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Polycystic kidney disease is the most common heritable disease in humans. In addition to epithelial cysts in
the kidney, liver and pancreas, patients with autosomal dominant polycystic kidney disease (ADPKD) also
suffer from abdominal hernia, intracranial aneurysm, gastrointestinal cysts, and cardiac valvular defects,
conditions often associated with altered extracellular matrix production or integrity. Despite more than a
decade of work on the principal ADPKD genes, PKD1 and PKD2, questions remain about the basis of cystic
disease and the role of extracellular matrix in ADPKD pathology. This review explores the links between
polycystins, focal adhesions, and extracellular matrix gene expression. These relationships suggest roles for
polycystins in cell–matrix mechanosensory signaling that control matrix production and morphogenesis.
This article is part of a Special Issue entitled: Polycystic Kidney Disease.
stic Kidney Disease.
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1. Introduction

Mutations in the polycystin genes PKD1 and PKD2 are responsible
for autosomal dominant polycystic kidney disease (ADPKD), the most
common heritable human disease [1]. The proteins encoded by PKD1
and PKD2 function together as a mechanosensory ion channel
complex [2,3] that controls calcium influx in response to fluid flow
[4] or calcium release from intracellular calcium stores [5]. Polycystin-
1 is required for polycystin-2-dependent calcium transients and is
thought to stimulate polycystin-2 channel activity [4]. While the
identification of the PKD1 and PKD2 genes as mechanosensors
provided important leads in determining the basis of cystic disease
[6,7], the cellular mechanisms maintaining normal tissue architecture
that are controlled by polycystins remain unclear. Most recent studies
have focused on a role for polycystins as mechanosensors in primary
cilia with good reason. Nearly every cystic disease protein identified in
the past 10 years, including polycystin-1 and polycystin-2, has been
shown to localize to the cilium and in some cases directly affect
ciliogenesis [8]. The cilia hypothesis of cystic disease in its original
form posited that cilia, via the activity of polycystin mechanosensory
channels, sense tubule lumen fluid flow; loss of cilia mechanosensory
signals due to polycystin mutation uncouples fluid flow from
regulation of epithelial cell proliferation or cell orientation and leads
directly to tubule lumen distension and cyst formation [4]. The
elegant simplicity of this model has been challenged on several fronts
in recent years. The unexpected finding that conditional knockout of
polycystins and other cilia associated genes after postnatal day 14
results in very delayed and in some cases non-uniform cyst formation
argues against an acute effect of impaired flow sensing [9–11]. The
requirement for injury or stress to the kidney for cyst formation in
these models has shifted attention to how mutations in cyst genes
predispose tubule cells to failed regeneration and tubule repair
[10,11]. It is also perhaps surprising that polycystin-1-deficient
embryonic kidneys do not form cysts when explanted and grown in
culture despite the lack of tubule flow and lack of the postulated flow
sensor polycystin-1 [12]. Thus while the genetic evidence for a central
role of the primary cilium in cystic disease remains strong, the model
of polycystins as a flow sensors in the cilium may not be sufficient to
fully explain polycystin loss of function phenotypes. This point is
made clear by the observation that the consequences of polycystin-1
loss of function in the kidney are much more severe than the
phenotype of kidney “cilia-null” animals. In conditional, kidney-
specific Kif3a knockout mice, kidney tubule cells lack cilia and cystic
pathology (fusiform dilatations) first appears at postnatal day 5 (P5),
with full involvement of the kidney at P35 [13]. In contrast, kidney-
specific knockout of Pkd1 using the same Ksp-Cre line produces cystic
kidneys at birth with full involvement of the kidney at P12 followed
by death between P14 and P17 [14]. These results as well as studies
dating back to the 1980s linking renal and extrarenal ADPKD
pathology to alterations in the extracellular matrix, invite a re-
examination of polycystin function.

2. ADPKD and integrity of the extracellular matrix

The idea that matrix defects or altered cell adhesion contribute to
ADPKD pathology arose in the 1980s with the findings that the
extracellular matrix of cystic tissue or cells derived from cysts was
dramatically different from normal kidney tubules [15,16].
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Overproduction of ECM proteins has been observed in several studies
of ADPKD cells [15,17] and in ADPKD animal models [18–20].
Epithelial cells from cysts also show increased adhesiveness to type
I and type IV collagen and decreased migration in response to growth
factors [21,22]. Altered expression of integrin cell adhesion receptor
subtypes has also been reported in ADPKD cells [21,23]. In addition,
genes encoding extracellular matrix proteins or cellular proteins
involved in adhesion figure prominently in the lists of upregulated
mRNAs in expression profiling studies of human cystic tissue and
cystic animal models [23–27]. In some cases, changes in matrix
adhesion gene expression precede changes in proliferation-associated
genes [27].

Direct evidence that mutations in cell adhesion and extracellular
matrix genes are sufficient to cause kidney cyst formation can be
found in mouse knockout studies. A hypomorphic mouse laminin-5
mutant develops cortical andmedullary kidney cysts with persistence
of immature laminins (laminin 332) and basement membrane
thickening around cystic tubules [28]. Mutations in the focal adhesion
complex protein tensin result in a slowly progressive kidney cystic
pathology, indicating that weakening of focal adhesions is sufficient to
cause cysts [29].

While these findings suggest that polycystins regulate cell
adhesion or matrix composition and that mutations affecting cell
adhesion can cause kidney cysts, it has been difficult to assign a
primary role for polycystins in regulating cell–matrix interactions
since altered extracellular matrix synthesis is a well known response
to tubule distension and tissue inflammation [30], both of which occur
in the course of cyst development [31]. To separate polycystin-
associated cyst initiation events from disease progression and
consequences of cyst formation requires a more comprehensive
analysis of the data.

3. Extrarenal manifestations of ADPKD and the
extracellular matrix

Extrarenal manifestations of ADPKD more directly suggest a link
between polycystin function and extracellular matrix production.
ADPKD is strongly associated with intracranial and aortic aneurysm
[32,33]. It is estimated that 8% of all ADPKD patients also have
aneurysm, a significantly higher frequency than that in the general
population [34]. Aneurysm is a weakening of the blood vessel wall,
commonly caused by mutations in extracellular matrix proteins, for
example collagen III and fibrillin [35]. The elasticity and adaptation of
the aortic wall to pulsatile blood pressure relies on mechanosensitive
responses of vascular smooth muscle cells interposed between layers
of elastin matrix that confer recoil properties on the vessel wall [36].
Aneurysmal pathology is characterized by increased production and
accumulation of matrix proteins between elastin layers, increased
proliferation of vascular smooth muscle cells, elastin fragmentation,
and ultimately wall thinning leading to rupture and hemorrhage [36].
Significantly, vascular fragility and aneurysm have been modeled in
mouse Pkd1 knockout and hypomorphic mutants [37,38]. In Pkd1
hypomorphs, thickening of the vessel wall media by increased
deposition of proteoglycans and fibronectin is the earliest pathology
associated with dissecting aneurysm [37]. Hassane et al. propose that
loss of polycystin-1 alters smooth muscle interaction with matrix
allowing them to revert to a synthetic phenotype, resulting in
overproduction of matrix proteins. This phenotype, as well as earlier
work showing persistence of embryonic gene expression in ADPKD
cells [39], introduces the idea that polycystins may normally act as
negative feedback regulators that promote cell differentiation and
downregulate matrix synthesis. Recent studies of polycystin-deficient
vascular smooth muscle cells (VSMC) have implicated polycystin-1
and polycystin-2 in mechanosensation of stretch or vessel pressure
[40]. In normal VSMCs, increased lumenal pressure activates stretch-
activated ion channels in VSMCs resulting in calcium influx, smooth
muscle contraction and a strengthening of the vessel wall that resists
further vessel dilation, a response known as the Bayliss effect [41].
Loss of polycystin-1 or overexpression of polycystin-2 in smooth
muscle inhibits activation of stretch-activated ion channels that
mediate myogenic tone. The implication of this work is that the
balance of polycystin-1 and polycystin-2 expression can alter the
sensitivity of smoothmuscle cells tomechanosensory signaling, either
by direct interactions with stretch-activated channels or indirectly by
effects on the cytoskeleton [40]. By modifying how cells respond to
stretch [42], mutations in polycystins are likely to have a broad impact
on cellular mechanisms regulating synthesis and degradation of
vessel wall extracellular matrix [43].

Other less well studied extrarenal pathology associated with
ADPKD also suggests a role for polycystins in cell–matrix interactions.
ADPKD is associated with increased occurrence of abdominal wall
hernia [44]. Structural weakness of the abdominal wall may be
associated with residual effects of developmental abnormalities such
as failed ventral closure (omphalocoel) or, more commonly in adults,
to altered body wall collagen composition [45]. Other extrarenal
manifestations of ADPKD that may involve matrix defects include
gastrointestinal cysts, cardiac valve defects and pericardial effusion
[46,47].

Overproduction of matrix collagen has also been observed in
zebrafish models of polycystin-1 and polycystin-2 deficiency [18].
Polycystin knockdown or mutation in zebrafish causes dorsal axis
curvature which is linked to overexpression collagen mRNAs and
protein expression in the notochord. Reducing matrix gene expres-
sion by col2a1 knockdown rescues axis curvature defects, suggesting
that abnormalities in matrix composition or amount are develop-
mental defects linked directly to polycystin function and not
secondary consequences of tissue damage or inflammation [18].
Persistent expression of notochord collagen genes in polycystin-
deficient embryos further emphasizes a potential role for polycystins
in negative feedback regulation of matrix synthesis that signal
completion of morphogenesis. This view of polycystins as sensors of
mature extracellular matrix may be analogous to “outside-in” integrin
signaling [48].

4. Association of polycystins with focal adhesions and
extracellular matrix proteins

Biochemical and immunolocalization studies have placed poly-
cystin-1 inmultiple cell adhesion structures including focal adhesions,
the principal cellular structure mediating cell–matrix adhesion
[21,49–52]. Focal adhesions form when cell–matrix attachment
induces clustering of integrin receptors, recruiting multiple structural
and signaling molecules to the integrin intracellular C-terminus [53].
Focal adhesion structural proteins include talin, tensin, vinculin and
alpha-actinin and signaling proteins include focal adhesion kinase, c-
Src, p130cas and paxillin [53]. Focal adhesions also anchor intracel-
lular actin filaments and support assembly of actin stress fibers, key
cellular structures mediating not only cell adhesion but also active
matrix sensing. Cells actively probe their local environment by both
ligation-induced signaling, which depends on cell–matrix biochem-
ical interactions, as well as by traction-induced signaling which
depends on cellular force generation between points of cell–matrix
contact and mediates cell responses to the rigidity of the extracellular
matrix [48,54]. Focal adhesions also provide a direct path for external
forces to generate cell responses to mechanical perturbation. For
example, force applied directly to focal adhesion-anchored actin
filaments is sufficient to open mechanosensitive stretch-activated ion
channels and initiate calcium signaling responses that strengthen
local cytoskeletal structure [55]. Several lines of evidence point to a
role for polycystin-1 as an active component of focal adhesions.

Polycystin-1 is localized to focal complexes in both smoothmuscle
and epithelial cells [52,56]. In epithelial cells, polycystin-1 is
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associated with multiple focal adhesion components including talin,
vinculin, p130Cas, FAK, alpha-actinin, paxillin and pp60c-src and is
posttranslationally modified by tyrosine phosphorylation, suggesting
that polycystin-1 may regulate or be regulated by cell–matrix
interactions [56,57]. Expression of the polycystin-1 C-terminus in
spreading inner medullary collecting duct cells stimulates phosphor-
ylation of the focal adhesion components focal adhesion kinase and
paxillin, and promotes FAK-paxillin association [58]. Conversely,
polycystin-1-deficient cells show reduced spreading and altered
migration [21,58].

In addition to being associated in focal adhesions with matrix-
binding integrin receptors, the large N-terminal extracellular domain
of polycystin-1 contains multiple motifs predicted to participate
directly in cell adhesion [6]. These include the N-terminal leucine rich
repeats (LRR), a C-type lectin domain, and the PKD repeats [6]. An
isolated polycystin-1 LRR domain fusion protein has been shown to
bind directly to the matrix proteins collagen I, fibronectin, and
laminin, confirming initial structural predictions [59]. C-type lectin
protein domains are commonly involved in calcium-dependent
carbohydrate binding [60]. The polycystin-1 C-type lectin domain
binds to collagen I and collagen IV in a calcium-dependent fashion,
suggesting a potential role for polycystin-1 matrix binding in vivo
[61]. The PKD repeats of polycystin-1 are structurally related to Ig
domains found in other cell adhesion receptors but comprise a
distinct domain family [62]. While the function of the polycystin-1
PKD domain is not known, related PKD domains are present in
collagenolytic proteases where they function as binding domains for
insoluble collagen [63,64]. Taken together, the results indicate a role
for polycystin-1 as a matrix-binding component of focal adhesion
complexes. If so then how might polycystin-1 differ from integrins
and why might polycystins have a unique and essential role in cell–
matrix adhesion?

A unique role for polycystin-1 in focal adhesion complexes most
likely relates to its role as a mechanosensory protein. A characteristic
feature of many mechanosensory and matrix proteins is a structure
based on tandem domain repeats that have the ability to undergo
force-regulated conformational changes [65]. Forces applied to
mechanosensitive proteins can expose cryptic protein binding sites
and phosphorylation sites or induce new enzymatic activity. For
example, FRET studies have revealed that repeat structures in the
matrix molecule fibronectin may be partially unraveled by cell
tension-generated force [66]. When physically stretched, the focal
adhesion protein p130cas reveals buried phosphorylation sites
subject to phosphorylation by c-Src, facilitating downstream signaling
[67]. Polycystin-1 itself can be stretched by physical force [68,69].
Studies of the polycystin-1 extracellular domain using force spectros-
copy demonstrate that it is dynamically extensible and able to refold
when stretch forces are removed [68]. The step-wise unfolding of
polycystin-1 has been linked to the tandemly repeated PKD repeats
that unfold sequentially under stretch [68]. The distensibility of
polycystin-1 is modulated by disease-causing mutations and envi-
ronmental conditions [70,71] suggesting that force-induced changes
in polycystin-1 structure may be physiologically relevant. While the
current data support the idea that polycystin-1 can function as a
flexible and elastic linkage between cells or between cells and the
extracellular matrix, future studies will have to accommodate the
findings that the entire polycystin-1 extracellular domain is autocat-
alytically cleaved from its transmembrane spanning domains and that
cleavage is required for at least some of polycystin-1 postnatal
functions [72].

5. Polycystins, matrix sensing and development

Cell adhesion based mechanosensors play a prominent role in
development [53,73]. Epithelial cells require 3-D matrix attachments
to complete differentiation and can sense the rigidity of their
environment and respond in context dependent ways [74–79].
ADPKD cells often exhibit a partially “de-differentiated” phenotype,
suggesting that disease-causing mutations in polycystins allow cells
to revert to embryonic patterns of gene expression [3]. For instance,
embryonic matrix genes and receptors (collagens type I, III, IV,
laminins and heparan sulfate proteoglycan, β4 integrin), cell surface
proteins (erb-B2, β2 NaK ATPase subunit), and secreted proteins
(periostin) are re-expressed in ADPKD tissue, suggesting that ADPKD
cells fail to complete an important developmental transition or revert
to an immature state [20,23,39,80,81]. In this view, polycystins are
likely to act as sensors of tubule development and tissue maturation
that interact with the cellular environment and adjust gene
expression programs to ensure orderly morphogenesis [82]. Future
studies of how mechanosensory functions of polycystins may be
linked to sensing and production of extracellular matrix are likely to
yield fruitful insights in the pathology of ADPKD.
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