simple closed curve. Let Y be a finite graph and  $n \in \{2, 3\}$ . Suppose that  $F_n(X)$  is homeomorphic to  $F_n(Y)$ . Then X is homeomorphic to Y.

**Proof.** Since X does not contain ramification points,  $R(X) = \emptyset$ . Let  $h: F_n(X) \to F_n(Y)$  be a homeomorphism. Then  $h(\mathcal{E}_n(X)) = \mathcal{E}_n(Y)$ . By Lemma 5.1,  $F_n(X) = \mathcal{E}_n(X)$ , by Lemma 3.1, Y does not contain ramification points, so Y is an arc or a simple closed curve. If X is an arc, then  $F_2(X)$  is a 2-cell and  $F_3(X)$  is a 3-cell [6, Theorem 6]. If X is a simple closed curve, then  $F_2(X)$  is homeomorphic to a Möbius strip and  $F_3(X)$  is homeomorphic to the 3-dimensional sphere in  $\mathbb{R}^4$  (see [7]). From these facts, the theorem is now immediate.  $\Box$ 

**Corollary 5.8.** Let X and Y finite graphs. Suppose that  $F_n(X)$  is homeomorphic to  $F_n(Y)$ . Then X is homeomorphic to Y.

Using Corollary 3.5, we obtain the following result.

**Corollary 5.9.** Let X be a finite graph and Z a continuum. Suppose that  $F_n(X)$  is homeomorphic to  $F_n(Z)$ . Then X is homeomorphic to Z.

**Question 5.10.** Do there exist a finite graph *X*, a continuum *Z* and numbers  $n, m \in \mathbb{N}$  such that  $F_n(X)$  is homeomorphic to  $F_m(Z)$  and m > 1 but *X* is not homeomorphic to *Z*? By Corollary 5.9 if such continua *X* and *Z* do exist, then  $n \neq m$ , moreover *Z* is a Peano continuum and every nonempty open subset of *Z* has dimension greater than 1. Indeed, since *Z* contains arcs,  $F_m(Z)$  contains *m*-cells. By the proof of Lemma 3.1 of [8] and Theorem 3.4, each nonempty open subset of  $F_n(X)$  is *n*-dimensional. Thus m < n. If there exists an open subset of *Z* of dimension 1, then there exists (again, by the proof of Lemma 3.1 of [8]) a nonempty open subset  $\mathcal{U}$  of  $F_m(Z)$  such that dim $[\mathcal{U}] \leq m$ , which is a contradiction. Therefore, every nonempty open subset of *Z* has dimension greater than 1.

## Acknowledgement

The authors wish to thank the referee for his/her careful revision and useful suggestions on this paper.

# References

- G. Acosta, Continua with unique hyperspace, in: Lecture Notes Pure Appl. Math., vol. 230, Marcel Dekker, New York, 2002, pp. 33–49.
- [2] G. Acosta, On compactifications of the real line and unique hyperspace, Topology Proc. 25 (2000) 1–25.
- [3] G. Acosta, Continua with almost unique hyperspace, Topology Appl. 117 (2002) 175-189.
- [4] G. Acosta, On smooth fans and unique hyperspace, Houston J. Math. 30 (2004) 99-115.

- [5] G. Acosta, J.J. Charatonik, A. Illanes, Irreducible continua of type λ with almost unique hyperspace, Rocky Mountain J. Math. 31 (2001) 745–772.
- [6] K. Borsuk, S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931) 875– 882.
- [7] R. Bott, On the third symmetric potency of  $S_1$ , Fund. Math. 39 (1952) 364–368.
- [8] D.W. Curtis, N.T. Nhu, Hyperspaces of finite subsets which are homeomorphic to ℵ<sub>0</sub>-dimensional linear metric spaces, Topology Appl. 19 (1985) 251–260.
- [9] R. Duda, On the hyperspace of subcontinua of a finite graph, I, Fund. Math. 62 (1968) 265–286, and 69 (1970) 207–211.
- [10] C. Eberhart, S.B. Nadler Jr, Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979) 279-288.
- [11] K. Kuratowski, Topology, vol. I, PWN/Academic Press, New York/Warsaw, 1966.
- [12] D. Herrera, Dendrites whose hyperspace of subcontinua is unique, Manuscript.
- [13] W. Hurewicz, H. Wallman, Dimension Theory, ninth ed., Princeton University Press, Princeton, NJ, 1974.
- [14] A. Illanes, Chainable continua are not C-determined, Topology Appl. 98 (1997) 211-216.
- [15] A. Illanes, Fans are not C-determined, Colloq. Math. 81 (1999) 299-308.
- [16] A. Illanes, The hyperspace  $C_2(X)$  for a finite graph X is unique, Glasnik Mat. Ser. III 37 (57) (2002) 347–363.
- [17] A. Illanes, Finite graphs X have unique hyperspaces  $C_n(X)$ , Topology Proc. 27 (2003) 179–188.
- [18] A. Illanes, Dendrites with unique hyperspace  $F_2(X)$ , JP J. Geom. Topology 2 (2002) 75–96.
- [19] A. Illanes, S.B. Nadler Jr, Hyperspaces of Sets, Fundamentals and Recent Advances, Monographs Textbooks Pure Appl. Math., vol. 216, Marcel Dekker, New York, 1999.
- [20] S. Macías, On C-determined continua, Glasnik Mat. Ser. III 32 (52) (1997) 259-262.
- [21] S. Macías, Hereditarily indecomposable continua have unique hyperspace 2<sup>X</sup>, Bol. Soc. Mat. Mexicana 6 (3) (1999) 415–418.
- [22] S.B. Nadler Jr, Continuum Theory, An Introduction, Monographs Textbooks Pure Appl. Math., vol. 158, Marcel Dekker, New York, 1992.
- [23] S.B. Nadler Jr, Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math., vol. 49, Marcel Dekker, New York, 1978.