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Abstract

We study two criterions of cyclicity for divisor class groups of function fields, the first one
involves Artin L-functions and the second one involves “affine” class groups. We show that, in
general, these two criterions are not linked.
© 2005 Elsevier Inc. All rights reserved.

Let P be a prime of Fq [T ] of degree d and let KP be the Pth cyclotomic function
field. In this paper we study the relation between the p-part of Cl0(KP ) and the zeta
function of KP , where p is the characteristic of Fq .

Let � be an even character of the Galois group of KP /Fq(T ), � �= 1. Let g(X, �̄) be
the “congruent to one modulo p” part of the L-function of KP /Fq(T ) associated to the
character �̄. We have two criterions of cyclicity [2, Chapter 8]: if degX g(X, �̄)�1
then Cl0(KP )p(�) is a cyclic Zp[�qd−1]-module, and if Cl(OKP

)p(�) = {0} then

Cl0(KP )p(�) is a cyclic Zp[�qd−1]-module. Goss has obtained that if Cl(OKP
)p(�) is

trivial then g(X, �̄) is of degree at most one [2, Theorem 8.21.2]. Unfortunately, there
is a gap in the proof of this result. In fact, we show that in general Cl(OKP

)p(�) = {0}
does not imply degX g(X, �̄)�1 (Proposition 3.6). In order to prove this result, we
introduce a characteristic p Dirichlet series, H(s), which continues to be an essentially
algebraic entire function on Goss complex plane, and we give an arithmetic interpre-
tation of its values at negative integers (Proposition 3.4). We also prove that if i is a
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q-magic number and if �P is the Teichmüller character at P, then g(X, �i
P ) has simple

roots when i ≡ 0 (mod q − 1) (Proposition 5.1).
Note the Goss conjectures that if i is a q-magic number then degX g(X, �i

P )�1.
This problem is still open and can be viewed as an analogue of Vandiver’s Conjecture
for function fields (see Section 5).

1. Notations

Let Fq be a finite field having q elements, q = ps , where p is the characteristic of
Fq . Let T be an indeterminate over Fq and set A = Fq [T ], k = Fq(T ). We denote the
set of monic elements of A by A+. A prime of A is a monic irreducible polynomial
in A. We fix k̄ an algebraic closure of k. We denote the unique place of k which is a
pole of T by ∞.

Let L/k be a finite geometric extension of k, L ⊂ k̄. We set:

• OL: the integral closure of A in L,
• O∗

L: the group of units of OL,
• S∞(L): the set of places of L above ∞,
• Cl0(L): the group of divisors of degree zero of L modulo the group of principal

divisors,
• Cl(OL): the ideal class group of OL,
• R(L): the groupe of divisors of degree zero with supports in S∞(L) modulo the

group of principal divisors with supports in S∞(L).

If d is the greatest common divisor of the degrees of the elements in S∞(L), we
have the following exact sequence:

0 → R(L) → Cl0(L) → Cl(OL) → Z

dZ
→ 0.

Let P be a prime of A of degree d. We denote the Pth cyclotomic function field by
KP (see [2, Chapter 7; 5]). Recall that KP /k is the maximal abelian extension of k
contained in k such that:

• KP /k is unramified outside of P, ∞,
• KP /k is tamely ramified at P, ∞,
• for every place v of KP above ∞, the completion of KP at v is equal to

Fq(( 1
T

))( q−1
√−T ).

We recall that Gal(KP /k) � (A/PA)∗, and that the decomposition group of ∞ in
KP /k is equal to its inertia group and is isomorphic to F∗

q .
Let E/Fq be a global function field and let F/E be a finite geometric abelian

extension. Set G = Gal(F/E) and Ĝ = Hom(G, C∗).
Let � ∈ Ĝ, � �= 1, we set

L(X, �) =
∏

v place of E

(1 − �(v)Xdeg v)−1,
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where �(v) = 0 if v is ramified in F Ker(�)/E, and if v is unramified in F Ker(�)/E,
�(v) = �((v, F Ker(�)/E)), where (., F Ker(�)/E) is the global reciprocity map. If � = 1,
we set L(X, �) = LE(X) where LE(X) is the numerator of the zeta function of E.

Therefore, if LF (X) is the numerator of the zeta function of F, we get

LF (X) =
∏
�∈Ĝ

L(X, �).

Let � be a finite abelian group and let M be a �-module. Let � be a prime number
such that |�| �≡ 0 (mod �). We fix an embedding of Q̄ in Q�. Let W = Z�[�|�|]. For

� ∈ �̂, we set

e� = 1

|�|
∑
�∈�

�(�)�−1 ∈ W [�]

and

M�(�) = e�(M ⊗Z W).

Thus, we have

M ⊗Z W =
⊕
�∈�̂

M�(�).

Let N be a W-module, we denote the length of N by LongW(N).

2. Cyclotomic function fields and Artin–Schreier extensions

Let Q be a prime of A of degree n, and write Q(T ) = T n + �T n−1 + · · ·, � ∈ Fq .
We set i(Q) = T rFq/Fp

(�). Let a ∈ A, a �= 0, we set

i(a) =
∑

Q prime of A

vQ(a)i(Q) ∈ Fp,

where vQ is the normalized Q-adic valuation on k. Note that the function i : A\{0} →
Fp satisfies i(ab) = i(a) + i(b). Observe that, if a ∈ A+, a = T n + �T n−1 + · · ·, then
i(a) = T rFq/Fp

(�).

Let � ∈ k̄ such that �p − � = T . Set Ã = Fq [�], k̃ = Fq(�) and G = Gal(k̃/k).
Note that k̃/k is unramified outside ∞ and totally ramified at ∞. Let ∞̃ be the unique
place of k̃ above ∞.
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Lemma 2.1. Let (., k̃/k) be the usual Artin symbol for ideals. For a ∈ A\{0}:

((a), k̃/k)(�) = � − i(a),

where (a) is the principal ideal generated by a.

Proof. By the classical properties of the Artin symbol, it is enough to prove the lemma
when a is a prime of A. Thus, let P be a prime of A of degree d. We have

((P ), k̃/k)(�) ≡ �qd

(mod P).

But, for n�0, we have

�pn = � + T + T p + · · · + T pn−1
.

Therefore

�qd ≡ � − i(P ) (mod P).

Thus

((P ), k̃/k)(�) ≡ � − i(P ) (mod P).

But recall that there exists � ∈ Fp such that

((P ), k̃/k)(�) ≡ � − �.

The lemma follows. �

Lemma 2.2. Let P be a prime of A of degree d such that i(P ) �= 0. Then P is a prime
of Ã of degree pd. Let K̃P be the Pth cyclotomic function field for the ring Ã, then
KP ⊂ K̃P .

Proof. We have −T = −�p(1 − �1−p). Note that

1 − �1−p ∈
(

Fq

((
1

�

))∗)q−1

.

Therefore

q−1
√−T ∈ Fq

((
1

�

))(
q−1
√

−�
)

.
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Thus

• k̃KP /k̃ is unramified outside P, ∞̃,
• k̃KP /k̃ is tamely ramified at P, ∞̃,
• for every place w of k̃KP above ∞̃, the completion of k̃KP at w is contained in

Fq(( 1
� ))(

q−1
√−�).

The lemma follows by class field theory. �

We will need the following lemma:

Lemma 2.3. Let P be a prime of A, d = degT (P ). Let � be a character of Gal(KP /k),
� �= 1. Then degX L(X, �) = d −2 if �(F∗

q) = {1}, and degX L(X, �) = d −1 otherwise.

Proof. By Rosen [7, Proposition 4.3], we have

• degX L(X, �)�d − 2 if �(F∗
q) = {1},

• degX L(X, �)�d − 1 otherwise.

Let g be the genus of KP , by Rosen [7, Proposition 16.7], we have

2g =
∑

�∈ ̂Gal(KP /k),� �=1

degX L(X, �).

But, recall that KP /k is tamely ramified and ramified at exactly P and ∞. Thus, by
the Riemann–Hurwitz Theorem [7, Theorem 7.16], we get

2g =
(

qd − 1

q − 1
− 1

)
(d − 2) + (qd − 1)(q − 2)

q − 1
(d − 1).

The lemma follows. �

Let P be a prime of A, degT P (T ) = d and i(P ) �= 0. Let L = k̃KP ⊂ K̃P . Let
� = Gal(KP /k) � Gal(L/k̃). We have an isomorphism compatible to class field theory:

�̂ → ̂Gal(L/k̃), � → �̃ = � ◦ N
k̃/k

. We fix �p ∈ Q̄ a primitive pth root of unity.

Lemma 2.4. (1) Let � ∈ �̂, � �= 1. Let L(X, �̃) be the Artin L-function relative to L/k̃

and to the character �̃. We have

L(X, �̃) =
∏
�∈Ĝ

L(X, ��),

where L(X, ��) is the Artin L-function relative to L/k and the character ��.
(2) Let � ∈ �̂, � �= 1, � even (i.e. �(F∗

q) = {1}). Then

L(X, �̃)

L(X, �)
≡ (1 − X)p−1L(X, �)p−1 (mod (1 − �p)).
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Proof. Assertion (1) is a consequence of the usual properties of Artin L-functions.
Now, let � ∈ Ĝ, � �= 1. Since �� is ramified at ∞, we get

L(X, ��) =
∑
n�0

⎛⎝ ∑
a∈A+,deg(a)=n

�(a)�(a)

⎞⎠Xn.

Thus

L(X, ��) ≡
∑
n�0

⎛⎝ ∑
a∈A+,deg(a)=n

�(a)

⎞⎠Xn (mod (1 − �p)).

But, since � is even, we have �(∞) = 1. Therefore

L(X, ��) ≡ (1 − X)L(X, �) (mod (1 − �p)).

The lemma follows. �

Let i ∈ Fp and let 	i ∈ G such that 	i (�) = �− i. Let 
 ∈ Ĝ given by 
(	i ) = �i
p.

Lemma 2.5. Let � ∈ �̂, � even and non-trivial.

(1) Let � ∈ Ĝ, � �= 1. Let 	 ∈ Gal(Q(�P )/Q) such that � = 
	. Then

L(X, ��) = L(X, 
�)	.

Furthermore degX L(X, ��) = d .
(2) We have

L(1, 
�) ≡
⎛⎝ ∑

a∈A+,deg(a)�d

i(a)�(a)

⎞⎠ (�p − 1) (mod (1 − �p)2).

Proof. Let Q(�) be the abelian extension of Q obtained by adjoining to Q the values
of �. Let Z[�] be the ring of integers of Q(�). Note that p is unramified in Q(�) and

Gal(Q(�)(�p)/Q(�)) � Gal(Q(�p)/Q).

Since L(X, ��) is a polynomial in Z[�][�p][X], we have

L(X, ��) = L(X, 
�)	.
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Since � and �̃ are non-trivial even characters, by Lemma 2.3, we have

degX L(X, �̃) = pd − 2

and

degX L(X, �) = d − 2.

Therefore degX L(X, ��) = d .
Now, we have

L(X, 
�) =
d∑

n=0

⎛⎝ ∑
a∈A+deg(a)=n

�i(a)
p �(a)

⎞⎠Xn.

But recall that

�i(a)
p ≡ 1 + i(a)(�p − 1) (mod (1 − �p)2).

Thus, since � is even and non-trivial, we get

L(X, 
�) ≡ L(X, �)(1 − X) + (�p − 1)

×
⎛⎝ d∑

n=1

⎛⎝ ∑
a∈A+deg(a)=n

i(a)�(a)

⎞⎠Xn

⎞⎠ (mod (1 − �p)2).

The lemma follows. �

We are now ready to prove the main result of this section:

Proposition 2.6. Let � ∈ �̂, � �= 1, � even. Let W = Zp[�qd−1]. We have

LongW

(
Cl(OL)p(X̃)

Cl(OKP
)p(�)

)
�1 ⇔

∑
a∈A+deg(a)�d

i(a)�̄(a) ≡ 0 (mod p).

Proof. Fix � a generator of G � Gal(L/KP ). Let � ∈ O∗
L. Since L/KP is totally

ramified at any prime above ∞, there exists � ∈ F∗
q such that �(�) = ��. But �p(�) =

�p(�) = �. Since we are in characteristic p, we deduce that � ∈ O∗
KP

. Therefore

O∗
L = O∗

KP
.
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Let I be an ideal of OKP
such that IOL = �OL for some � ∈ OL. Then, there exists

� ∈ O∗
L such that �(�) = ��. Since O∗

L = O∗
KP

and since � is of order p, we deduce
that � ∈ OKP

. This implies that

Cl(OKP
) ↪→ Cl(OL).

One can also show that

Cl0(KP ) ↪→ Cl0(L).

Set �+ = �
F∗

q
. Let I be the augmentation ideal of Fp[�+]. One sees that we have the

following isomorphism of �-modules:

R(L)

R(KP )
⊗Z Zp � I.

This implies that we have the following exact sequence of W-modules:

0 → W

pW
→ Cl0(L)p(�̃)

Cl0(KP )p(�)
→ Cl(OL)p(�̃)

Cl(OKP
)p(�)

→ 0.

Now, by the results of Goss and Sinnott [4]:

LongW Cl0(L)p(�̃) = vp(L(1, ¯̃�))

and

LongW Cl0(KP )p(�) = vp(L(1, �̄)).

Thus by Lemma 2.4,

LongW

(
Cl(OL)P (�̃)

Cl(OKP
)P (�)

)
= (p − 1)vp(L(1, 
�̄)) − 1.

It remains to apply Lemma 2.5. �

3. Derivatives of L-functions

Let P be a prime of A of degree d. We fix an embedding of Q̄ in Qp. Set � =
Gal(KP /k) and W = Zp[�qd−1]. We fix an isomorphism �P : A/PA → W/pW .
Then �P induces an isomorphism

�P : � → �qd−1 ⊂ W ∗.
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The morphism �P is called “the” Teichmüller character at P. Note that �̂ is a cyclic
group and �P is a generator of this group.

Let i ∈ N, set:

• (0) = 1,
• (i) = ∑

a∈A+ ai if i�1, i �≡ 0 (mod q − 1),
• (i) = −∑a∈A+ deg(a)ai if i�1, i ≡ 0 (mod q − 1).

One can prove that for all i ∈ N, (i) ∈ A. We also see that

∀i ∈ N, 0� i�qd − 2, �P ((i)) ≡ L(1, �i
P ) (mod p).

Therefore, if 1� i�qd − 2, by the results of Goss and Sinnott [4], we have

LongW Cl0(KP )p(�−i
P )�1 ⇔ (i) ≡ 0 (mod P).

The numbers (i) are called the Bernoulli–Goss polynomials.
Recall that we have a surjective morphism of �-modules

W [�+] → R(KP ) ⊗Z W,

where �+ = �/F∗
q . Thus for � ∈ �̂, � even, R(KP )p(�) is a cyclic W-module. But, for

such a character, we have the exact sequence of W-modules:

0 → R(KP )p(�) → Cl0(KP )p(�) → Cl(OKP
)p(�) → 0.

This implies that, if Cl(OKP
)p(�) = {0}, Cl0(KP )p(�) is a cyclic W-module.

Goss has shown [2, Corollary 8.16.2] that for � is even, � �= 1, if L′(1, �̄) �≡
0 (mod p) (here L′(1, �̄) is the derivative of L(X, �̄) taken at X = 1), then Cl0(KP )p(�)

is a cyclic W-module.
Therefore a natural question arises. Let � ∈ �̂, � �= 1, � even. Assume that L(1, �̄) ≡

0 (mod p). Do we have

Cl(OKP
)p(�) = {0} ⇒ L′(1, �̄) �≡ 0 (mod p)?

Our aim in this section is to show that in general the answer is no.

Lemma 3.1. Let j be an integer, 1�j �qd − 2, for some integer d �1. Let P be a
prime of A of degree d such that i(P ) �= 0. Then for all integer h, h�d + 1, we have

∑
a∈A+,deg(a)=h

i(a)aj ≡ 0 (mod P).
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Proof. We keep the notations of Section 2. Write � = �j
P . Recall that (in fact we

proved such a fact for even characters, but one can also show that this is true for any
non-trivial character):

degX L(X, 
�) = d.

Thus ∑
a∈A+,deg(a)=h


(a)�(a) = 0.

But, since h�d + 1 and j �≡ 0 (mod qd − 1), we have∑
a∈A+,deg(a)=h

�(a) = 0.

Therefore ∑
a∈A+,deg(a)=h

(
(a) − 1)�(a) = 0.

Thus ∑
a∈A+,deg(a)=h

i(a)�(a) ≡ 0 (mod p).

But

�P

⎛⎝ ∑
a∈A+,deg(a)=h

i(a)aj

⎞⎠ ≡
∑

a∈A+,deg(a)=h

i(a)�(a) (mod p).

The lemma follows. �

Lemma 3.2. Let j be an integer, j �1. Then, for h >> 0, we have∑
a∈A+,deg(a)=h

i(a)aj = 0.

Proof. Let n0 be the smallest integer such that qn0 −2�j . Let h�n0 +1. Let S be the
set of primes in A of degree d, n0 �d �h − 1, such that i(P ) �= 0. Then, by Lemma
3.1, we have

∀P ∈ S,
∑

a∈A+,deg(a)=h

i(a)aj ≡ 0 (mod P).
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There are exactly qd

p
elements x ∈ Fqd such that T rF

qd /Fp
(x) = 0. Therefore, there

are at most qd

pd primes P in A of degree d such that i(P ) = 0. But, recall that

there are at least qd

d
− q

(q−1)d
qd/2 primes in A of degree d. Thus, there are at least

(1 − 1
p
)
qd

d
− q

(q−1)d
qd/2 primes of degree d such that i(P ) �= 0. Therefore

degT

(∏
P∈S

P

)
�
(

1 − 1

p

)
qh − qn0

q − 1
− q

q − 1

qh/2 − qn0/2

q − 1
.

Thus, if
∑

a∈A+,deg(a)=h i(a)aj �= 0, we get

degT

⎛⎝ ∑
a∈A+,deg(a)=h

i(a)aj

⎞⎠ �
(

1 − 1

p

)
qh − qn0

q − 1
− q

q − 1

qh/2 − qn0/2

q − 1
.

But

degT

⎛⎝ ∑
a∈A+,deg(a)=h

i(a)aj

⎞⎠ �hj.

Thus, if
∑

a∈A+,deg(a)=h i(a)aj �= 0, we have

hj �
(

1 − 1

p

)
qh − qn0

q − 1
− q

q − 1

qh/2 − qn0/2

q − 1
.

The lemma follows. �

Let j �1 be an integer and set

�(j) =
∑
��0

∑
a∈A+,deg(a)=�

i(a)aj .

By Lemma 3.2, �(j) ∈ A.
Let S∞ be Goss complex plane [2, Chapter 8, paragraph 8.1]. Consider the Dirichlet

series

H(s) =
∑

a∈A+
i(a)a−s .
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By the proof of Lemma 3.2, H(s) is in the motivic class M (see [3]). Thus, by the
main theorem of [3], H(s) continues to an essentially algebraic entire function on S∞.
Observe that

∀j �1, H(−j) = �(j).

Lemma 3.3. Let � ∈ Gal(Fq(T )/Fq(T p − T )) such that �(T ) = T + 1. Let j ∈
{1, . . . , qd − 2}, j ≡ 0 (mod q − 1). Recall that q = ps . We have

�(�(j)) = �(j) + s(j).

Proof. By Goss [2, Remark 8.12.1.1] if j < qh − 1, we have

∑
a∈A+,deg(a)=h

aj = 0.

Therefore, by Lemma 3.2, we can select an integer h such that

(j) =
∑

a∈A+,deg(a)�h

deg(a)aj

and

�(j) =
∑

a∈A+,deg(a)�h

i(a)aj .

Let Q be a prime of A of degree n. Write Q = T n + �T n−1 + · · ·, where � ∈ Fq . Then
�(Q) = T n + (� + n)T n−1 + · · ·. Therefore i(�(Q)) = i(Q) + s deg(Q). This implies
that

∀a ∈ A\{0}, i(�(a)) = i(a) + s deg(a).

Now

�(�(j)) =
∑

a∈A+,deg(a)�h

i(a)�(a)j .

Therefore

�(�(j)) =
∑

a∈A+,deg(a)�h

(i(�(a)) − s deg(a))�(a)j .
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Thus

�(�(j)) =
∑

a∈A+,deg(a)�h

i(�(a))�(a)j − s
∑

a∈A+,deg(a)�h

deg(�(a))�(a)j .

Observe that
∑

a∈A+,deg(a)�h i(�(a))�(a)j = �(j) and −∑a∈A+,deg(a)�h deg(�(a))�(a)j

= (j). �

Proposition 3.4. Let P be a prime of A of degree d such that i(P ) �= 0. Set Q(T ) =
P(T p − T ). Then Q is a prime of A of degree pd. Let i be an integer such that
1� i�qd − 2, i ≡ 0 (mod q − 1) and Cl(OKP

)p(�−i
P ) = {0}. Then

LongW Cl(OKQ
)p(�−i(qpd−1)/(qd−1)

Q )�1 ⇔ �(i) ≡ 0 (mod P).

Proof. By Lemmas 3.1 and 3.2, for j ∈ {1, . . . , qd − 2}, we have

�P (�(i)) ≡
∑

a∈A+,deg(a)�d

i(a)�j
P (a) (mod p).

It remains to apply Proposition 2.6. �

Lemma 3.5. Assume p �= 2. Let d �1 be an integer. There exists a prime P in A,
deg(P ) = d, such that i(P (T ))i(P (T + 1)) �= 0.

Proof. Let Q be a prime of A of degree d such that i(Q) �= 0. Such a prime exists
by the normal basis Theorem. Fix Fq an algebraic closure of Fq . We assume that
i(Q(T + 1)) = 0. Write Q = T d + �T d−1 + · · ·. Then T rFq/Fp

(�) = −sd. Therefore

sd �≡ 0 (mod p). Let � ∈ Fq such that Q(�) = 0. We observe that

∀� ∈ Fp, T rF
qd /Fp

(��) = −�sd.

Since p�3, we can find � ∈ F∗
p such that −�sd �= −sd. Set P(T ) = Irr(��, Fq; T ).

Then P is a prime of degree d such that i(P )i(�(P )) �= 0. �

Proposition 3.6. Assume that p �= 2 and s �≡ 0 (mod p). Led d be an integer, d �2,
and let P be a prime of degree d such that i(P (T ))i(P (T + 1)) �= 0. Set Q(T ) =
P(T p − T ). Then

• L(1, �−(q−1)(qpd−1)/(qd−1)
Q ) ≡ 0 (mod p),

• L′(1, �−(q−1)(qpd−1)/(qd−1)
Q ) ≡ 0 (mod p),

• Cl(OKQ
)p(�−(q−1)(qpd−1)/(qd−1)

Q ) = {0}.
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Proof. Set R = P(T +1) and Z = R(T p−T ). We observe that we have an isomorphism

Cl(OKQ
)P (�−(q−1)(qpd−1)/(qd−1)

Q ) � Cl(OKZ
)p(�−(q−1)(qpd−1)/(qd−1)

Z ).

Note also that (q − 1) = 1. Thus

Cl(OKP
)p(�−(q−1)

P ) = Cl(OKR
)p(�−(q−1)

R ) = {0}.

We have

L(1, �−(q−1)(qpd−1)/(qd−1)
Q ) ≡ L(1, �−(q−1)(qpd−1)/(qd−1)

Z ) ≡ 0 (mod p).

And, by Lemma 2.4, since p�3:

L′(1, �−(q−1)(qpd−1)/(qd−1)
Q ) ≡ L′(1, �−(q−1)(qpd−1)/(qd−1)

Z ) ≡ 0 (mod p).

Suppose that we have Cl(OKQ
)p(�−(q−1)(qpd−1)/(qd−1)

Q ) �= {0}. Then by Proposi-
tion 3.4

�(q − 1) ≡ 0 (mod P),

and also

�(q − 1) ≡ 0 (mod R).

Thus

�(�(q − 1)) ≡ 0 (mod �(P )).

Now, by Lemma 3.3, and the fact that �(P ) = R, we get

�(q − 1) + s(q − 1) ≡ 0 (mod R).

Therefore we get s ≡ 0 (mod p) which is a contradiction. The proposition follows. �

4. Cyclicity of class groups and L-functions

Let E/Fq be a global function field and let F/E be a finite geometric abelian
extension. Set � = Gal(F/E). Let � be a prime number. Let us recall some well-
known facts about L-functions.
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Set T� = Hom(Q�/Z�, J ), where J is the inductive limit of the Cl0(FqnF ), n�1.
We fix an embedding of Q̄ in Q�. Let � be the Frobenius of Fq . Then � and � act
on T�.

If � �= p, we have (see [7, Chapter 15]):

Det(1 − �X|T�
) = LF (X),

where LF (X) is the numerator of the zeta function of F.
If � = p, write LF (X) = ∏

i (1 − �iX) and set Lnr
F (X) = ∏

vp(�i )=0(1 − �iX). Then
(see [1] and also [4]):

Det(1 − �X|Tp ) = Lnr
F (X).

Now assume that � does not divide the cardinal of �, then the above results are also
valid character by character. More precisely, if � �= p, we have

∀� ∈ �̂, Det(1 − �X|T�(�)) = L(X, �̄).

If � = p, for � ∈ �̂, write L(X, �) = ∏
i (1 − �i (�)X) and set Lnr(X, �) = ∏

vp(�i (�)=0
(1 − �i (�)X). Then

∀� ∈ �̂, Det(1 − �X|Tp(�)) = Lnr(X, �̄).

Now, let � ∈ �̂, write

L(X, �) =
∏
i

(1 − �i (�)X),

and set

g(X, �) =
∏

v�(�i (�)−1)>0

(1 − �i (�)X).

Set

g(X) =
∏
�∈�̂

g(X, �).

We also set:

∀� ∈ �̂, H(X, �) = (1 + X)degX g(X,�)g((1 + X)−1, �),
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and

H(X) =
∏
�∈�̂

H(X, �).

For n�0, set Fn = Fq�nF , and let An be the �-Sylow subgroup of Cl0(Fn). Let
F∞ = ⋃

n�0 Fn and let A∞ be the inductive limit of the An, n�0. We set

Y = Hom(Q�/Z�, A∞).

Set � = Gal(F∞/F ), then � is a topological generator of � � Z�.

Lemma 4.1. (1) For all n�0, we have an isomorphism of �-modules

Y

(��n − 1)Y
� An.

(2) Assume |�| �≡ 0 (mod �). Then, ∀� ∈ �̂, ∀n�0, we have

Y (�)

(��n − 1)Y (�)
� An(�).

Proof. We prove assertion (1), and note that (2) is a consequence of (1). Recall that
A∞ is a divisible group (see [7, Proposition 11.16]). We start with the following exact
sequence:

0 → An → A∞ → A∞ → 0,

where the middle map is the multiplication by ��n − 1. We apply Hom(Q�/Z�, .) to
this sequence, we get

0 → Y → Y → Ext1(Q�/Z�, An) → 0.

We also have the following exact sequence:

0 → Z� → Q� → Q�

Z�

→ 0.

We apply Hom(., An) to this last sequence, using the fact that

Ext1(Q�, An) = {0},
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we get

Hom(Z�, An) � Ext1(Q�/Z�, An).

The lemma follows. �

Proposition 4.2. (1) Let � = Z�[[X]] be the Iwasawa algebra of � over Z� where X
acts like � − 1. Then Y is a finitely generated �-module and a torsion �-module. The
characteristic polynomial of the �-module Y is equal to H(X).

(2) Assume that � does not divide the cardinal of �. Let � = W [[X]] be the Iwasawa
algebra of � over W = Z�[�|�|] where X acts like � − 1. Then, for � ∈ �̂, Y (�) is a
finitely generated �-module and a torsion �-module. The characteristic polynomial of
the �-module Y is equal to H(X, �̄).

Proof. We prove (1), the proof of (2) is essentially similar. For all n�0, we set
�n(X) = (1 + X)�

n − 1. By Lemma 4.1, we have

∀n�0,
Y

�nY
� An.

Therefore Y is a finitely generated �-module and a torsion �-module. Let r ∈ N such
that we have an isomorphism of groups

Y � Zr
�.

Then, there exists a constant � ∈ Z, such that, for all n sufficiently large:∣∣∣∣ Y

�nY

∣∣∣∣ = �rn+�.

But, for all n�0, we have

|An| = �v�(LFn (1)).

Therefore, there exists a constant �′ ∈ Z such that, for all n sufficiently large:

|An| = �degX H(X)n+�′
.

Thus r = degX H(X). But let V (X) be the characteristic polynomial of the �-
module Y. We know that r = degX V (X), and we also know that V (X) divides
(1 + X)deg LF (X)LF ((1 + X)−1). But V (X) is a distinguished polynomial, thus V (X)

divides H(X). The proposition follows. �
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Proposition 4.3. (1) If A0 is a cyclic Z�-module then g(X) has simple roots.
(2) Assume that |�| �≡ 0 (mod �). Let � ∈ �̂. If A0(�) is a cyclic W-module then

g(X, �̄) has simple roots.

Proof. We prove (1). By Nakayama’s Lemma, Y is pseudo-isomorphic to �/H(X)�.
But, by a result of Tate [9], we know that the action of � on Y is semi-simple. This
implies that H(X) has simple roots. �

Let us give an application of this last proposition.

Proposition 4.4. We assume that q �5. Let E/Fq(T ) be a real quadratic field, i.e.
[E : Fq(T )] = 2 and ∞ splits completely in E. If OE is a principal ideal domain then
LE(X) has simple roots.

Proof. Let g be the genus of E and write

LE(X) =
2g∏
i=1

(1 − �iX).

Let K = Q(�1, . . . , �2g). Let � ∈ {�1, . . . , �2g}. Then

(1 − �)(1 − �̄)�q + 1 − 2
√

q > 1.

Therefore

NK/Q(1 − �) > 1.

Thus 1 − � is not a unit of K. Therefore, for � ∈ {�1, . . . , �2g}, there exist a prime
number � and a prime L of K above � such that � ≡ 1 (mod L).

Let ∞1 and ∞2 be the places of E above ∞. Then R(E) is a quotient of Z(∞1−∞2)

and we have an exact sequence

0 → R(E) → Cl0(E) → Cl(OE) → 0.

Therefore, if OE is a principal ideal domain then Cl0(E) is a cyclic group. It remains
to apply Proposition 4.3 for the prime numbers that divide LE(1). �

It is conjectured that there exists infinitely many real quadratic function fields
E/Fq(T ) such that OE is a principal ideal domain. In view of this conjecture, it
will be interesting to prove that there exists infinitely many real quadratic function
fields E/Fq(T ) such that LE(X) has simple roots.
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5. A conjecture of Goss

Set D0 = 1 and for i�1, Di = (T qi − T )D
q

i−1. The Carlitz exponential is defined
by

Exp(X) =
∑
i �0

Xqi

Di

∈ k[[X]].

Let n ∈ N, write n = a0 + a1q + · · · + arq
r , where a0, . . . , ar ∈ {0, . . . , q − 1}. We set

�n =
r∏

i=0

D
ai

i .

The ith Bernoulli–Carlitz number, B(i) ∈ k, is defined by

X

Exp(X)
=
∑
i �0

B(i)

�i

Xi.

Let P be a prime of A of degree d and let i ∈ {1, . . . , qd − 2}, i ≡ 0 (mod q − 1). We
have the following result [6]:

Cl(OKP
)p(�i

P ) �= {0} ⇒ B(i) ≡ 0 (mod P).

We fix an embedding of Q̄ in Qp. Let i ∈ {1, . . . , qd − 2}. Write

L(X, �i
P ) =

∏
j

(1 − �j (i)X),

and set

g(X, �i
P ) =

∏
vp(�j (i)−1)>0

(1 − �j (i)X).

Let i ∈ N. We say that i is a q-magic number if there exist c ∈ {0, . . . , q − 2} and
an integer n ∈ N such that i = cqn + qn − 1.

Proposition 5.1. Let P be a prime of A of degree d. Let i be a q-magic number,
1� i�qd − 2, i ≡ 0 (mod q − 1). Then g(X, �i

P ) has simple roots.
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Proof. We have i = qn − 1 for some integer n, 1�n�d − 1. By a result of Carlitz
[2, Lemma 8.22.4]:

B(qd − 1 − i) = (−1)d−n

L
qn

d−n

,

where L0 = 1 and for j �1, Lj = (T qj − T )Lj−1. Thus

B(qd − 1 − i) �≡ 0 (mod P).

Therefore,

Cl(OKP
)p(�−i ) = {0}.

It remains to apply Proposition 4.3. �

In [2], Goss makes the following conjecture:
Let P be a prime of degree d and let i be a q-magic number, 1� i�qd − 2. Then
degX g(X, �i

P )�1.
Note that the results of Section 3 do not give any counter-example to Goss conjecture.

It is natural to ask if there exist primes P and q-magic numbers i, 1� i�qdeg P − 2,
such that degX g(X, �i

P )�1. This is the case.

Proposition 5.2. Let c ∈ {0, . . . , q − 2}. There exist infinitely many primes P such that

deg P−1∏
n=1

(cqn + qn − 1) ≡ 0 (mod P).

Proof. We prove this proposition for c �= 0. This proof for c = 0 is very similar.
Let us recall some results from the work of Sheats [8]. Let m�1 be an integer. Let

X = (X1, . . . , Xm) ∈ Nm, we set

pd(X) = X1 + 2X2 + · · · + mXm.

Let V ⊂ Nm be a finite set, an element O ∈ V is called optimal if ∀X ∈ V ,
pd(X)�pd(O).

Let k�0 and i�1 be two integers. Let Uk+1(i) be the set of elements r =
(r0, r1, . . . , rk) ∈ Nk+1 such that

• r0 + r1 + · · · + rk = i,
• in the sum r0 + r1 + · · · + rk there is no carry over p-adic digits,
• for 0�j �k − 1, rj �1 and rj ≡ 0 (mod q − 1)
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for j �0 and i�1, set

Sj (i) =
∑

a∈A+,deg(a)=j

ai .

Then:

• Sj (i) �= 0 if and only if Uj+1(i) �= ∅,
• if Sj (i) �= 0, there exists an unique optimal element G in Uj+1(i) and degT (Sj (i)) =

pd(G) − i.

Let us apply the above results. Since c ∈ {1, . . . , q − 2}, we get

• Sj (cq
n + qn − 1) = 0 if and only if j �n + 1,

• for j �n, the optimal element of Uj+1(cq
n + qn − 1) is Gj = (q − 1, q(q −

1), . . . , qj−1(q − 1), qj (q − 1) + · · · + qn−1(q − 1) + cqn).

If tj = pd(Gj ), we observe that for 1�j �n − 1, tj < tj+1. Therefore

degT (cqn + qn − 1) = (n + 1)cqn + nqn−1(q − 1) + · · ·
+2q(q − 1) + (q − 1) − cqn − qn + 1,

thus

degT (cqn + qn − 1) = n(c + 1)qn − qn+1 − q

q − 1
.

Let S be the set of primes P in A such that

deg P−1∏
i=1

(cqn + qn − 1) ≡ 0 (mod P).

Let’s assume that S is a finite set. We set

D =
∏
P∈S

deg P

and D = 1 if S = ∅. Note that

∀P ∈ S, qD ≡ 1 (mod qdeg P − 1).

Therefore, since (c) = 1, we have

∀P ∈ S, (cqD + qD − 1) ≡ 1 (mod P).



268 B. Anglès / Journal of Number Theory 116 (2006) 247–269

But degT (cqD + qD − 1)�1, thus we can select a prime Q of A such that (cqD +
qD − 1) ≡ 0 (mod Q). Note that Q /∈ S. Set d = deg Q. Since d does not divide D,
there exists an integer r, 1�r �d − 1, such that D ≡ r (mod d). Therefore

(cqD + qD − 1) ≡ (cqr + qr − 1) ≡ 0 (mod Q).

But this implies that Q ∈ S, which is a contradiction. �

Let P be a prime of A of degree d. Let J be the jacobian of KP , i.e. J is the
inductive limit of the Cl0(FqnKP ), n�1. Set Fqp∞ = ⋃

n�0 Fqpn ⊂ Fq , where Fq is

the algebraic closure of Fq in k̄. We consider the � = Gal(KP /k)-module:

AP = J [p]Gal(Fq/F
qp∞ )

Cl0(KP )[p] .

As a consequence of the results in Section 4, we get:

Proposition 5.3. Let W = Zp[�qd−1] and let � ∈ �̂. We have

dim w
pW

AP (�) = degX g(X, �̄) − dim w
pW

Cl0(KP )p(�).

Note that in general, by Proposition 3.6, we do not have AP = {0}. But Goss
conjecture implies the following:
Let P be a prime of A of degree d and let i be a q-magic number, 1� i�qd − 2, then
AP (�−i

P ) = {0}.
It would be interesting to prove (or find a counter-example) to this weak form of

Goss conjecture.
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