-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com
@ ScienceDirect
CrossMark SOftwa rex

ELSEVIER SoftwareX 1-2 (2015) 9-12

www.elsevier.com/locate/softx

The Visualization Toolkit (VTK): Rewriting the rendering code for modern
graphics cards

Marcus D. Hanwell*, Kenneth M. Martin, Aashish Chaudhary, Lisa S. Avila

Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA
Received 2 March 2015; received in revised form 10 April 2015; accepted 13 April 2015

Abstract

The Visualization Toolkit (VTK) is an open source, permissively licensed, cross-platform toolkit for scientific data processing, visualization,
and data analysis. It is over two decades old, originally developed for a very different graphics card architecture. Modern graphics cards feature
fully programmable, highly parallelized architectures with large core counts. VTK’s rendering code was rewritten to take advantage of modern
graphics cards, maintaining most of the toolkit’s programming interfaces. This offers the opportunity to compare the performance of old and new
rendering code on the same systems/cards. Significant improvements in rendering speeds and memory footprints mean that scientific data can be
visualized in greater detail than ever before. The widespread use of VTK means that these improvements will reap significant benefits.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

Keywords: Visualization; Toolkit; Data analysis; Scientific data

Code metadata

Current code version v6.2.0

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-15-00004

Legal Code License 3-clause BSD

Code versioning system used git

Software code languages, tools, and services used C++, Python, MPI, OpenGL

Compilation requirements, operating environments & dependencies C++ compiler, OpenGL 2.1+, Windows, Mac OS X, Linux and experimental
Android/iOS support

If available Link to developer documentation/manual http://www.vtk.org/doc/release/6.2/html/

Support email for questions vtkusers @vtk.org

Software metadata

Current software version v6.2.0

Permanent link to executables of this version http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Windows-64bit.exe —Windows 64 bit
http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Darwin-64bit.dmg —Mac OS X
http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Linux-64bit.tar.gz —Linux 64 bit
http://www.vtk.org/files/release/6.2/VTK-6.2.0.tar.gz —source code tarball

Legal Software License 3-clause BSD
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows, Unix-like, Android, i0OS
Installation requirements & dependencies OpenGL 2.1+, Windows, Mac OS X, Linux and experimental Android/iOS support

If available, link to user manual—if formally published include a http://www.vtk.org/doc/release/6.2/html/
reference to the publication in the reference list
Support email for questions vtkusers @vtk.org

* Corresponding author.
E-mail address: marcus.hanwell @kitware.com (M.D. Hanwell).

http://dx.doi.org/10.1016/j.s0ftx.2015.04.001
2352-7110/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/82251675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2015.04.001&domain=pdf
http://www.elsevier.com/locate/softx
http://dx.doi.org/10.1016/j.softx.2015.04.001
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-15-00004
http://www.vtk.org/doc/release/6.2/html/
mailto:vtkusers@vtk.org
http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Windows-64bit.exe
http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Darwin-64bit.dmg
http://www.vtk.org/files/release/6.2/vtkpython-6.2.0-Linux-64bit.tar.gz
http://www.vtk.org/files/release/6.2/VTK-6.2.0.tar.gz
http://www.vtk.org/doc/release/6.2/html/
mailto:vtkusers@vtk.org
mailto:marcus.hanwell@kitware.com
http://dx.doi.org/10.1016/j.softx.2015.04.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10 M.D. Hanwell et al. / SoftwareX 1-2 (2015) 9-12

1. Motivation and significance

VTK is an open source, permissively licensed (3-clause
BSD), cross-platform toolkit for scientific data processing, vi-
sualization, and data analysis. It has been developed to offer re-
producible visualization and data analysis pipelines for a range
of scientific data, across domains such as medical imaging,
chemistry, cosmological data, computational fluid dynamics,
and finite element analysis. It implements a number of visu-
alization modalities that include 3D polygonal, glyphing, vol-
ume rendering as well as 2D charting/rendering capabilities.
These capabilities are developed primarily in C++, and auto-
matically wrapped in Python, Java, and Tcl to offer advanced
data processing, visualization, and analysis to scientists directly
or through applications built upon the libraries.

It was initially developed by the three founders of the
project, Ken Martin, Will Schroeder, and Bill Lorensen, to pro-
vide reusable examples accompanying a book on object ori-
ented computer graphics programming [1,2]. VTK is among the
oldest open source toolkits that is still actively developed, with
over two decades of development by a large and distributed de-
velopment team. The toolkit provides reusable software compo-
nents for use in scientific data visualization and analysis. One
of the primary aims of the project is to provide state-of-the-art
implementations of visualization algorithms, such as marching
cubes [3], that can be examined by the community, adapted, and
reused in scientific data analysis and visualization.

For a number of years the rendering capabilities had lagged
behind what was possible with the latest graphics cards. In order
to take full advantage of them it required a significant software
engineering investment to rewrite the rendering code to
target modern programmable cards. The graphics programming
interface has changed significantly in the last twenty years,
with consolidation from multiple competing standards down
to OpenGL [4] that is available across a number of platforms
and operating systems, and DirectX [5] available for operating
systems developed by Microsoft.

The VTK project has been reused in a large number of
applications for scientific data visualization and analysis across
a number of scientific domains. It has established best practices
in the field using OpenGL as its primary rendering interface,
and it has been the foundation of a number of research
projects involving visualization and data analysis. The code has
been developed in a portable fashion, and has been built on
embedded systems, mobile phones, desktop/laptop computers,
and supercomputers.

2. Software description

VTK is written primarily in portable C++ [6], using CMake
[7] to build on multiple platforms. At its core there is a data
pipeline that is connected together to form a working analysis
pipeline. There are sources, such as data from file readers, the
network, etc., filters that act upon the data, and sinks such as
file writers or mappers that render data to the screen [8].

The permissive, OSI-approved 3-clause BSD license was
chosen for its simplicity and because it promotes shared

ownership of the code. It offers everyone the same access and
opportunity to develop open or proprietary projects using it (in
contrast to dual-licensing using “copyleft” as an inducement
to purchase licenses). This promotes a service-based model for
commercial activity, and promotes maximum reuse of the code
in all settings/sectors.

The toolkit is composed of a number of software libraries,
or ‘modules’, that encapsulate a related set of functionality,
or bring a major dependency into the standard programming
interface provided. The rendering code is separated into inter-
face modules that provide the programming interfaces, com-
mon logic, etc., and the implementation modules that override
interface classes with concrete implementations. The mecha-
nism developed offers compile time and run time control of
these overrides, but the primary mechanism employed is com-
pile time.

The legacy rendering code is in a group of implementation
modules collectively called “OpenGL”, whereas the new ren-
dering code described is a drop-in replacement set of imple-
mentation modules collectively called “OpenGL2”. This code
sits at the end of the data pipeline, and is principally responsible
for mapping data from the pipeline to the screen. This part of
the code is critical to interaction with scientific data, and often
represents one of the major bottlenecks to understanding data.
At some point in the future the default set of implementation
modules will be switched to “OpenGL2”.

A testing suite has been developed alongside VTK to verify
visualizations are consistent across platforms, and as changes
are merged into the main code base. These tests provide
automatic verification of functionality, and provide pixel-to-
pixel comparisons. Any differences are uploaded to a software
quality dashboard, with a mismatch being considered a test
failure. This suite of tests has played a central role in aiding
the rewrite of the VTK rendering code, offering validation of
the new rendering code across a number of operating systems
and graphics cards/implementations.

Some of the major features of VTK include polygonal ren-
dering of data, with options to color the surface based upon
secondary parameters using a number of color mapping tech-
niques. Volume rendering of data is also available, with an array
of rendering options. There are a number of more specialized
rendering modes, such as glyphing for scenes with repeats of
the same geometry and impostor spheres/cylinders for chem-
ical data. The 3D scenes are fully interactive, and there are a
selection of 3D widgets to aid in interaction. There are also a
number of 2D rendering classes providing support for interac-
tive charts using the same data pipelines, and OpenGL for the
rendering.

3. Illustrative examples

The VTK project has been reused in a number of projects,
some examples of which include ParaView [9], Vislt [10],
3D Slicer [11], the Medical Imaging Interaction Toolkit
(MITK) [12], Mayavi [13], Reactor Geometry Generator
(RGG), Computational Model Builder (CMB), tomviz [14,15],
MongoChem, Avogadro 2 [16], UV-CDAT, VisTrails, and many

M.D. Hanwell et al. / SoftwareX 1-2 (2015) 9-12 11

Fle Data™r
M
Pipeines

Visualization Modules

'
> 0 W 0 10 10 10 1% 2z

RenderViewl 05| Maximize | Close

1025 x 1025 x 1025

Original Data Range

0:255

Transformed Data Range

0:255 =
Maduie Properties

* Dolete
= Annctations:
Cubs Axes Visioity

Fig. 1. The tomviz application that uses VTK and ParaView to build an
environment for electron microscope tomography applications in materials
science.

projects across different domains including one-off codes.
These programs span a large range of scientific domains, and
due to the permissive open-source licensing it is difficult to
know of all the areas in which VTK has been used. Many pro-
prietary applications make use of VTK, including desktop, web,
and mobile applications across a number of industries.

The benefits of the rendering code rewrite have yet to be
realized, but they are likely to be significant. The ParaView
and 3D Slicer applications can already be built with the new
rendering code, as can tomviz (shown in Fig. 1), and CMB. The
RGG project is making use of rendering code only available in
the “OpenGL2”, and is probably the first application to require
the new rendering code.

4. Impact

The impact of the VTK project has been significant over its
20 year history, finding uses across a large number of domains
in scientific data visualization, analysis and related areas. The
creation of the project led to a successful spin-off company,
Kitware, Inc., which was founded in 1998—some 17 years of
operation. The company was founded around the VTK project,
and later went on to develop a number of new projects. It has
enjoyed year-on-year growth, is privately owned, and has been
profitable since creation. VTK remains a flagship project, along
with ParaView that provides a turnkey desktop application
leveraging VTK functionality.

The VTK project has had over 100,000 commits made by
over 250 contributors according to Open HUB’s analysis of
source history [17]. A large number of commits and code were
written by core developers, but the raw contributor numbers
make it clear that many contributions have been contributed
by members of the open source community (with two of the
top five all-time contributors being external contributors). VTK
has also taken part in the Google Summer of Code three times,
encouraging students to propose summer projects (funded by
Google) mentored by VTK experts.

The VTK project, and others that came after, have been
developed using a “Platform Strategy”, where Kitware experts

Table 1
First frame render times, and relative speedup.
Triangles (M) OpenGL 1 (s) OpenGL 2 (s) Speedup
1 0.423 0.046 9.1
5 2.356 0.219 10.7
20 9.659 0.802 12.0
30 14.459 1.167 12.4
Table 2
Subsequent frame render times (average of 50), and relative speedup.
Triangles (M) OpenGL 1 (s) OpenGL 2 (s) Speedup
1 0.0003 0.0008 0.5
5 0.506 0.003 200.0
20 2.010 0.007 282.3
30 3.005 0.011 286.2

develop powerful software platforms, using liberal licensing
models to promote shared ownership of the platform with
partners in national laboratories, universities, government, and
industry. A software services model focuses on the creation of
new functionality, and exploring challenging areas in scientific
data visualization and analysis while delivering state-of-the-art
software platforms.

The rendering rewrite is not yet complete, but it is set
to have enormous impacts in the coming years. Rendering
performance was becoming a major bottleneck in VTK, with
scientific data in virtually all areas growing in size rapidly.
The graphics card has changed significantly, with the OpenGL
programming interfaces undergoing significant change. It
has moved from a fixed function system, to a dynamic,
programmable, highly parallel mathematical processor with
core counts far outstripping the main system.

The rewrite has led to significant speedups for a number of
rendering scenes, and it has also reduced the memory footprint
when rendering identical geometries. This means that geome-
tries that were simply too large to load/render previously are
now possible. It also means that there is a significant reduction
in rendering time for equivalent data, offering the possibility of
applying more advanced rendering techniques previously not
possible if interactivity were to be maintained.

Some sample benchmarks were taken on a 64 bit Linux
system, and are representative of results seen on all oper-
ating systems that support both rendering implementations.
Tables 1 and 2 show the average time to first render,
and an average subsequent render taken over a number of
frames. This code used to benchmark is located at ‘Utili-
ties/Benchmarks/GLBenchmarking.cxx’ in the source tree, and
*./bin/GLBenchmarking —start 8 —end 14’ was used to obtain
timings in this range. They show that initial render times are an
order of magnitude faster, and subsequent render times are two
orders of magnitude faster. This represents the best case, for a
single large triangular mesh, but most rendering scenarios have
benefited from significant speedups.

The core rendering programming interfaces in VTK have
not changed, and so for many applications it is possible to

12 M.D. Hanwell et al. / SoftwareX 1-2 (2015) 9-12

simply rebuild them with the new rendering code without any
significant porting effort. In these cases existing codes will
benefit from these improvements, with the VTK development
team providing guidance on how to port existing codes that are
more complex. The ParaView application is one of the more
complex VTK-based applications, and its transition to the new
rendering code has highlighted a number of issues that were
fixed.

5. Conclusions

The modern graphics card has changed significantly, and
rewriting the rendering code to take advantage of advances in
modern graphics rendering techniques has yielded significant
performance improvements. The VTK project provides a
reusable software framework that can be used across a number
of scientific domains, with proven open source and commercial
applications. The improvements to the rendering not only
offer faster rendering of larger data, but free up precious
computational resources to perform additional analyses, or to
perform increasingly complex visualizations of data to aid
in understanding. The open source, cross platform code base
offers a platform for verified, reproducible, open science that
can be reviewed by the wider community.

Acknowledgments

We would like to acknowledge the National Institutes
of Health for sponsoring this work under the grant NIH
RO1EB014955 “Accelerating Community-Driven Medical In-
novation with VTK”. We would also like to take the opportu-
nity to thank the community that has developed, supported, and
promoted VTK over its lifetime.

References

[1] Schroeder W, Martin K, Lorensen B. An object oriented approach to 3d
graphics. 4th ed. Kitware, Inc.; 2004.

[2] Geveci B, Schroeder W. VTK. In: Brown A, Wilson G, editors. The

architecture of open source applications. 1st ed. 2012. lulu.com.

[3] Lorensen WE, Cline HE. Marching cubes: A high resolution 3d surface

construction algorithm. SIGGRAPH Comput Graph 1987;21:163-9.

Shreiner D, Group TKOAW. OpenGL programming guide: the official

guide to learning opengl, versions 3.0 and 3.1. Addison-Wesley

Professional; 2009.

Perez A, Royer D. Advanced 3-D game programming with directx 7.0. 1st

ed. Plano, TX, USA: Wordware Publishing Inc.; 2000.

Stroustrup B. The C++ programming language. 3rd ed. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc.; 2000.

[7] Martin K, Hoffman B. Mastering CMake. 5th ed. Kitware, Inc.; 2010.
[8] The VTK user’s guide. 11th ed. Kitware, Inc.; 2010.
[9] Henderson A, Ahrens J, Law C. The ParaView guide. 2004.

[10] Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D,
Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T,
Sanderson A, Garth C, Bethel EW, Camp D, Riibel O, Durant M,
Favre JM, Navritil P. VisIt: An end-user tool for visualizing and analyzing
very large data. In: High performance visualization—enabling extreme-
scale scientific insight. 2012. p. 357-72.

[11] Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C,
Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S,
Miller J, Pieper S, Kikinis R. 3d slicer as an image computing platform for
the quantitative imaging network. Mag Reson Imaging 2012;30:1323-41.

[12] The Medical Imaging Interaction Toolkit (MITK), Online. 2015. URL
http://mitk.org/.

[13] Mayavi, Online. 2015. http://code.enthought.com/projects/mayavi/.

[14] tomviz web site, Online. 2014. URL http://tomviz.org/.

[15] Hanwell MD, Ayachit U, Hovden R, Muller DA, Maynard R, Boeckel B.
tomviz 0.4.0, 2014. URL http://dx.doi.org/10.5281/zenodo.12723.

[16] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E,
Hutchison GR. Avogadro: an advanced semantic chemical editor,
visualization, and analysis platform. J] Cheminformatics 2012;4.

[17] The Visualization Toolkit Open Source Project on Open HUB, Online.
2015. https://www.openhub.net/p/vtk.

[4

=

[5

=

[6

=

http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref1
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref2
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref3
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref4
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref5
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref6
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref7
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref8
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref9
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref10
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref11
http://mitk.org/
http://code.enthought.com/projects/mayavi/
http://tomviz.org/
http://dx.doi.org/10.5281/zenodo.12723
http://refhub.elsevier.com/S2352-7110(15)00003-5/sbref16
https://www.openhub.net/p/vtk

	The Visualization Toolkit (VTK): Rewriting the rendering code for modern graphics cards
	Motivation and significance
	Software description
	Illustrative examples
	Impact
	Conclusions
	Acknowledgments
	References

