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1. Introduction 

D-Serine dehydratase (EC 4.2.1.14) from Escheri- 
chia coli is a pyridoxal 5'-phosphate (PLP)-dependent 
enzyme which catalyzes the conversion of D-serine to 
pyruvate and ammonia. D-Serine is a competitive 
antagonist of/3-alanine in the biosynthetic pathway to 
pantothenate and coenzyme A [1]. The dehydratase 
was reported to have M r 45 500 [2] and in contrast 
to other PLP-dependent enzymes it is a monomer. We 
have chosen it as a model for structural studies on the 
environment of PLP in enzymes catalyzing ~3-elimi- 
nation reactions [3-5 ] and also for elucidating the 
degree of structural similarity among PLP enzymes. 
Whereas numerous hydrolases and oxidoreductases 
have been examined in molecular detail by crystal- 
lographers and protein chemists, similar studies on 
the large group of PLP-dependent enzymes have only 
just begun. The impressive results on aspartate amino- 
transferase and phosphorylase do not yet allow us to 
draw general conclusions, e.g., on the structure of a 
PLP domain or on the catalytically active amino acid 
or pyridine side chains. This paper describes the nearly 
complete primary structure of D-serine dehydratase 
established by isolation and sequence analysis of pep- 
tides obtained by cleavage with trypsin, clostripain, 
Staphylococcus aureus protease, CNBr and 2-nitro-5- 
thiocyanobenzoate (NTCB). The fragments could be 
ordered in two large pieces: 
(i) The N-terminal part with 185 residues which 

includes the PLP binding lysine at position 118; 
and 

(ii) The C-terminal fragment of 264 residues which 
contains all 5 cysteines. 

This adds up to 449 amino acids and a minimum M r 
of 48 790/molecule. The characteristics of the 

sequence as well as results of a preliminary compari- 
son with other PLP enzymes are discussed. 

2. Materials and methods 

D-Serine dehydratase was prepared as in [3] from 
E. coli K-12 mutant C 6, kindly provided by Profes- 
sor E. E. Snell and grown in kg amounts by Merck 
(Darmstadt). Reduction and carboxymethylation 
with iodo [14C2] acetic acid were performed according 
to [6]. Enzymic digestions on 1 -2  gtmol dehydratase 
with trypsin, clostripain and Staph. aureus protease as 
well as secondary cleavage of peptides with chymo- 
trypsin, thermolysin and carboxypeptidases A and B 
were carried out as in [3,7,8]. Cleavages by CNBr 
after Met [9] and with 2-nitro-5-thiocyanobenzoate 
(generous gift of Dr R. Gracy) before Cys [10] were 
performed under standard conditions. Peptides were 
prefractionated on Sephadex columns and purified by 
ion~exchange chromatography (Sephadex ion- 
exchangers for peptides larger than 20 residues and 
Aminex A5 for smaller peptides) and cellulose thin- 
layer electrophoresis and/or chromatography [3,7,8,12 ]. 
Acid hydrolysis, amino acid analysis and sequence 
determination were performed as in [7]. 

3. Results and discussion 

The nearly complete sequence of D-serine dehy- 
dratase is proposed in table 1. It includes all peptides 
isolated in good yield and characterized so far from 
digests of the protein by trypsin, clostripain and 
Staph. aureus protease as well as the fragments from 
CNBr and NTCB cleavages. The N-terminal sequence 
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Table 1 
Partial amino acid sequence of Escherichia coli D-serine dehydratase 

November 1981 

10 20 
Met-Glu-Asn•Ala-Lys-Met-Asn-Ser-Leu-Ile-Ala-Gln-Tyr-Pr•-Leu-Val-Lys-Asp-Leu-Val- 

3o 4o 
Ala-Leu-Lys-Glu-Thr-Thr-Tr•-Phe-Asn-Pr•-Gly-Thr-Thr-Thr-Leu-Ala-Glu-Gly-Leu-Pr•- 

50 6o 
Tyr-~a~-G~y-Leu-Thr-G~u-G~n-Asp-Val-G~n-Asp-A~a-His-A~-Arg-Leu-Ser-Arg-Phe-Ala- 

7o 80 
Pr~-Tyr-Leu-Ala-L~s-Ala-Phe-Pr~-Glu-Thr-Ala-Ala-Thr-Gl~-Gly-Ile-I~e-Glu-Ser-Glu- 

90 100 
Leu-Val-Ala-Ile-Pr•-Ala-Met-Gln-Lys-Arg-Leu-Glu-Lys-Glu-Tyr-Gln-Gln-Pr•-Ile-Ser- 

110 120 
Gly-Gln-Leu-Leu-Leu-Lys-Lys-Asp-Ser-His-Leu-Pr•-Ile-ser-Gly-Ser-Ile-Lys-Ala-Arg- 

130 140 
Gly-Gly-Ile-TXr-Glu-Val-Leu-Ala-His-A•a-Glu-Lys-Leu-Ala-Leu-Glu-Ala-Gly-Leu-Leu- 

150 160  
Thr-Leu-Asp-Asp-Asp-Tyr-Ser-L~s-Leu-Leu-Ser-Pr~-G~-~he-Lys-Gln-Phe-Phe-Ser-G~n- 

170 180 
Tyr-Txr- X - X - X - X - X -Tyr-Ser-Ile-Ala-Val-Gly-Ser-Thr-Gly-Asn-Leu-Gly-Leu- 

190' 200' 
Ser-Ile-Gly-Ile-Met Ser-Ala-Arg-Ile-Gly-Phe-Lys-Val-Thr-Val-His-Met-Ser-Ala-Asp- 

210' 220' 
Ala-Arg-Ala-Trp-Lys-Lys-Ala-Lys-Leu-Arg-Ser-H•s-G•y-Val-Thr-val-Val-Glu-Tyr-Glu- 

230' 240' 
Gln-Asp-Tyr-Gly-Val-Ala-Val-Glu-Glu-Gly-Arg-Lys-Ala-Ala-Gln-Ser-Asp-Pr•-Asn-C•s- 

250' 260' 
Phe-Phe-Ile-Asp-Asp-Glu-Asn-Ser-Arg-Thr-Leu-Phe-Leu-Gly-TXr-Ser-val-Ala-Gly-Gln- 

270' 280' 
Arg-Leu-Lys-A~a-G~n-Phe-A~a-G~n-G~n-G~y-Arg-I~e-Va~-Asp-A~a-Asp-A~n-Pr~-Leu-Phe- 

290' 300' 
Val-TXr-Leu-Pr~-CXs-G~y-Val-Gly-Gly-Gl~-Pr~-Gly-Gly-Val-Ala-Phe-Gly-Leu-Lys-Leu- 

310' 320' 
Ala-Phe-Gly-Asp-His-Val-His-Cys-Phe-Phe-Ala-Glu-Pr~-Thr-His-Ser-Pr~-Cys-Het-Leu- 

330' 340' 
Leu-Gly-Val-His-Thr-G•y-Leu-His-Asp-Gln-I•e-S•r-Val-Gln-Asp-Ile-Gly-Ile-Asp-Asn- 

350' 360' 
Leu-Thr-Ala-Ala-Asp-Gly-Leu-Ala-Val-Gly-Arg-Ala-Ser-Gly-Phe-V~l-Gly-Arg-A~a-Het- 

370' 380' 
Glu-Arg-Leu-Leu-Asp-Gly-Phe-Tyr-Thr-Leu-Ser-Asp-Gln-Thr-blet-Tyr-Asp-Het-Leu-Gly- 

3 9 0 '  400' 
Trp-Leu-Ala-G~n-G~u-Glu-Gly-Ile-Arg-Leu-Glu-Pr~-Ser-Ala-Leu-Ala-Gly-b~et-Ala-Gly- 

410' 420' 
Pr~-G~n-Arg-~a~-Cys-A~a-Ser-~a~-Ser-Tyr-G~n-G~n-Met-~is-Gly-~he-Ser-A~a-G~u-G~n- 

430' 440' 
Leu-Arg-Asn-Thr-Thr-His-Leu-Va~-Trp-A~a-Thr-~y-G~y-G~y-Met-Va~-Pr~-G~u-~u-G~u- 

Met-Asn-Gln-Tyr-Leu-Ala-Lys-Gly-Arg-0II 
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of 23 residues published earlier together with the tryp- 
tic coenzyme binding peptide [3] could be confirmed 
and extended up to position 185. Pyridoxal-5'-phos- 
phate is bound to the e-amino group of Lys 118. The 
last tryptic peptide of the N-terminal part starting 
with Gin 156 could not be isolated in good yield and 
5 of  its residues could not be determined unambigu- 
ously. The other positions were obtained by sequenc- 
ing the corresponding chymotryptic and clostripain 
peptides. The central part of D-serine dehydratase con- 
tains the longest CNBr peptide (positions 198 ' -319 ' )  
and 4 of  the 5 cysteines. In contrast, the C-terminal 
third of  the protein is particularly rich in Met and con- 
tains only 1 Lys. In table 1 the positions of the second 
fragment are numbered provisionally 186 ' -449 ' .  The 
gap between the 2 fragments could not be filled so far. 
It is possible that the preliminary length of the poly- 
peptide chain is final since no other CNBr peptide was 
found [12]. Mr-Value determination of the longest 
NTCB-peptide by SDS-PAGE indicates that this frag- 
ment, which was found to be the N-terminal half of 
the protein, is probably not much larger than that 
sequenced so far: If the 5 undetermined positions 
163-167 are given an average M r of 110, the prelimi- 
nary sequence of this peptide adds up to 26 070 Mr/ 
molecule. From the mobility on slab gels M r of 25 700, 
27 000 and 27 500 were determined in 10%, 13% and 
16% polyacrylamide, respectively. Also our M r deter- 
minations of the total enzyme on SDS-PAGE (53 000, 
50 900 and 48 000 in 10%, 13% and 16% polyacryla- 
mide, respectively) corresponds reasonably well with 
the minimum value of 48 790 M r calculated from the 
sequence data. The final proof for the link between 
the 2 fragments depends however on the isolation of 
an overlapping peptide. The purification will be diffi- 
cult, due to the length of the corresponding tryptic 
peptide and to its N-terminal Gin. 

Since DNA sequence analysis of the D-serine dehy- 
dratase structural gene has been started, results of the 
2 methods should be complementary. So far 3 DNA 
fragments were sequenced confirming 1/3rd of the 
protein sequence: Positions Set 100-Set 147 including 
Lys 118, Asn 277 ' -Asp 304' and Asp 329 ' -Val  404' 
(E. McFall, personal communication). 

An interesting question is how related the sequence 
of the dehydratase is to the other two PLP enzymes, 
pig heart mitochondrial aspartate aminotransferase, 
sequenced in [13,14] and the 15-subunit orE. coli tryp- 
tophan synthase [ 15 ]. We used a computer program 
similar to program RELATE in [ 16] for detecting dis- 

tant relationships and the scoring matrix for matched 
pairs (fig.84 of [16])derived from accepted point 
mutations in closely related proteins. We searched for 
hexapeptides of D-serine dehydratase fitting best to 
hexapeptides of one of the 2 other enzymes. The best 
alignments were extended and a limited number of 
gaps (<15% of the alignment length)were introduced 
manually if this improved the score. A gap penalty 
parameter o f - 2  was used. Scores were calculated as 
mean valuation of the matched residues in an align- 
ment. For each comparison at least 100 random align- 
ments of the same composition were scored. The qual- 
ity of fit describes where the pair of real sequences is 
located in the normal distribution of the random 
sequences. The difference from the mean of the ran- 
dom sequence is expressed in standard deviation or 
a units as in [16]. In general, the score can be espe- 
cially high for selected regions of  10-20 residues. On 
the other hand, the quality of fit increaseswhen longer 
sequences are compared, because then the standard 
deviation of the scores of  random sequences decreases. 
The procedure used is a compromise between high 
scores and limitation in afignment breaks. Since num- 
ber, size and valuation of  gaps remain arbitrary some 
variation in the alignment is possible, but the quality 
of fit of  the examples in table 2 demonstrates the 
degree of relatedness that can be found between the 
3 enzymes. 

Besides the increase in chain length by at least 10% 
the most striking difference is the position of the PLP 
binding site: Lys 118 in the dehydratase, Lys 86 in 
the synthase [17] and Lys 250 in the aminotransfer- 
ase [13,14]. The difference observed when comparing 
the two a,/3-eliminating enzymes can be explained by 
an N-terminally extended D-serine dehydratase: In 
the segment comparison the highest score is obtained 
for the 9 N-terminal amino acids of  the synthase 
when they are aligned with the dehydratase sequence 
starting at Thr 33 and when 2 residues of  the longer 
enzyme (Gly 38 and Leu 39) are omitted. As a remark- 
able result the positions for the coenzyme binding 
lysines become identical (86 + 32 = 118). Alignment 
of  the N-terminal 88 residues of  the synthase subunit 
without gaps with the dehydratase starting at position 
33 yields an insignificantly low score o f - 0 . 4 6 .  When 
10 residues in each sequence are omitted, i.e., left 
unpaired in the alignment (corresponding to 13 gaps), 
a score of  13 is reached with a quality of  fit of  7.8 a 
(partially shown in table 2). 

Continuous identity between the sequences of  the 
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two a,/3-eliminating enzymes is limited to dipeptides 
[12], tripeptides [5] and 1 tetrapeptide. Nevertheless, 
related sequence segments are distributed all over the 
2 polypeptide chains, as shown in table 2 for the 
N-terminal, C-terminal and PLP binding regions as well 
as for another identity-rich fragment. The high qual- 
ity of fit for the PLP binding sequences together with 
the occurrence of a short palindrome proximal to the 
PLP binding Lys of both H-eliminating enzymes makes 
it unlikely that this is a chance event. The similarity 
between these 2 enzymes might not be unexpected, 
since the isolated/32-subunit of  tryptophan synthase 
can also deaminate serine [ 18]. But differences exist 
which must be accounted for, such as the binding site 
for the other/3-subunit and for the a-subunit. The 
increased chain length of the monomeric dehydratase, 
in particular the N-terminal extension, might compen- 
sate the absence of a second subunit found in all 
other vitamin B6-dependent enzymes. Similarly, the 
relatively large number of  amino acid doublets [26] 
and triplets [6], which involves 70 of  the 449 residues 
(15.6% in comparison to 8.1% in the synthase and 
9.6% in the transaminase) might be a consequence of 
the relatively small overall size of the dehydratase. 

It is surprising that the aminotransferase can be 
aligned to the dehydratase with a similar high qual- 
ity of  fit (table 2). In an overall alignment of  the 2 
enzymes (not shown) 75 out of  401 residues (18.7%) 
could be placed to become identical. This corresponds 
to 83.5% difference (alignment length-identities/ 
alignment length) as defined in [ 16]. The unpaired ter- 
minal positions are not counted. For the two fl-elimi- 
hating enzymes an alignment resulted in 87 identical 
residues (22%) and in 80.8% difference. We conclude 
that the 3 PLP-dependent enzymes belong to the same 
or a closely related sequence superfamily as defined 
in [16]. 

How related are the 3 proteins in their tertiary 
structure? The cytosolic and the mitochondrial aspar- 
tate aminotransferases have 48% sequence identity 
and their 3<timensional structures are closely related 
[19]. Examples exist for less closely related proteins 
like protease B and chymotrypsin (13% identity), 
hemoglobulin a-chain and myoglobin (27% identity) 
where the chain folds can be superimposed and differ- 
ences occur only at the surface of the molecules [20]. 
However, the fact that the PLP binding lysines occupy 
quite different positions in the chains of the a~3-elimi- 
nating enzymes and the aminotransferases does not 
support the idea of overall structural similarity. Only 

X-ray crystallography of other PLP-dependent 
enzymes can show whether or not there exists a com- 
mon domain for PLP binding in different amino acid- 
metabolising enzymes. 
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