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Let R be a commutative noetherian local ring that is not Goren-
stein. It is known that the category of totally reflexive modules
over R is representation infinite, provided that it contains a non-
free module. The main goal of this paper is to understand how
complex the category of totally reflexive modules can be in this
situation.
Local rings (R,m) with m3 = 0 are commonly regarded as the
structurally simplest rings to admit diverse categorical and homo-
logical characteristics. For such rings we obtain conclusive results
about the category of totally reflexive modules, modeled on the
Brauer–Thrall conjectures. Starting from a non-free cyclic totally
reflexive module, we construct a family of indecomposable totally
reflexive R-modules that contains, for every n ∈ N, a module that
is minimally generated by n elements. Moreover, if the residue
field R/m is algebraically closed, then we construct for every n ∈ N

an infinite family of indecomposable and pairwise non-isomorphic
totally reflexive R-modules, each of which is minimally generated
by n elements. The modules in both families have periodic minimal
free resolutions of period at most 2.
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1. Introduction and synopsis of the main results

The representation theoretic properties of a local ring bear pertinent information about its singu-
larity type. A notable illustration of this tenet is due to Herzog [10] and to Buchweitz, Greuel, and
Schreyer [3]. They show that a complete local Gorenstein algebra is a simple hypersurface singularity
if its category of maximal Cohen–Macaulay modules is representation finite. A module category is
called representation finite if it comprises only finitely many indecomposable modules up to isomor-
phism. Typical examples of maximal Cohen–Macaulay modules over a Cohen–Macaulay local ring are
high syzygies of finitely generated modules.

Over a Gorenstein local ring, all maximal Cohen–Macaulay modules arise as high syzygies, but
over an arbitrary Cohen–Macaulay local ring they may not. Totally reflexive modules are infinite syzy-
gies with special duality properties; the precise definition is given below. One reason to study these
modules—in fact, the one discovered most recently—is that they afford a characterization of simple
hypersurface singularities among all complete local algebras, i.e. without any a priori assumption of
Gorensteinness. This extension of the result from [3,10] is obtained in [5]. It is consonant with the in-
tuition that the structure of high syzygies is shaped predominantly by the ring, and the same intuition
guides this work.

The key result in [5] asserts that if a local ring is not Gorenstein and the category of totally re-
flexive modules contains a non-free module, then it is representation infinite. The main goal of this
paper is to determine how complex the category of totally reflexive modules is when it is represen-
tation infinite. Our results suggest that it is often quite complex; Theorems (1.1) and (1.4) below are
modeled on the Brauer–Thrall conjectures.

For a finite dimensional algebra A, the first Brauer–Thrall conjecture asserts that if the category of
A-modules of finite length is representation infinite, then there exist indecomposable A-modules of
arbitrarily large length. The second conjecture asserts that if the underlying field is infinite, and there
exist indecomposable A-modules of arbitrarily large length, then there exist infinitely many integers d
such that there are infinitely many indecomposable A-modules of length d. The first conjecture was
proved by Roı̆ter (1968); the second conjecture has been verified, for example, for algebras over alge-
braically closed fields by Bautista (1985) and Bongartz (1985).

∗ ∗ ∗
In this section, R is a commutative noetherian local ring. The central questions addressed in the

paper are: Assuming that the category of totally reflexive R-modules is representation infinite and
given a non-free totally reflexive R-module, how does one construct an infinite family of pairwise
non-isomorphic totally reflexive R-modules? And, can one control the size of the modules in the
family in accordance with the Brauer–Thrall conjectures?

A finitely generated R-module M is called totally reflexive if there exists an infinite sequence of
finitely generated free R-modules
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F : · · · −→ F1 −→ F0 −→ F−1 −→ · · · ,
such that M is isomorphic to the module Coker(F1 → F0), and such that both F and the dual se-
quence HomR(F , R) are exact. These modules were first studied by Auslander and Bridger [1], who
proved that R is Gorenstein if and only if every R-module has a totally reflexive syzygy. Over a
Gorenstein ring, the totally reflexive modules are precisely the maximal Cohen–Macaulay modules,
and these have been studied extensively. In the rest of this section we assume that R is not Goren-
stein.

Every syzygy of an indecomposable totally reflexive R-module is, itself, indecomposable and totally
reflexive; a proof of this folklore result is included in Section 2. Thus if one were given a totally
reflexive module whose minimal free resolution is non-periodic, then the syzygies would form the
desired infinite family; though one cannot exercise any control over the size of the modules in the
family.

In practice, however, the totally reflexive modules that one typically spots have periodic free reso-
lutions. To illustrate this point, consider the Q-algebra

A = Q[s, t,u, v]/(s2, t2,u2, v2,uv,2su + tu, sv + tv
)
.

It has some easily recognizable totally reflexive modules—A/(s) and A/(s + u) for example—whose
minimal free resolutions are periodic of period at most 2. It also has indecomposable totally reflex-
ive modules with non-periodic free resolutions. However, such modules are significantly harder to
recognize. In fact, when Gasharov and Peeva [8] did so, it allowed them to disprove a conjecture of
Eisenbud.

The algebra A above has Hilbert series 1 + 4τ + 3τ 2. In particular, A is a local ring, and the
third power of its maximal ideal is zero; informally we refer to such rings as short. For these rings,
[14] gives a quantitative measure of how challenging it can be to recognize totally reflexive modules
with non-periodic resolutions.

Short local rings are the structurally simplest rings that accommodate a wide range of homolog-
ical behavior, and [8] and [14] are but two affirmations that such rings are excellent grounds for
investigating homological questions in local algebra.

∗ ∗ ∗
For the rest of this section, assume that R is short and let m be the maximal ideal of R . Note that

m3 is zero and set e = dimR/m m/m2. A reader so inclined is welcome to think of a standard graded
algebra with Hilbert series 1 + eτ + h2τ

2.
The families of totally reflexive modules constructed in this paper start from cyclic ones. Over

a short local ring, such modules are generated by elements with cyclic annihilators; Henriques and
Şega [9] call these elements exact zero divisors. The ubiquity of exact zero divisors in short local alge-
bras is a long-standing empirical fact. Its theoretical underpinnings are found in works of Conca [7]
and Hochster and Laksov [11]; we extend them in Section 8.

The main results of this paper are Theorems (1.1)–(1.4). It is known from work of Yoshino [19] that
the length of a totally reflexive R-module is a multiple of e. In Section 4 we prove the existence of
indecomposable totally reflexive R-modules of every possible length:

(1.1) Theorem (Brauer–Thrall I). If there is an exact zero divisor in R, then there exists a family {Mn}n∈N of
indecomposable totally reflexive R-modules with lengthR Mn = ne for every n. Moreover, the minimal free
resolution of each module Mn is periodic of period at most 2.

Our proof of this result is constructive in the sense that we exhibit presentation matrices for the
modules Mn; they are all upper triangular square matrices with exact zero divisors on the diagonal.
Yet, the strong converse contained in Theorem (1.2) came as a surprise to us. It illustrates the point
that the structure of the ring is revealed in high syzygies.

(1.2) Theorem. If there exists a totally reflexive R-module without free summands, which is presented by a
matrix that has a column or a row with only one non-zero entry, then that entry is an exact zero divisor in R.
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These two results—the latter of which is distilled from Theorem (5.3)—show that existence of
totally reflexive modules of any size is related to the existence of exact zero divisors. One direction,
however, is not unconditional, and in Section 9 we show that non-free totally reflexive R-modules
may also exist in the absence of exact zero divisors in R . If this phenomenon appears peculiar, some
consolation may be found in the next theorem, which is proved in Section 8. For algebraically closed
fields, it can be deduced from results in [7,11,19].

(1.3) Theorem. Let k be an infinite field, and let R be a generic standard graded k-algebra which (1) has Hilbert
series 1 + h1τ + h2τ

2 , (2) is not Gorenstein, and (3) admits a non-free totally reflexive module. Then R has an
exact zero divisor.

If the residue field R/m is infinite, and there is an exact zero divisor in R , then there are infinitely
many different ones; this is made precise in Theorem (7.6). Together with a couple of other results
from Section 7 this theorem yields:

(1.4) Theorem (Brauer–Thrall II). If there is an exact zero divisor in R, and the residue field k = R/m is
algebraically closed, then there exists for each n ∈ N a family {Mλ

n }λ∈k of indecomposable and pairwise
non-isomorphic totally reflexive R-modules with lengthR Mλ

n = ne for every λ. Moreover, the minimal free
resolution of each module Mλ

n is periodic of period at most 2.

∗ ∗ ∗
The families of modules in Theorems (1.1) and (1.4) come from a construction that can provide

such families over a general local ring, contingent on the existence of minimal generators of the
maximal ideal with certain relations among them. This construction is presented in Section 2 and
analyzed in Sections 3 and 6. To establish the Brauer–Thrall theorems, we prove in Sections 4 and 7
that the necessary elements and relations are available in short local rings with exact zero divisors.
The existence of exact zero divisors is addressed in Sections 5, 8, and 9. In Section 10 we give another
construction of infinite families of totally reflexive modules. It applies to certain rings of positive
dimension, and it does not depend on the existence of exact zero divisors.

2. Totally acyclic complexes and exact zero divisors

In this paper, R denotes a commutative noetherian ring. Complexes of R-modules are graded ho-
mologically. A complex

F : · · · −→ Fi+1
∂ F

i+1−−→ Fi
∂ F

i−→ Fi−1 −→ · · ·
of finitely generated free R-modules is called acyclic if every cycle is a boundary; that is, the equality
Ker∂ F

i = Im ∂ F
i+1 holds for every i ∈ Z. If both F and the dual complex HomR(F , R) are acyclic, then

F is called totally acyclic. Thus an R-module is totally reflexive if and only if it is the cokernel of a
differential in a totally acyclic complex.

The annihilator of an ideal a in R is written as (0 : a). For principal ideals a = (a) we use the
simplified notation (0 : a).

Recall from [9] the notion of an exact zero divisor: a non-invertible element x �= 0 in R is called
an exact zero divisor if one of the following equivalent conditions holds.

(i) There is an isomorphism (0 : x)∼= R/(x).
(ii) There exists an element w in R such that (0 : x)= (w) and (0 : w)= (x).

(iii) There exists an element w in R such that

· · · −→ R w−→ R x−→ R w−→ R −→ · · · (2.0.1)

is an acyclic complex.
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For every element w as above, one says that w and x form an exact pair of zero divisors in R . If R
is local, then w is unique up to multiplication by a unit in R .

(2.1) Remark. For a non-unit x �= 0 the conditions (i)–(iii) above are equivalent to

(iv) There exist elements w and y in R such that the sequence

R w−→ R x−→ R
y−→ R

is exact.

Indeed, exactness of this sequence implies that there are equalities (0 : y) = (x) and (0 : x) = (w).
Thus there is an obvious inclusion (y) ⊆ (w) and, therefore, an inclusion (0 : w) ⊆ (0 : y) = (x). As
x annihilates w , this forces the equality (x) = (0 : w). Thus (iv) implies (ii) and, clearly, (iv) follows
from (iii).

Starting from the next section, we shall assume that R is local. We use the notation (R,m) to fix
m as the unique maximal ideal of R and the notation (R,m, k) to also fix the residue field k = R/m.

A complex F of free modules over a local ring (R,m) is called minimal if one has Im ∂ F
i ⊆ mFi−1

for all i ∈ Z. Let M be a finitely generated R-module and let F be a minimal free resolution of M; it
is unique up to isomorphism. The ith Betti number, βR

i (M), is the rank of the free module Fi , and the
ith syzygy of M is the module Coker∂ F

i+1.

(2.2) Remark. The complex (2.0.1) is isomorphic to its own dual, so if it is acyclic, then it is totally
acyclic. Thus if w and x form an exact pair of zero divisors in R , then the modules (w)∼= R/(x) and
(x)∼= R/(w) are totally reflexive. Moreover, it follows from condition (iv) that a totally acyclic complex
of free modules, in which four consecutive modules have rank 1, has the form (2.0.1). This means, in
particular, that over a local ring R , any totally reflexive module M with βR

i (M)= 1 for 0 � i � 3 has
the form M ∼= R/(x), where x is an exact zero divisor. For modules over short local rings we prove a
stronger statement in Theorem (5.3).

The next lemma is folklore; it is proved for Gorenstein rings in [10].

(2.3) Lemma. Let R be local and let T be a minimal totally acyclic complex of finitely generated free R-modules.
The following conditions are equivalent:

(i) The module Coker∂ T
i is indecomposable for some i ∈ Z.

(ii) The module Coker∂ T
i is indecomposable for every i ∈ Z.

In particular, every syzygy of an indecomposable totally reflexive R-module is indecomposable and totally
reflexive.

Proof. For every i ∈ Z set Mi = Coker∂ T
i . By definition, the modules Mi and HomR(Mi, R) are totally

reflexive and one has Mi ∼= HomR(HomR(Mi, R), R) for every i ∈ Z. Assume that for some integer j,
the module M j is indecomposable. For every i < j, the module M j is a syzygy of Mi , and every
summand of Mi has infinite projective dimension, as T is minimal and totally acyclic. Thus Mi is
indecomposable. Further, if there were a non-trivial decomposition Mi ∼= K ⊕ N for some i > j, then
the dual module HomR(Mi, R) would decompose as HomR(K , R) ⊕ HomR(N, R), where both sum-
mands would be non-zero R-modules of infinite projective dimension. However, HomR(M j, R) is a
syzygy of HomR(Mi, R), so HomR(M j, R) would then have a non-trivial decomposition and so would
M j ∼= HomR(HomR(M j, R), R); a contradiction. �
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(2.4) Lemma. Let T and F be complexes of finitely generated free R-modules. If T is totally acyclic, and the
modules Fi are zero for i 	 0, then the complex T ⊗R F is totally acyclic.

Proof. The complex T ⊗R F is acyclic by [4, Lemma 2.13]. Adjointness of Hom and tensor yields the
isomorphism HomR(T ⊗R F , R)∼= HomR(F ,HomR(T , R)). As the complex HomR(T , R) is acyclic, so is
HomR(F ,HomR(T , R)) by [4, Lemma 2.4]. �
(2.5) Definition. For n ∈ N and elements y and z in R with yz = 0, let Ln(y, z) be the complex defined
as follows

Ln(y, z)i =
{

R, for 0 � i � −n + 1,

0, elsewhere
and ∂

Ln(y,z)
i =

{
y, for i even,

−z, for i odd.

If w and x form an exact pair of zero divisors in R , and T is the complex (2.0.1), then the differ-
entials of the complex T ⊗R Ln(y, z) have a particularly simple form; see Remark (2.7). In Sections 3
and 6 we study modules whose presentation matrices have this form.

(2.6) Construction. Let n ∈ N, let In be the n×n identity matrix, and let ri denote its ith row. Consider
the n × n matrices Ion , Ie

n , Jo
n , and Je

n defined by specifying their rows as follows

(
Ion

)
i =

{
ri, i odd,

0, i even
and

(
Ie
n

)
i =

{
0, i odd,

ri, i even,(
Jo
n

)
i =

{
ri+1, i odd,

0, i even
and

(
Je
n

)
i =

{
0, i odd,

ri+1, i even,

with the convention rn+1 = 0. The equality Ion + Ie
n = In is clear, and the matrix Jn = Jo

n + Je
n is the n × n

nilpotent Jordan block with eigenvalue zero.
For elements w , x, y, and z in R let Mn(w, x, y, z) be the R-module with presentation matrix

Θn(w, x, y, z)= wIon + xIe
n + yJo

n + zJe
n; it is an upper triangular n × n matrix with w and x alternating

on the diagonal, and with y and z alternating on the superdiagonal:

Θn(w, x, y, z)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w y 0 0 0 · · ·
0 x z 0 0 · · ·
0 0 w y 0 · · ·
0 0 0 x z

0 0 0 0 w
. . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For n = 1 the matrix has only one entry, namely w . For n = 2, the matrix does not depend on z, so
we set M2(w, x, y)= M2(w, x, y, z) for every z ∈ R .

Note that if (R,m) is local and w , x, y, and z are non-zero elements in m, then Mn(w, x, y, z) is
minimally generated by n elements.

(2.7) Remark. Assume that w and x form an exact pair of zero divisors in R , and let T be the complex
(2.0.1), positioned such that ∂ T

1 is multiplication by w . Let n ∈ N and let y and z be elements in R
that satisfy yz = 0. It follows from Lemma (2.4) that the complex T ⊗R Ln(y, z) is totally acyclic. It

is elementary to verify that the differential ∂ T ⊗R Ln(y,z)
i is given by the matrix Θn(w, x, y, z) for i odd

and by Θn(x,w,−y,−z) for i even, cf. Construction (2.6). In particular, the module Mn(w, x, y, z) is
totally reflexive.
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3. Families of indecomposable modules of different size

With appropriately chosen ring elements as input, Construction (2.6) yields the infinite families of
modules in the Brauer–Thrall theorems advertised in Section 1. In this section we begin to analyze
the requirements on the input.

(3.1) Theorem. Let (R,m) be a local ring and assume that w and x are elements in m\m2 , that form an exact
pair of zero divisors. Assume further that y and z are elements in m\m2 with yz = 0 and that one of the
following conditions holds:

(a) The elements w, x, and y are linearly independent modulo m2 .
(b) One has w ∈ (x)+ m2 and y, z /∈ (x)+ m2 .

For every n ∈ N, the R-module Mn(w, x, y, z) is indecomposable, totally reflexive, and non-free. Moreover,
Mn(w, x, y, z) has constant Betti numbers, equal to n, and its minimal free resolution is periodic of period at
most 2.

The proof of (3.1)—which takes up the balance of the section—employs an auxiliary result of inde-
pendent interest, Proposition (3.2) below; its proof is deferred to the end of the section.

(3.2) Proposition. Let (R,m) be a local ring, let n be a positive integer, and let w, x, y, and z be elements in
m\m2 .

(a) Assume that w, x, and y are linearly independent modulo m2 .
• If n is even, then Mn(w, x, y, z) is indecomposable.
• If n is odd, then Mn(w, x, y, z) or Mn(x,w, y, z) is indecomposable.

(b) If y /∈ (w, x)+ m2 and z /∈ (x)+ m2 hold, then Mn(w, x, y, z) is indecomposable.

Proof of Theorem (3.1). Let n be a positive integer; in view of Remark (2.7), all we need to show is
that the R-module Mn(w, x, y, z) is indecomposable.

(a): Assume that w , x, and y are linearly independent modulo m2. By Remark (2.7) the module
Mn(w, x, y, z) is the first syzygy of Mn(x,w,−y,−z). If the module Mn(x,w, y, z) is indecompos-
able, then so is the isomorphic module Mn(x,w,−y,−z), and it follows from Lemma (2.3) that
Mn(w, x, y, z) is indecomposable as well. Thus by Proposition (3.2)(a) the module Mn(w, x, y, z) is
indecomposable.

(b): Under the assumptions w ∈ (x)+m2 and y, z /∈ (x)+m2, the conditions in Proposition (3.2)(b)
are met, so the R-module Mn(w, x, y, z) is indecomposable. �
Proof of Proposition (3.2). Let n be a positive integer and let w , x, y, and z be elements in m\m2.
It is convenient to work with a presentation matrix Φn(w, x, y, z) for M = Mn(w, x, y, z) that one
obtains as follows. Set p = � n

2 � and let Π be the n ×n matrix obtained from In by permuting its rows
according to

(
1 2 3 4 5 6 . . . n
1 p + 1 2 p + 2 3 p + 3 . . . δp + p

)
,

with δ = 0 if n is odd and δ = 1 if n is even. Set Φn(w, x, y, z) =ΠΘn(w, x, y, z)Π−1. If n is even,
then Φn is the block matrix

Φn(w, x, y, z)=
(

wIp yIp

zJ xI

)
,

p p
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and if n is odd, then Φn(w, x, y, z) is the matrix obtained from Φn+1(w, x, y, z) by deleting the last
row and the last column.

To verify that M is indecomposable, assume that ε ∈ HomR(M,M) is idempotent and not the
identity map 1M . The goal is to show that ε is the zero map. The only idempotent automorphism of M
is 1M , so ε is not an isomorphism. Thus ε is not surjective, as M is noetherian. Set Φ =Φn(w, x, y, z)
and consider the commutative diagram with exact rows

Rn
Φ

B

Rn

A

M

ε

0

Rn
Φ

Rn M 0

(1)

obtained by lifting ε. Let Ā = (aij) and B̄ be the n × n matrices obtained from A and B by reducing
their entries modulo m.

To prove that ε is the zero map, it suffices to show that the matrix Ā is nilpotent. Indeed, if Ā is
nilpotent, then so is the map ε̄ : M/mM → M/mM . As ε̄ is also idempotent, it is the zero map. Now
it follows from Nakayama’s lemma that the map 1M − ε is surjective and hence an isomorphism. As
1M − ε is idempotent, it follows that 1M − ε is the identity map 1M ; that is, ε = 0.

Claim. If the matrix Ā is upper triangular with identical entries on the diagonal, i.e. a11 = a22 = · · · = ann,
then it is nilpotent.

Proof. Since ε is not surjective, the matrix A does not represent a surjective map and, by Nakayama’s
lemma, neither does Ā. Therefore, the diagonal entries of Ā cannot all be non-zero, whence they are
all zero, and Ā is nilpotent. �

Denote by w̃ , x̃, ỹ, and z̃ the images of w , x, y, and z in m/m2, and let V be the k-subspace of
m/m2 spanned by w̃ , x̃, ỹ, and z̃. Consider the following possibilities:

(I) The elements w̃ , x̃, ỹ, and z̃ form a basis for V .
(II) The elements x̃, ỹ, and z̃ form a basis for V , and kw̃ = kx̃ holds.

(III) The elements w̃ , x̃, and ỹ form a basis for V .
(IV) The elements x̃ and ỹ form a basis for V , and one has kw̃ = kx̃ and z̃ /∈ kx̃.

Under the assumptions on w , x, and y in part (a), one of the conditions (I) or (III) holds. Under the
assumptions in part (b), one of the conditions (I)–(IV) holds. Indeed, if V has dimension 4, then (I)
holds. If that is not the case, then the dimension of V is 2 or 3. In case dimk V = 2, the elements x̃
and ỹ form a basis for V , whereas w̃ and x̃ cannot be linearly independent; thus (IV) holds. In case
dimk V = 3, condition (II) or (III) holds, depending on whether or not the equality kw̃ = kx̃ holds.

The rest of the proof is split in two, according to the parity of n. To prove that Mn(w, x, y, z)
is indecomposable, it suffices to prove that the matrix Ā is nilpotent. This is how we proceed un-
der each of the conditions (I), (II), and (IV), and under condition (III) when n is even. When n is
odd, and condition (III) holds, we show that one of the modules Mn(w, x, y, z) and Mn(x,w, y, z) is
indecomposable.

Case 1: n is even. Let Φ̃ denote the matrix obtained from Φ by reducing the entries modulo m2.
Write Ā and B̄ as block matrices

Ā =
(

A11 A12
A A

)
and B̄ =

(
B11 B12
B B

)
,

21 22 21 22
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where Ai j and Bi j are p × p matrices with entries from k. By (1), the equality AΦ = ΦB holds; it
implies an equality of block matrices(

w̃A11 + z̃A12Jp ỹA11 + x̃A12
w̃A21 + z̃A22Jp ỹA21 + x̃A22

)
=

(
w̃B11 + ỹB21 w̃B12 + ỹB22
z̃JpB11 + x̃B21 z̃JpB12 + x̃B22

)
. (2)

Assume first that condition (I) or (III) holds, so that the elements w̃ , x̃, and ỹ are linearly inde-
pendent. Then the equality of the upper right blocks, ỹA11 + x̃A12 = w̃B12 + ỹB22, yields

A11 = B22 and A12 = 0 = B12.

From the blocks on the diagonals, one now gets

A11 = B11, A21 = 0 = B21, and A22 = B22.

Thus the matrix Ā has the form
( A11 0

0 A11

)
. Finally, the equality of the lower left blocks yields A11Jp =

JpA11. Since Jp is non-derogatory, this implies that A11 belongs to the algebra k[Jp] of polynomials in

Jp . That is, there are elements c0, . . . , cp−1 in k such that A11 = c0Ip + c1Jp + · · · + cp−1Jp−1
p ; see [13,

Theorem 3.2.4.2]. In particular, the matrices A11 and, therefore, Ā are upper-triangular with identical
entries on the diagonal. By the claim, Ā is nilpotent as desired.

Under either condition (II) or (IV), the elements x̃ and ỹ are linearly independent, z̃ is not in kx̃,
and the equality kw̃ = kx̃ holds. In particular, there is an element t �= 0 in k such that t w̃ = x̃. From
the off-diagonal blocks in (2) one obtains the following relations:

A11 = B22,

tA12 = B12,
and

A22Jp = JpB11,

A21 = tB21.
(3)

If (II) holds, then the blocks on the diagonals in (2) yield

A11 = B11, A22 = B22, and A21 = 0.

Thus the matrix Ā has the form
( A11 A12

0 A11

)
, and the equality A11Jp = JpA11 holds. As above, it follows

that the matrices A11 and, therefore, Ā are upper-triangular with identical entries on the diagonal.
That is, Ā is nilpotent by the claim.

Now assume that (IV) holds. There exist elements r and s �= 0 in k such that z̃ = rx̃ + s ỹ. Compari-
son of the blocks on the diagonals in (2) now yields

A11 + rtA12Jp = B11,

sA12Jp = B21,
and

A22 = rJpB12 + B22,

A21 = sJpB12.
(4)

Combine these equalities with those from (3) to get

Ā =
(

A11 A12
stJpA12 A11 + rtJpA12

)
.

It follows from the equalities

JpA12 = t−1JpB12 = (st)−1A21 = s−1B21 = A12Jp,
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derived from (3) and (4), that the matrix A12 commutes with Jp ; hence it belongs to k[Jp]. Similarly,
the chain of equalities

JpA11 = JpB11 − rtJpA12Jp = JpB11 − rJpB12Jp

= A22Jp − rJpB12Jp = B22Jp = A11Jp

shows that A11 is in k[Jp]. Thus all four blocks in Ā belong to k[Jp]. For notational bliss, identify k[Jp]
with the ring S = k[χ ]/(χ p), where χ corresponds to tJp . With this identification, Ā takes the form
of a 2 × 2 matrix with entries in S: (

f g
sgχ f + rgχ

)
.

As Ā is not invertible, the determinant f 2 + f rgχ − sg2χ belongs to the maximal ideal (χ) of S . It
follows that f is in (χ), whence one has Ā2p = 0 as desired.

Case 2: n is odd. Set q = p − 1, where p = � n
2 � = n+1

2 . The presentation matrix Φ takes the form

Φ =
(

wIp yH
zK xIq

)
,

where H and K are the following block matrices H = ( Iq
01×q

)
and K = (0q×1 Iq ). Notice that there are

equalities

HX =
(

X
01×m

)
and X′K = (0m′×1 X′ ) (5)

for every q × m matrix X and every m′ × q matrix X′ . Furthermore, it is straightforward to verify the
equalities

HK = Jp and KH = Jq. (6)

As in Case 1, write

Ā =
(

A11 A12
A21 A22

)
and B̄ =

(
B11 B12
B21 B22

)
,

where, now, Ai j and Bi j are matrices of size mi × m j , for m1 = p and m2 = q. With Φ̃ as defined in
Case 1, the relation ĀΦ̃ = Φ̃ B̄, derived from (1), yields:(

w̃A11 + z̃A12K ỹA11H + x̃A12
w̃A21 + z̃A22K ỹA21H + x̃A22

)
=

(
w̃B11 + ỹHB21 w̃B12 + ỹHB22
z̃KB11 + x̃B21 z̃KB12 + x̃B22

)
. (7)

Assume first that condition (I) or (III) holds, so that the elements w̃ , x̃, and ỹ are linearly inde-
pendent. From the equality of the upper right blocks in (7) one gets

A11H = HB22 and A12 = 0 = B12. (8)

In view of (5), comparison of the blocks on the diagonals now yields
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A11 = B11,

B21 = 0,
and

A21H = 0,

A22 = B22.
(9)

From the first equality in (8) and the last equality in (9) one gets in view of (5)

A11 =
(

A22 ∗
01×q ∗

)
; (10)

here and in the following the symbol ‘∗’ in a matrix denotes an unspecified block of appropriate size.
To glean information from the equality of the lower left blocks in (7), assume first that w̃ and z̃ are
linearly independent. Then one has

A21 = 0 and A22K = KB11. (11)

Combine this with (10) and the second equality in (8) to see that the matrix Ā has the form

Ā =
⎛⎜⎝ A22 ∗

01×q ∗ 0p×q

0q×p A22

⎞⎟⎠ . (12)

The equalities

A11Jp = A11HK = HB22K = HA22K = HKB11 = JpA11

and

A22Jq = A22KH = KB11H = KA11H = KHB22 = JqA22,

derived from (6), (8), (9), and (11), show that A11 is in k[Jp] and A22 is in k[Jq]. It follows that Ā
is upper triangular with identical entries on the diagonal. Thus Ā is nilpotent, and Mn(w, x, y, z) is
indecomposable. If, on the other hand, z̃ and w̃ are linearly dependent, then z̃ and x̃ are linearly
independent, as w̃ and x̃ are linearly independent by assumption. It follows from what we have just
shown that Mn(x,w, y, z) is indecomposable.

Under either condition (II) or (IV), the elements x̃ and ỹ are linearly independent, z̃ is not in kx̃,
and the equality kw̃ = kx̃ holds. In particular, there is an element t �= 0 in k such that t w̃ = x̃. Compare
the off-diagonal blocks in (7) to get

tA12 = B12,

A11H = HB22,
and

A21 = tB21,

A22K = KB11.
(13)

If (II) holds, then a comparison of the blocks on the diagonals in (7) combined with (5) implies

A11 = B11, A12 = 0 = B21, and A22 = B22. (14)

It follows from (13) and (14) that the matrix A21 is zero. In view of the equality A11H = HB22
from (13), it now follows that Ā has the form given in (12). Using the equalities in (13) and (14),
one can repeat the arguments above to see that A11 is in k[Jp] and A22 is in k[Jq], and continue to
conclude that Ā is nilpotent.
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Finally, assume that (IV) holds. There exist elements r and s �= 0 in k such that z̃ = rx̃ + s ỹ. Com-
parison of the blocks on the diagonals in (7) yields

A11 + rtA12K = B11,

sA12K = HB21,
and

A21H = sKB12,

A22 = B22 + rKB12.
(15)

The equality sA12K = t−1HA21, obtained from (13) and (15), shows, in view of (5), that the matrices
A12 and A21 have the following form:

A12 =
(∗

E

)
and A21 = (0q×1 Γ ) ,

where E and Γ are q × q matrices, and the last row of E is zero. From the equalities in (6), (13), and
(15) one gets

A21Jp = sKB12K = stKA12K = tKHB21 = JqA21.

From here it is straightforward to verify that Γ commutes with Jq; i.e. Γ belongs to k[Jq]. Similarly,
from the equalities

A12Jq = s−1HB21H = (st)−1HA21H = t−1HKB12 = JpA12,

it follows that E belongs to k[Jq]. Since the last row in E is zero, all entries on the diagonal of E are
zero, and the matrix is nilpotent. The first equality in (15) can now be written as

A11 = B11 −
(

0 ∗
0q×1 rtE

)
.

Combine this with the last equality in (13) to get

Ā =

⎛⎜⎜⎝
a11 ∗ ∗

0q×1 A22 − rtE E

0q×1 Γ A22

⎞⎟⎟⎠ .

The equalities

A11Jp = HB22K = H(A22 − rKB12)K = HA22K − rHKB12K

= HKB11 − rtHKA12K = JpA11

show that A11 is in k[Jp], and a similar chain of equalities shows that A22 is in k[Jq]. It follows that
all entries on the diagonal of Ā are identical. Let  be the matrix obtained by deleting the first row
and first column in Ā and write it in block form

=
(

A22 − rtE E
Γ A22

)
.

As Ā is not invertible, one has 0 = det Ā = a11(det). If a11 is non-zero, then  has determinant 0;
in particular, it is not invertible. Considered as a 2 × 2 matrix over the artinian local ring k[Jq], its
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determinant (A22)
2 − rtEA22 − Γ E belongs to the maximal ideal (Jq). As E is nilpotent, it belongs to

(Jq) and hence so does A22; this contradicts the assumption that a11 is non-zero. If the diagonal entry
a11 is 0, then the matrix A22 is nilpotent, which implies that  is nilpotent and, finally, that Ā is
nilpotent. �
4. Brauer–Thrall I over short local rings with exact zero divisors

Let (R,m, k) be a local ring. The embedding dimension of R , denoted by emb.dim R , is the minimal
number of generators of m, i.e. the dimension of the k-vector space m/m2. The Hilbert series of R is
the power series HR(τ )= ∑∞

i=0 dimk(m
i/mi+1)τ i .

In the rest of this section (R,m) is a local ring with m3 = 0. The main result, Theorem (4.4),
together with (4.1.1) and Theorem (3.1), establishes Theorem (1.1). Towards the proof of Theorem (4.4),
we first recapitulate a few facts about totally reflexive modules and exact zero divisors.

If R is Gorenstein, then every R-module is totally reflexive; see [1, Theorems (4.13) and (4.20)]. If
R is not Gorenstein, then existence of a non-free totally reflexive R-module forces certain relations
among invariants of R . The facts in (4.1) are proved by Yoshino [19]; see also [6] for the non-graded
case.

(4.1) Totally reflexive modules. Assume that R is not Gorenstein and set e = emb.dim R . If M is a
totally reflexive R-module without free summands and minimally generated by n elements, then the
equalities

lengthR M = ne and βR
i (M)= n for all i � 0 (4.1.1)

hold. Moreover, m2 is non-zero and the following hold:

(0 : m)= m2, dimk m2 = e − 1, and length R = 2e. (4.1.2)

In particular, e is at least 3, and the Hilbert series of R is 1 + eτ + (e − 1)τ 2.

Let k be a field. For the Gorenstein ring R = k[x]/(x3), two of the relations in (4.1.2) fail. This
ring also has an exact zero divisor, x2, in the square of the maximal ideal; for rings with embedding
dimension 2 or higher this cannot happen.

(4.2) Exact zero divisors. Set e = emb.dim R and assume e � 2. Suppose that w and x form an exact
pair of zero divisors in R . As m2 is contained in the annihilator of m, there is an inclusion m2 ⊆ (x),
which has to be strict, as (w)= (0 : x) is strictly contained in m. Thus x is a minimal generator of m

with

xm = m2.

By symmetry, w is a minimal generator of m with wm = m2. Let {v1, . . . , ve−1,w} be a minimal set
of generators for m; then the elements xv1, . . . , xve−1 generate m2, and it is elementary to verify
that they form a basis for m2 as a k-vector space. It follows that the relations in (4.1.2) hold and, in
addition, there is an equality

lengthR(x)= e.

Note that the socle (0 : m) of R has dimension e − 1 over k, so R is Gorenstein if and only if e = 2.

(4.3) Lemma. Assume that (R,m) has Hilbert series 1 + eτ + (e − 1)τ 2 with e � 2. For every element x ∈
m\m2 the following hold:
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(a) The ideal (x) in R has length at most e.
(b) There exists an element w ∈ m\m2 that annihilates x, and if w generates (0 : x), then w and x form an

exact pair of zero divisors in R.
(c) If the equalities wx = 0 and wm = m2 = xm hold, then w and x form an exact pair of zero divisors in R.

Proof. (a): By assumption, the length of m is 2e − 1. As x and e − 1 other elements form a minimal
set of generators for m, the inequality 2e − 1 � lengthR(x) + e − 1 holds; whence lengthR(x) is at
most e.

(b): Additivity of length on short exact sequences yields

lengthR(0 : x)= length R − lengthR(x)� e,

so m2 is properly contained in (0 : x); choose an element w in (0 : x)\m2. There is an inclusion
(x)⊆ (0 : w), and if the equality (w)= (0 : x) holds, then two length counts yield

lengthR(0 : w)= length R − lengthR(w)= lengthR(x).

Thus (x)= (0 : w) holds; hence w and x form an exact pair of zero divisors in R .
(c): As both ideals (w) and (x) strictly contain m2, the equalities lengthR(x)= e = lengthR(w) hold

in view of part (a). As w and x annihilate each other, simple length counts show that they form an
exact pair of zero divisors in R . �
(4.4) Theorem. Let (R,m) be a local ring with m3 = 0 and emb.dim R � 3. Assume that w and x form an
exact pair of zero divisors in R. For every element y in m\(w, x) there exists an element z ∈ m\m2 such that
the R-modules Mn(w, x, y, z) are indecomposable and totally reflexive for all n ∈ N.

Proof. By (4.2) the equalities in (4.1.2) hold for R . Let y be an element in m\(w, x). By Lemma (4.3)(b)
the ideal (0 : y) contains an element z of m\m2. Since y is not contained in the ideal (w, x) =
(w, x)+ m2, the element z is not in (x)= (x)+ m2. The desired conclusion now follows from Theo-
rem (3.1). �

The key to the theorem is that existence of an exact zero divisor in R implies the existence of
additional elements such that the conditions in Theorem (3.1) are satisfied. This phenomenon does
not extend to rings with m4 = 0.

(4.5) Example. Let F be a field and set S = F[x, y, z]/(x2, y2z, yz2, y3, z3); it is a standard graded F-
algebra with Hilbert series 1 + 3τ + 5τ 2 + 3τ 3, and x is an exact zero divisor in S . Set n = (x, y, z)S
and let v be an element in n\((x) + n2). A straightforward calculation shows that the annihilator
(0 : v) is contained in n2.

5. Exact zero divisors from totally reflexive modules

Let (R,m) be a local ring with m3 = 0. If R is not Gorenstein, then a cyclic totally reflexive R-
module is either free or generated by an exact zero divisor. Indeed, if it is not free, then by (4.1.1) it
has constant Betti numbers, equal to 1, so by Remark (2.2) it is generated by an exact zero divisor
in R . The next results improve on this elementary observation; in particular, Corollary (5.4) should be
compared to Remark (2.2).

(5.1) Lemma. Let (R,m) be a local ring with m3 = 0 and let

F : F2 −→ F1
ψ−→ F0

ϕ−→ F−1
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be an exact sequence of finitely generated free R-modules, where the homomorphisms are represented by
matrices with entries in m. Let Ψ be any matrix that represents ψ . For every row Ψr of Ψ the following hold:

(a) The ideal r, generated by the entries of Ψr , contains m2 .
(b) If dimk m2 is at least 2 and HomR(F , R) is exact, then Ψr has an entry from m\m2 , the entries in Ψr from

m\m2 generate r, and mr = m2 holds.

Proof. Let Ψ and Φ be the matrices for ψ and φ with respect to bases B1, B0, and B−1 for F1, F0,
and F−1. For every p � 1, let {e1, . . . , ep} be the standard basis for R p . The matrix Φ is of size l × m,
and Ψ is of size m × n, where l, m and n denote the ranks of F−1, F0, and F1, respectively. We make
the identifications F−1 = Rl , F0 = Rm , and F1 = Rn , by letting B−1, B0, and B1 correspond to the
standard bases. The map ψ is now left multiplication by the matrix Ψ , and φ is left multiplication
by Φ . For every x ∈ m2 and every basis element ei in Rm one has ϕ(xei)= 0; indeed, Φ has entries
in m, the entries of xei are in m2, and m3 = 0 holds by assumption. By exactness of F , the element
xei is in the image of ψ , and (a) follows.

(b): Fix q ∈ {1, . . . ,m} and let Ψq be the qth row of Ψ = (xij); we start by proving the following:

Claim. Every entry from m2 in Ψq is contained in the ideal generated by the other entries in Ψq.

Proof. Assume, towards a contradiction, that some entry from m2 in Ψq is not in the ideal generated
by the other entries. After a permutation of the columns of Ψ , one can assume that the entry xq1 is
in m2 but not in the ideal (xq2, . . . , xqn). Since the element xq1eq belongs to Kerϕ = Imψ , there exist
elements ai in R such that ψ(

∑n
i=1 aiei) = xq1eq . In particular, one has

∑n
i=1 ai xqi = xq1, whence it

follows that a1 is invertible. The n × n matrix

A =

⎛⎜⎜⎝
a1 0 · · · 0
a2 1 0
...

. . .
...

an 0 · · · 1

⎞⎟⎟⎠
is invertible, as it has determinant a1. The first column of the matrix ΨA, which is the first row of the
transposed matrix (ΨA)T, has only one non-zero entry, namely xq1. As ΨA represents ψ , the matrix
(ΨA)T represents the dual homomorphism HomR(ψ, R). By assumption the sequence HomR(F , R) is
exact, so it follows from part (a) that the element xq1 spans m2. This contradicts the assumption that
m2 is a k-vector space of dimension at least 2. This finishes the proof of the claim. �

Suppose, for the moment, that every entry of Ψr is in m2. Performing column operations on Ψ

results in a matrix that also represents ψ , so by the claim one can assume that Ψr is the zero row,
which contradicts part (a). Thus Ψr has an entry from m\m2. After a permutation of the columns of Ψ ,
one may assume that the entries xr1, . . . , xrt are in m\m2 while xr(t+1), . . . , xrn are in m2, where t is
in {1, . . . ,n}. The claim shows that—after column operations that do not alter the first t columns—one
can assume that the entries xr(t+1), . . . , xrn are zero. Thus the entries xr1, . . . , xrt from m\m2 generate
the ideal r.

Finally, after another permutation of the columns of Ψ , one can assume that {xr1, . . . , xrs} is max-
imal among the subsets of {xr1, . . . , xrt} with respect to the property that its elements are linearly
independent modulo m2. Now use column operations to ensure that the elements xr(s+1), . . . , xrn are
in m2. As above, it follows that xr1, . . . , xrs generate r. To verify the last equality in (b), note first the
obvious inclusion mr ⊆ m2. For the reverse inclusion, let x ∈ m2 and write x = xr1b1 + · · · + xrsbs with
bi ∈ R . If some bi were a unit, then the linear independence of the elements xri modulo m2 would be
contradicted. Thus each bi is in m, and the proof is complete. �

The condition dimk m2 � 2 in part (b) of the lemma cannot be relaxed:
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(5.2) Example. Let k be a field; the local ring R = k[x, y]/(x2, xy, y3) has Hilbert series 1 + 2τ + τ 2.
The sequence

R2 (x y)−−−→ R x−→ R
(x

y)−−→ R2

is exact and remains exact after dualization, but the product (x, y)x is zero.

(5.3) Theorem. Let (R,m) be a local ring with m3 = 0 and e = emb.dim R � 3. Let x be an element of m\m2;
the following conditions are equivalent.

(i) The element x is an exact zero divisor in R.
(ii) The Hilbert series of R is 1 + eτ + (e − 1)τ 2 , and there exists an exact sequence of finitely generated free

R-modules

F : F3 −→ F2 −→ F1
ψ−→ F0 −→ F−1

such that HomR(F , R) is exact, the homomorphisms are represented by matrices with entries in m, and
ψ is represented by a matrix in which some row has x as an entry and no other entry from m\m2 .

Proof. If x is an exact zero divisor in R , then the complex (2.0.1) supplies the desired exact sequence,
and R has Hilbert series 1 + eτ + (e − 1)τ 2; see (4.2).

To prove the converse, let Ψ = (xij) be a matrix of size m × n that represents ψ and assume,
without loss of generality, that the last row of Ψ has exactly one entry x = xmq from m\m2. By
Lemma (5.1)(b) there is an equality xm = m2 and, therefore, the length of (x) is e by Lemma (4.3)(a).
As R has length 2e, additivity of length on short exact sequences yields lengthR(0 : x)= e.

Let (wij) be an n × p matrix that represents the homomorphism F2 → F1. The matrix equality
(xij)(wij) = 0 yields xwqj = 0 for j ∈ {1, . . . , p}; it follows that the ideal r = (wq1, . . . ,wqp) is con-
tained in (0 : x). By Lemma (5.1)(b) some entry w = wql is in m\m2, and there are inclusions

(w)+ m2 ⊆ r ⊆ (0 : x). (1)

Now the inequalities

e � lengthR

(
(w)+ m2) � lengthR(0 : x)= e

imply that equalities hold throughout (1); in particular, (w) + m2 = r holds. This equality and
Lemma (5.1)(b) yield wm = mr = m2; hence w and x form an exact pair of zero divisors by
Lemma (4.3)(c). �
(5.4) Corollary. Let (R,m) be a local ring with m3 = 0. If R is not Gorenstein, then the following conditions
are equivalent:

(i) There is an exact zero divisor in R.
(ii) For every n ∈ N there is an indecomposable totally reflexive R-module that is presented by an upper

triangular n × n matrix with entries in m.
(iii) There is a totally reflexive R-module without free summands that is presented by a matrix with entries

in m and a row/column with only one entry in m\m2 .

Proof. Set e = emb.dim R; it is at least 2 as R is not Gorenstein. If (i) holds, then e is at least 3,
see (4.2), so (ii) follows from Theorem (4.4). It is clear from Lemma (5.1) that (iii) follows from (ii). To
prove that (iii) implies (i), let Ψ be a presentation matrix for a totally reflexive R-module without free
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summands and assume—possibly after replacing Ψ with its transpose, which also presents a totally
reflexive module—that some row of Ψ has only one entry in m\m2. By (4.1) the Hilbert series of R is
1 + eτ + (e − 1)τ 2, and e is at least 3, so it follows from Theorem (5.3) that there is an exact zero
divisor in R . �

The corollary manifests a strong relation between the existence of exact zero divisors in R and
existence of totally reflexive R-modules of any size. A qualitatively different relation is studied later;
see Remark (8.7). These relations notwithstanding, totally reflexive modules may exist in the absence
of exact zero divisors. In Section 9 we exhibit a local ring (R,m), which has no exact zero divisors,
and a totally reflexive R-module that is presented by a 2 × 2 matrix with all four entries from m\m2.
Thus the condition on the entries of the matrix in (5.4)(iii) is sharp.

6. Families of non-isomorphic modules of the same size

In this section we continue the analysis of Construction (2.6).

(6.1) Definition. Let (R,m, k) be a local ring. Given a subset K ⊆ k, a subset of R that contains exactly
one lift of every element in K is called a lift of K in R .

(6.2) Theorem. Let (R,m, k) be a local ring and let L be a lift of k in R. Let w, x, y, y′ , and z be elements in
m\m2 and let n be an integer. Assume that w and x form an exact pair of zero divisors in R and that one of the
following holds.

(a) n = 2 and the elements w, x, y, and y′ are linearly independent modulo m2;
(b) n = 2, the elements x, y, and y′ are linearly independent modulo m2 , and the element w belongs to

(x)+ m2;
(c) n � 3, the elements w, x, y, and y′ are linearly independent modulo m2 , and the following hold: z /∈

(w)+ m2 , z /∈ (x)+ m2 , and (y, y′)⊆ (0 : z); or
(d) n � 3, the elements x, y, and y′ are linearly independent modulo m2 , and the following hold: w ∈

(x)+ m2 , z /∈ (x)+ m2 , and (y, y′)⊆ (0 : z).

Then the modules in the family {Mn(w, x, λy + y′, z)}λ∈L are indecomposable, totally reflexive, and pairwise
non-isomorphic.

The proof of (6.2) takes up the balance of this section; here is the cornerstone:

(6.3) Proposition. Let (R,m) be a local ring and let w, x, y, y′ , and z be elements in m\m2 . Assume that the
following hold:

z /∈ (w)+ m2, z /∈ (x)+ m2, y /∈ (w, x)+ m2, and y′ /∈ (w, y)+ m2.

If θ and λ are elements in R with θ −λ /∈ m, and n � 3 is an integer, then the R-modules Mn(w, x, θ y + y′, z)
and Mn(w, x, λy + y′, z) are non-isomorphic.

The next example shows that the condition n � 3 in (6.3) cannot be relaxed.

(6.4) Example. Let (R,m) be a local ring with emb.dim R � 3 and assume that 2 is a unit in R . Let w ,
x, and y be linearly independent modulo m2, and set y′ = y − 2−1x. The equality(

1 1
0 −1

)(
w y′
0 x

)
=

(
w y′ − 2y
0 x

)(
1 0
0 −1

)
shows that the R-modules M2(w, x,0y + y′) and M2(w, x,−2y + y′) are isomorphic.
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To get a statement similar to Proposition (6.3) for 2-generated modules, it suffices to assume that
y′ is outside the span of w , x, and y modulo m2.

(6.5) Proposition. Let (R,m) be a local ring and let w, x, y, and y′ be elements in m\m2 . Assume that one of
the following conditions holds:

(a) The elements w, x, y, and y′ are linearly independent modulo m2 .
(b) The elements x, y, and y′ are linearly independent modulo m2 , and the element w belongs to (x)+ m2 .

If θ and λ are elements in R with θ − λ /∈ m, then the R-modules M2(w, x, θ y + y′) and M2(w, x, λy + y′)
are non-isomorphic.

Proof. Let θ and λ be in R . Assume that (a) holds and that the R-modules M2(w, x, θ y + y′) and
M2(w, x, λy + y′) are isomorphic. It follows that there exist matrices A and B in GL2(R) such that the
equality

A
(

wIo + xIe + (
θ y + y′)Jo) = (

wIo + xIe + (
λy + y′)Jo)B

holds; here the matrices Io = Io2, Ie = Ie
2, and Jo = Jo

2 are as defined in Construction (2.6). The goal is to
prove that θ − λ is in m. After reduction modulo m, the equality above yields, in particular,

ĀJo − JoB̄ = 0 = θ̄ ĀJo − λ̄JoB̄,

and, therefore, (θ̄ − λ̄)JoB̄ = 0. As the matrix B̄ is invertible and Jo is non-zero, this implies that θ − λ

is in m as desired.
If (b) holds, the desired conclusion is proved under Case 1 in the next proof. �

Proof of Proposition (6.3). Let θ and λ be elements in R and assume that Mn(w, x, θ y + y′, z) and
Mn(w, x, λy + y′, z) are isomorphic as R-modules. It follows that there exist matrices A and B in
GLn(R) such that the equality

A
(

wIo + xIe + (
θ y + y′)Jo + zJe) = (

wIo + xIe + (
λy + y′)Jo + zJe)B (1)

holds; here the matrices Io = Ion , Ie = Ie
n , Jo = Jo

n , and Je = Je
n are as defined in Construction (2.6). The

goal is to prove that θ − λ is in m.
Case 1: w is in (x)+m2 . Under this assumption, one can write w = rx+δ, where δ ∈ m2, and rewrite

(1) as

x
(
r
(
AIo − IoB

) + AIe − IeB
) + y

(
θAJo − λJoB

)
+ y′(AJo − JoB

) + z
(
AJe − JeB

) =, (2)

where  is a matrix with entries in m2. The assumptions on w , x, y, and y′ imply y /∈ (x) + m2

and y′ /∈ (x, y)+ m2, so the elements x, y, and y′ are linearly independent modulo m2. There exist
elements vi such that v1, . . . , ve−3, x, y, y′ form a minimal set of generators for m. Write

z = sx + ty + uy′ +
e−3∑
i=1

di vi,

substitute this expression into (2), and reduce modulo m to get
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0 = r̄
(
ĀIo − IoB̄

) + ĀIe − IeB̄ + s̄
(
ĀJe − JeB̄

)
, (3)

0 = θ̄ ĀJo − λ̄JoB̄ + t̄
(
ĀJe − JeB̄

)
, (4)

0 = ĀJo − JoB̄ + ū
(
ĀJe − JeB̄

)
, and (5)

0 = d̄i
(
ĀJe − JeB̄

)
, for i ∈ {1, . . . , e − 3}. (6)

The arguments that follow use the relations that (3)–(6) induce between the entries of the matrices
Ā = (aij) and B̄ = (bij). With the convention ahl = 0 = bhl for h, l ∈ {0,n + 1}, it is elementary to verify
that the following systems of equalities hold for i and j in {1, . . . ,n} and elements f and g in R/m:

(
ĀIo − IoB̄

)
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aij − bij, i odd, j odd,

−bij, i odd, j even,

aij, i even, j odd,

0, i even, j even,

(7)

(
ĀIe − IeB̄

)
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, i odd, j odd,

aij, i odd, j even,

−bij, i even, j odd,

aij − bij, i even, j even,

(8)

(
f ĀJo − gJoB̄

)
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gb(i+1) j, i odd, j odd,

f ai( j−1) − gb(i+1) j, i odd, j even,

0, i even, j odd,

f ai( j−1), i even, j even,

(9)

(
ĀJe − JeB̄

)
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ai( j−1), i odd, j odd,

0, i odd, j even,

ai( j−1) − b(i+1) j, i even, j odd,

−b(i+1) j, i even, j even.

(10)

Each of the equalities (3)–(6) induces four subsystems, which are referred to by subscripts ‘oo’, ‘oe’,
‘eo’, and ‘ee’, where ‘oo’ stands for ‘i odd and j odd’ etc. For example, (4)oe refers to the equalities
0 = θ̄ai( j−1) − λ̄b(i+1) j , for i odd and j even.

Let n � 2; the goal is to prove the equality θ̄ = λ̄, as that implies θ −λ ∈ m. First assume d̄i �= 0 for
some i ∈ {1, . . . , e − 3}, then (6) yields ĀJe − JeB̄ = 0. From (4) and (5) one then gets

ĀJo − JoB̄ = 0 = θ̄ ĀJo − λ̄JoB̄

and thus (θ̄ − λ̄)JoB̄ = 0. As B̄ is invertible and Jo is non-zero, this yields the desired equality θ̄ = λ̄.
Henceforth we assume d̄i = 0 for all i ∈ {1, . . . , e − 3}.

By assumption, z is not in (x)+ m2, so ū or t̄ is non-zero. In case ū is non-zero, (5)oo and (5)eo
yield bh1 = 0 for 1< h � n. If t̄ is non-zero, then (4)oo and (4)eo yield the same conclusion. The matrix
B̄ is invertible, so each of its columns contains a non-zero element. It follows that b11 is non-zero,
and by (3)oo one has a11 = b11. From (4)oe and (5)oe one gets a11 = b22 and (θ̄ − λ̄)a11 = 0, whence
the equality θ̄ = λ̄ holds.

For n = 2 the arguments above establish the assertion in Proposition (6.5) under assumption (b) of
Proposition (6.5).

Case 2: w is not in (x)+ m2 . It follows from the assumption y /∈ (w, x)+ m2 that w , x, and y are
linearly independent modulo m2, so there exist elements vi such that v1, . . . , ve−3,w, x, y form a
minimal set of generators for m. Write
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y′ = pw + qx + ry +
e−3∑
i=1

ci vi and z = sw + tx + uy +
e−3∑
i=1

di vi .

Substitute these expressions into (1) and reduce modulo m to get

0 = ĀIo − IoB̄ + p̄
(
ĀJo − JoB̄

) + s̄
(
ĀJe − JeB̄

)
, (11)

0 = ĀIe − IeB̄ + q̄
(
ĀJo − JoB̄

) + t̄
(
ĀJe − JeB̄

)
, (12)

0 = θ̄ ĀJo − λ̄JoB̄ + r̄
(
ĀJo − JoB̄

) + ū
(
ĀJe − JeB̄

)
, and (13)

0 = c̄i
(
ĀJo − JoB̄

) + d̄i
(
ĀJe − JeB̄

)
, for i ∈ {1, . . . , e − 3}. (14)

As in Case 1, set Ā = (aij) and B̄ = (bij) so that the equalities (7)–(10) hold. The subscripts ‘oo’, ‘oe’,
‘eo’, and ‘ee’ are used, as in Case 1, to denote the subsystems induced by (11)–(14).

Let n � 3; the goal is, again, to prove the equality θ̄ = λ̄. In the following, h and l are integers in
{1, . . . ,n}. First, notice that if c̄m �= 0 for some m ∈ {1, . . . , e − 3}, then (14)oe implies a11 = b22 and, in
turn, (13)oe yields (θ̄ − λ̄)a11 = 0. To conclude θ̄ = λ̄, it must be verified that a11 is non-zero. To this
end, assume first d̄m = 0; from (14)ee and (14)oo one immediately gets

ah1 = 0 = bh1 for h even. (15)

As z is in m\m2, one of the coefficients d̄1, . . . , d̄e−3, s̄, t̄, ū is non-zero. If ū or one of d̄1, . . . , d̄e−3
is non-zero, then (13)eo or (14)eo yields bh1 = 0 for h > 1 odd. If s̄ or t̄ is non-zero, then the same
conclusion follows from (15) combined with (11)eo or with (12)eo. Now that bh1 = 0 holds for all
h � 2, it follows that b11 is non-zero. Finally, (11)oo yields a11 = b11, so the entry a11 is not zero, as
desired. Now assume d̄m �= 0, then (14)oo and (14)eo immediately give bh1 = 0 for h > 1. As above,
we conclude that b11 is non-zero, whence a11 �= 0 by (11)oo. This concludes the argument under
the assumption that one of the coefficients c̄i is non-zero. Henceforth we assume c̄i = 0 for all i ∈
{1, . . . , e − 3}; it follows that q̄ is non-zero, as y′ /∈ (w, y)+ m2 by assumption.

If d̄i �= 0 for some i ∈ {1, . . . , e − 3}, then (14)oo yields a12 = 0, as n is at least 3. From (12)oe
one gets a11 = b22, and then (13)oe implies (θ̄ − λ̄)a11 = 0. To see that a11 is non-zero, notice that
(14)eo yields bh1 = 0 for h > 1 odd, while (12)oo yields bh1 = 0 for h even. It follows that b11 is non-
zero, and then a11 �= 0, by (11)oo. Thus the desired equality θ̄ = λ̄ holds. This concludes the argument
under the assumption that one of the coefficients d̄i is non-zero. Henceforth we assume d̄i = 0 for all
i ∈ {1, . . . , e − 3}.

To finish the argument, we deal separately with the cases ū �= 0 and ū = 0. Assume first ū �= 0.
By assumption one has n � 3, so (13)eo yields a22 = b33, and then it follows from (12)eo that b23
is zero. From (13)oo one gets a12 = 0, and then the equality a11 = b22 follows from (12)oe. In turn,
(13)oe implies (θ̄ − λ̄)a11 = 0. To see that a11 is non-zero, notice that there are equalities bh1 = 0 for
h > 1 odd by (13)eo and bh1 = 0 for h even by (12)oo. It follows that b11 is non-zero, and the equality
a11 = b11 holds by (11)oo. As above we conclude θ̄ = λ̄.

Finally, assume ū = 0; the assumptions z /∈ (w)+ m2 and z /∈ (x)+ m2 imply that s̄ and t̄ are both
non-zero. From (13)ee and (13)oo one gets:

(θ̄ + r̄)ah1 = 0 = (λ̄+ r̄)bh1 for h even. (16)

First assume that λ̄ + r̄ is zero. If θ̄ + r̄ is zero, then the desired equality θ̄ = λ̄ holds. If θ̄ + r̄ is
non-zero, then (16) gives ah1 = 0 for h even. Moreover, (13)oe implies (θ̄ + r̄)ah1 = (λ̄+ r̄)b(h+1)2 = 0,
so ah1 = 0 for h odd as well, which is absurd as Ā is invertible. Now assume that λ̄+ r̄ is non-zero.
From (16) one gets bh1 = 0 for h even and, in turn, (12)eo yields bh1 = 0 for h > 1 odd. It follows that
b11 is non-zero, and then one has a11 �= 0 by (11)oo. By assumption, n is at least 3, so (13)oo gives
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(λ̄+ r̄)b23 = 0, which implies b23 = 0. Now (12)oo yields a12 = 0, and then (12)oe implies a11 = b22.
From (13)oe one gets (θ̄ − λ̄)a11, whence the equality θ̄ = λ̄ holds. �
Proof of Theorem (6.2). Under the assumptions in part (a) or (b), it is immediate from Theorem (3.1)
that the module M2(w, x, λy + y′) is indecomposable and totally reflexive for every λ ∈ R . It fol-
lows from Proposition (6.5) that the modules in the family {M2(w, x, λy + y′)}λ∈L are pairwise
non-isomorphic.

Fix n � 3. Proposition (6.3) shows that, under the assumptions in part (c) or (d), the modules in
the family {Mn(w, x, λy + y′, z)}λ∈L are pairwise non-isomorphic. Moreover, for every λ ∈ R , one has
(λy + y′)z = 0, so it follows from Theorem (3.1) the module Mn(w, z, λy + y′, z) is totally reflexive
and indecomposable. �
7. Brauer–Thrall II over short local rings with exact zero divisors

In this section (R,m, k) is a local ring with m3 = 0. Together, (4.1.1) and Theorems (3.1), (7.4), (7.6),
and (7.8) establish Theorem (1.4).

(7.1) Remark. Assume that R has embedding dimension 2. If there is an exact zero divisor in R ,
then the Hilbert series of R is 1 + 2τ + τ 2, and the equality (0 : m)= m2 holds; see (4.2). Therefore,
R is Gorenstein, and the equality xm = m2 holds for all x ∈ m\m2; in particular, every element in
m\m2 is an exact zero divisor by Lemma (4.3)(c). On the other hand, if R is Gorenstein, then one has
HR(τ )= 1 + 2τ + τ 2 and (0 : m)= m2. It is now elementary to verify that the equalities lengthR(x)=
2 = lengthR(0 : x) hold for every x ∈ m\m2, so every such element is an exact zero divisor in R by
Lemma (4.3)(c). It follows from work of Serre [18, Proposition 5] that R is Gorenstein if and only if it
is complete intersection; thus the following conditions are equivalent:

(i) There is an exact zero divisor in R .
(ii) Every element in m\m2 is an exact zero divisor.

(iii) R is complete intersection.

In contrast, if R has embedding dimension at least 3, and k is algebraically closed, then there
exist elements in m\m2 that are not exact zero divisors. This fact follows from Lemma (7.3), and it is
essential for our proof of Theorem (7.4).

(7.2) Remark. Assume that R has Hilbert series 1 + eτ + f τ 2, and let x be an element in m. The
equality xm = m2 holds if and only if the k-linear map from m/m2 to m2 given by multiplication by x
is surjective. Let Ξx be a matrix that represents this map; it is an f × e matrix with entries in k, so
the equality xm = m2 holds if and only if Ξx has rank f .

Assume that the (in)equalities f = e − 1 � 1 hold. If w and x are elements in R with wx = 0, then
they form an exact pair of zero divisors if and only if both matrices Ξx and Ξw have a non-zero
maximal minor; cf. Lemma (4.3)(c).

(7.3) Lemma. Assume that (R,m, k) has Hilbert series 1 + eτ + f τ 2 and that k is algebraically closed; set
n = e − f + 1. If one has 2 � f � e − 1 and v0, . . . , vn ∈ m are linearly independent modulo m2 , then there
exist r0, . . . , rn ∈ R, at least one of which is invertible, such that the ideal (

∑n
h=0 rh vh)m is properly contained

in m2 .

Proof. Let {x1, . . . , xe} be a minimal set of generators for m and let {u1, . . . ,u f } be a basis for the
k-vector space m2. For h ∈ {0, . . . ,n} and j ∈ {1, . . . , e} write

vhx j =
f∑
ξhi jui,
i=1
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where the elements ξhi j are in k. In the following, r̄ denotes the image in k of the element r ∈ R . For
r0, . . . , rn in R and v = ∑n

h=0 rh vh the equality vm = m2 holds if and only if the f × e matrix

Ξv =
(

n∑
h=0

r̄hξhi j

)
i j

has rank f ; see Remark (7.2). Let X be the matrix obtained from Ξv by replacing r̄0, . . . , r̄n with in-
determinates χ0, . . . ,χn . The non-zero entries in X are then homogeneous linear forms in χ0, . . . ,χn ,
and in the polynomial algebra k[χ0, . . . ,χn] the ideal I f (X), generated by the maximal minors of X,
has height at most n; see [2, Theorem (2.1)]. As I f (X) is generated by homogeneous polynomials, it
follows from Hilbert’s Nullstellensatz that there exists a point (ρ0, . . . , ρn) in kn+1\{0} such that all
maximal minors of the matrix (

∑n
h=0 ρhξhi j)i j vanish. Let r0, . . . , rn be lifts of ρ0, . . . , ρn in R; then at

least one of them is not in m, and the ideal (
∑n

h=0 rh vh)m is properly contained in m2. �
(7.4) Theorem. Let (R,m, k) be a local ring with m3 = 0, emb.dim R � 3, and k algebraically closed. If w
and x form an exact pair of zero divisors in R, then there exist elements y, y′ , and z in m\m2 , such that for
every lift L of k\{0} in R and for every integer n � 3 the modules in the family {Mn(w, x, λy + y′, z)}λ∈L are
indecomposable, totally reflexive, and pairwise non-isomorphic.

Proof. Assume that w and x form an exact pair of zero divisors in R . By (4.2) the Hilbert series of R
is 1 + eτ + (e − 1)τ 2, so it follows from Lemma (7.3) that there exists an element z ∈ m\m2 such that
zm is properly contained in m2. In particular, one has lengthR(z) < e and, therefore, lengthR(0 : z) > e
by additivity of length on short exact sequences. It follows that there exist two elements, call them y
and y′ , in (0 : z) that are linearly independent modulo m2. The inequality lengthR(z) < e implies that
z is not in (w)= (w)+ m2 and not in (x)= (x)+ m2. If y and y′ were both in (w, x)= (w, x)+ m2,
then x would be in (y, y′), which is impossible as z /∈ (w). Without loss of generality, assume y /∈
(w, x)+ m2. If y′ were in (w, y)= (w, y)+ m2, then w would be in (y, y′), which is also impossible.
Now let L be a lift of k\{0} in R and let n � 3 be an integer. It follows from Proposition (6.3) that the
modules in the family {Mn(w, x, λy + y′, z)}λ∈L are pairwise non-isomorphic.

If w is in (x) = (x) + m2, then it follows from Theorem (3.1) that the modules in the family
{Mn(w, x, λy + y′, z)}λ∈L are indecomposable and totally reflexive. Indeed, for every λ ∈ R the el-
ement λy + y′ annihilates z, whence it is not in (x)= (x)+ m2.

If w is not in (x)= (x)+ m2, then it follows from the assumption y /∈ (w, x)+ m2 that w , x, and
y are linearly independent modulo m2. There exist elements vi such that v1, . . . , ve−3,w, x, y form a
minimal set of generators for m. Write

y′ = pw + qx + ry +
e−3∑
i=1

ci vi .

As yz = 0 holds and the elements y and y′ are linearly independent modulo m2, we may assume
r = 0. For λ ∈ L, the elements w , x, and λy + y′ are linearly independent. Indeed, if there is a relation

sw + tx + u
(
λy + y′) = (s + up)w + (t + uq)x + uλy + u

e−3∑
i=1

ci vi ∈ m2,

then u is in m as λ /∈ m, and then s and t are in m as w and x are linearly independent modulo m2.
Now it follows from Theorem (3.1) that the modules in the family {Mn(w, x, λy + y′, z)}λ∈L are inde-
composable and totally reflexive. �
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(7.5) Remark. Assume that R has embedding dimension 3 and that m is minimally generated by
elements v , w , and x, where w and x form an exact pair of zero divisors. Let y and y′ be elements in
m and let L be a subset of R . It is elementary to verify that each module in the family {M2(w, x, λy +
y′)}λ∈L is isomorphic to either R/(w)⊕ R/(x) or to the indecomposable R-module M2(w, x, v). Thus
the requirement n � 3 in Theorem (7.4) cannot be relaxed.

We now proceed to deal with 1- and 2-generated modules.

(7.6) Theorem. Let (R,m, k) be a local ring with m3 = 0, emb.dim R � 2, and k infinite. If there is an exact
zero divisor in R, then the set

N1 = {
R/(x)

∣∣ x is an exact zero divisor in R
}

of totally reflexive R-modules contains a subset M1 of cardinality card(k), such that the modules in M1 are
pairwise non-isomorphic.

Proof. Assume that there is an exact zero divisor in R; then R has Hilbert series 1 + eτ + (e − 1)τ 2;
see (4.2). Let {x1, . . . , xe} be a minimal set of generators for m and let {u1, . . . ,ue−1} be a basis for m2.
For h and j in {1, . . . , e} write

xhx j =
e−1∑
i=1

ξhi jui,

where the elements ξhi j are in k. For r1, . . . , re in R let r̄h denote the image of rh in k, and set
x = r1x1 + · · · + rexe . The equality xm = m2 holds if and only if the (e − 1)× e matrix

Ξx =
(

e∑
h=1

r̄hξhi j

)
i j

has rank e − 1; see Remark (7.2). For j ∈ {1, . . . , e} let μ j(x) be the maximal minor of Ξx obtained by
omitting the jth column. Notice that each minor μ j(x) is a homogeneous polynomial expression in
the elements r̄1, . . . , r̄e . The column vector (μ1(x) −μ2(x) . . . (−1)e−1μe(x) )T is in the null-space
of the matrix Ξx , so the element

w =μ1(x)x1 −μ2(x)x2 + · · · + (−1)e−1μe(x)xe

annihilates x. Let ν1(w), . . . , νe(w) be the maximal minors of the matrix Ξw ; they are homogeneous
polynomial expressions in μ1(x), . . . ,μe(x) and, therefore, in r̄1, . . . , r̄e . By Remark (7.2) the elements
x and w form an exact pair of zero divisors if and only if both matrices Ξx and Ξw have rank e − 1.

For j ∈ {1, . . . , e} define μ j and ν j to be the homogeneous polynomials in k[χ1, . . . ,χe] obtained
from μ j(x) and ν j(w) by replacing the elements r̄h by the indeterminates χh , for h ∈ {1, . . . , e}. In
the projective space Pe−1

k , the complement E of the intersection of vanishing sets Z(ν1)∩ · · · ∩ Z(νe)

is an open set. No point in E is in the intersection Z(μ1) ∩ · · · ∩ Z(μe), as each polynomial ν j is
a polynomial in μ1, . . . ,μe . Therefore, each point (ρ1 : · · · : ρe) in E corresponds to an exact zero
divisor as follows. Let r1, . . . , re be lifts of ρ1, . . . , ρe in R; then the element x = r1x1 + · · · + rexe is
an exact zero divisor. It is clear that two distinct points in E correspond to non-isomorphic modules
in N1. Take as M1 any subset of N1 such that the elements of M1 are in one-to-one correspondence
with the points in E . By assumption, the set E is non-empty, and, if k is infinite, then E has the same
cardinality as k. �
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(7.7) Remark. The modules in M1 are in one-to-one correspondence with the points of a non-empty
Zariski open set in Pe−1

k . See also Remark (8.8).

(7.8) Theorem. Let (R,m, k) be a local ring with m3 = 0, emb.dim R � 3, and k infinite. If there is an exact
zero divisor in R, then the set

N2 =
{

M2(w, x, y)
∣∣∣ w, x, and y are elements in R, such that

w and x form an exact pair of zero divisors

}
of totally reflexive R-modules contains a subset M2 of cardinality card(k), such that the modules in M2 are
indecomposable and pairwise non-isomorphic.

Proof. Assume that there is an exact zero divisor in R and let M1 be the set of cyclic totally reflexive
R-modules afforded by Theorem (7.6); the cardinality of M1 is card(k). From M1 one can construct
another set of the same cardinality, whose elements are exact pairs of zero divisors, such that for
any two of them, say w, x and w ′, x′ , one has (x)� (x′) and (w)� (x′). Given two such pairs, choose
elements y and y′ in m\m2 such that y /∈ (w, x) and y′ /∈ (w ′, x′). By Theorem (4.4), the modules
M2(w, x, y) and M2(w ′, x′, y′) are indecomposable and totally reflexive.

Suppose that the R-modules M2(w, x, y) and M2(w ′, x′, y′) are isomorphic; then there exist ma-
trices A = (aij) and B = (bij) in GL2(R) such that the equality

A

(
w y
0 x

)
=

(
w ′ y′
0 x′

)
B

holds. In particular, there are equalities

a21 w = b21x′ and a21 y + a22x = b22x′.

The first one shows that the entries a21 and b21 are elements in m, and then it follows from the
second one that a22 and b22 are in m. Thus A and B each have a row with entries in m, which
contradicts the assumption that they are invertible. �
8. Existence of exact zero divisors

In previous sections we constructed families of totally reflexive modules starting from an exact
pair of zero divisors. Now we address the question of existence of exact zero divisors; in particular,
we prove Theorem (1.3); see Remark (8.7).

A local ring (R,m) with m3 = 0 and embedding dimension 1 is, by Cohen’s Structure Theorem,
isomorphic to D/(d2) or D/(d3), where (D, (d)) is a discrete valuation domain. In either case, d is an
exact zero divisor. In the following we focus on rings of embedding dimension at least 2.

(8.1) Remark. Let (R,m) be a local ring with m3 = 0. It is elementary to verify that elements in m

annihilate each other if and only if their images in the associated graded ring grm(R) annihilate each
other. Thus an element x ∈ m is an exact zero divisor in R if and only if x̄ ∈ m/m2 is an exact zero
divisor in grm(R).

Let (R,m, k) be a standard graded k-algebra with m3 = 0 and embedding dimension e � 2. Assume
that there is an exact zero divisor in R; by (4.2) one has HR(τ )= 1 + eτ + (e − 1)τ 2. If e is 2, then it
follows from [17, Hilfssatz 7] that R is complete intersection with Poincaré series

∞∑
βR

i (k)τ
i = 1

1 − 2τ + τ 2
= 1

HR(−τ ) ;
i=0
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hence R is Koszul by a result of Löfwall [15, Theorem 1.2]. If e is at least 3, then R is not Gorenstein
and, therefore, R is Koszul by [6, Theorem A]. It is known that Koszul algebras are quadratic, and the
goal of this section is to prove that if k is infinite, then a generic quadratic standard graded k-algebra
with Hilbert series 1 + eτ + (e − 1)τ 2 has an exact zero divisor.

Recall that R being quadratic means it is isomorphic to k[x1, . . . , xe]/q, where q is an ideal gen-
erated by homogeneous quadratic forms. The ideal q corresponds to a subspace V of the k-vector
space W spanned by {xi x j | 1 � i � j � e}. The dimension of W is m = e(e+1)

2 , and since R has Hilbert

series 1 + eτ + (e − 1)τ 2, the ideal q is minimally generated by n = e2−e+2
2 quadratic forms; that is,

dimk V = n. In this way, R corresponds to a point in the Grassmannian Grassk(n,m).

(8.2) Definition. Let e � 2 be an integer and set Gk(e) = Grassk(n,m), where n = e2−e+2
2 and m =

e(e+1)
2 . Points in Gk(e) are in bijective correspondence with k-algebras of embedding dimension e

whose defining ideal is minimally generated by n homogeneous quadratic forms. For a point π ∈ Gk(e)
let Rπ denote the corresponding k-algebra and let Mπ denote the irrelevant maximal ideal of Rπ .
Notice that HRπ (τ ) has the form 1 + eτ + (e − 1)τ 2 + ∑∞

i=3 hiτ
i for every π ∈ Gk(e).

Consider the sets

Ek(e)= {
π ∈ Gk(e)

∣∣ there is an exact zero divisor in Rπ
}

and

Hk(e)= {
π ∈ Gk(e)

∣∣ HRπ (τ )= 1 + eτ + (e − 1)τ 2}
and recall that a subset of Gk(e) is called open, if it maps to a Zariski open set under the Plücker
embedding Gk(e) ↪→ PN

k , where N = (m
n

) − 1.

The sets Ek(e) and Hk(e) are non-empty:

(8.3) Example. Let k be a field and let e � 2 be an integer. The k-algebra

R = k[x1, . . . , xe]
(x2

1)+ (xi x j | 2 � i � j � e)

is local with Hilbert series 1 + eτ + (e − 1)τ 2. One has (0 : x1)= (x1); in particular, x1 is an exact zero
divisor in R .

(8.4) Theorem. For every field k and every integer e � 2 the sets Ek(e) and Hk(e) are non-empty open subsets
of the Grassmannian Gk(e).

The fact that Hk(e) is open and non-empty is a special case of [11, Theorem 1]; for convenience a
proof is included below.

Recall that a property is said to hold for a generic algebra over an infinite field if there is a non-
empty open subset of an appropriate Grassmannian such that every point in that subset corresponds
to an algebra that has the property.

(8.5) Corollary. Let k be an infinite field and let e � 2 be an integer. A generic standard graded k-algebra with
Hilbert series 1 + eτ + (e − 1)τ 2 has an exact zero divisor.

Proof. The assertion follows as the set Ek(e) ∩ Hk(e) is open by Theorem (8.4) and non-empty by
Example (8.3). �
(8.6) Remark. Let (R,m) be a local ring. Following Avramov, Iyengar, and Şega (2008) we call an
element x in R with x2 = 0 and xm = m2 a Conca generator of m. Conca proves in [7, Section 4] that if
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k is algebraically closed, then the set

Ck(e)= {
π ∈ Gk(e)

∣∣ there is a Conca generator of Mπ

}
is open and non-empty in Gk(e).

If m3 is zero, then it follows from Lemma (4.3)(c) that an element x is a Conca generator of m if
and only if the equality (0 : x)= (x) holds. In particular, there is an inclusion

Ck(e)∩ Hk(e)⊆ Ek(e)∩ Hk(e).

If k is algebraically closed, then it follows from Conca’s result combined with Theorem (8.4) and
Example (8.3) that both sets are non-empty and open in Gk(e); in the next section we show that the
inclusion may be strict.

(8.7) Remark. Let (R,m, k) be a local k-algebra with m3 = 0 and assume that it is not Gorenstein. If R
admits a non-free totally reflexive module, then it has embedding dimension e � 3 and Hilbert series
1 + eτ + (e − 1)τ 2; see (4.1). Set

Tk(e)= {
π ∈ Hk(e)

∣∣ Rπ admits a non-free totally reflexive module
}
.

We do not know if this is an open subset of Gk(e), but it contains the non-empty open set Ek(e) ∩
Hk(e); hence the assertion in Theorem (1.3).

Proof of Theorem (8.4). Let k be a field, let e � 2 be an integer, and let S denote the standard graded

polynomial algebra k[x1, . . . , xe]. Set N = (m
n

) − 1, where m = e(e+1)
2 and n = e2−e+2

2 . The Plücker
embedding maps a point π in the Grassmannian Gk(e) to the point (μ0(π) : · · · : μN (π)) in the
projective space PN

k , where μ0(π), . . . ,μN(π) are the maximal minors of any m × n matrix Π cor-
responding to π . The columns of such a matrix give the coordinates, in the lexicographically ordered
basis B = {xi x j | 1 � i � j � e} for S2, of homogeneous quadratic forms q1, . . . ,qn . The algebra Rπ is
the quotient ring S/(q1, . . . ,qn).

The sets Ek(e) and Hk(e) are non-empty by Example (8.3). Let Z be an m × n matrix of indeter-
minates and let χ0, . . . ,χN denote the maximal minors of Z. We prove openness of each set Ek(e)
and Hk(e) in Gk(e) by proving that the Plücker embedding maps it to the complement in PN

k of the
vanishing set for a finite collection of homogeneous polynomials in k[χ0, . . . ,χN ].

Openness of Ek(e). Let π be a point in Gk(e), let Π be a corresponding matrix, and let q be the
defining ideal for R = Rπ . For a linear form � = a1x1 + · · · + aexe in S , let l denote the image of �
in R . For i ∈ {1, . . . , e} let [xi�] denote the column that gives the coordinates of xi� in the basis B.
Multiplication by l defines a k-linear map from R1 to R2. By assumption, one has dimk R2 = dimk R1 −
1, so the equality lR1 = R2 holds if and only if l is annihilated by a unique, up to scalar multiplication,
homogeneous linear form in R . Set

Ξ� = ([x1�]
∣∣ [x2�]

∣∣ · · · ∣∣ [xe�]
∣∣Π);

it is an m × (m + 1) matrix with entries in k. The equality lR1 = R2 holds if and only if the equal-
ity �S1 + q2 = S2 holds, and the latter holds if and only if the matrix Ξ� has maximal rank. For
i ∈ {1, . . . ,m + 1} let νi(�) denote the maximal minor obtained by omitting the ith column of Ξ� .
The columns of Π are linearly independent, so Ξ� has maximal rank if and only if one of the mi-
nors ν1(�), . . . , νe(�) is non-zero. Notice that each of the minors ν1(�), . . . , νe(�) is a polynomial
expression of degree e − 1 in the coefficients a1, . . . ,ae of � and linear in the Plücker coordinates
μ1(π), . . . ,μN(π). The column vector ( ν1(�) −ν2(�) . . . (−1)mνm+1(�) )

T is in the null-space of
the matrix Ξ� , so the element
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[(
e∑

i=1

(−1)i−1νi(�)xi

)
�

]
=

e∑
i=1

(−1)i−1νi(�)[xi�]

is in the column space of the matrix Π . Set �′ = ∑e
i=1(−1)i−1νi(�)xi ; it follows that �′� belongs

to the ideal q, so one has l′l = 0 in R . By the discussion above, l is the unique, up to scalar
multiplication, annihilator in R1 of l′ if and only if one of the maximal minors ν1(�

′), . . . , νe(�
′)

of Ξ�′ is non-zero. Moreover, if one of ν1(�
′), . . . , νe(�

′) is non-zero, then also one of the minors
ν1(�), . . . , νe(�) is non-zero by the definition of �′ . Thus l is an exact zero divisor in R if and only if
one of ν1(�

′), . . . , νe(�
′) is non-zero. Notice that each of these minors is a polynomial expression of

degree e in μ1(π), . . . ,μN(π) and degree (e − 1)2 in a1, . . . ,ae .
Let ζ1, . . . , ζe be indeterminates and set L = ζ1x1 + · · · + ζexe . For i ∈ {1, . . . , e} let νi denote the

maximal minor of the matrix

([x1L] ∣∣ [x2L] ∣∣ · · · ∣∣ [xe L] ∣∣ Z
)
,

obtained by omitting the ith column. Each minor νi is a polynomial of degree e − 1 in the indetermi-
nates ζ1, . . . , ζe and linear in χ0, . . . ,χN . For i ∈ {1, . . . , e} set

Fi = νi
(
ν1,−ν2, . . . , (−1)e−1νe

);
each Fi is a polynomial of degree (e − 1)2 in ζ1, . . . , ζe and of degree e in χ0, . . . ,χN . Consider
F1, . . . , Fe as polynomials in ζ1, . . . , ζe with coefficients in k[χ0, . . . ,χN ], and let P denote the collec-
tion of these coefficients. The algebra R has an exact zero divisor, i.e. the point π belongs to Ek(e), if
and only if one of the polynomials Fi in the algebra (k[χ0, . . . ,χN ])[ζ1, . . . , ζe] is non-zero, that is, if
and only if the Plücker embedding maps π to a point in the complement of the algebraic variety

⋂
P∈P

Z(P )⊆ PN
k .

Openness of Hk(e). Let π be a point in Gk(e), let Π be a corresponding matrix, and let q =
(q1, . . . ,qn) be the defining ideal for Rπ . Clearly, π belongs to the subset Hk(e) if and only if the
equality S1q2 = S3 holds. Set c = (e+2

3

)
and take as k-basis for S3 the c homogeneous cubic monomi-

als ordered lexicographically. For a homogeneous cubic form f ∈ S3, let [ f ] denote the column that
gives its coordinates in this basis. The equality S1q2 = S3 holds if and only if the c × ne matrix

Ξ = ([x1q1]
∣∣ [x1q2]

∣∣ · · · ∣∣ [x1qn]
∣∣ [x2q1]

∣∣ · · · ∣∣ [xeqn]
)

has maximal rank, i.e. rank c as one has c � ne. Set

E = ([
x1

(
x2

1

)] ∣∣ [
x1(x1x2)

] ∣∣ · · · ∣∣ [
x1

(
x2

e

)] ∣∣ [
x2

(
x2

1

)] ∣∣ · · · ∣∣ [
xe

(
x2

e

)]);
it is a c × me matrix, and each column of E is identical to a column in the c × c identity matrix Ic . In
particular, E has entries from the set {0,1}. Let  be the matrix Π⊕e , that is, the block matrix with
e copies of Π on the diagonal and 0 elsewhere; it is a matrix of size me × ne. It is straightforward to
verify the equality Ξ = E. Set g = ne − c and let C denote the collection of all subsets of {1, . . . ,me}
that have cardinality g . For i ∈ {1, . . . ,me} let ri denote the ith row of the identity matrix Ime . For
each γ = {t1, . . . , tg} in C set
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Eγ =

⎛⎜⎜⎜⎜⎜⎝
rt1

...

rtg

E

⎞⎟⎟⎟⎟⎟⎠ ;

it is an ne × me matrix with entries from the set {0,1}.

Claim. The matrix Ξ has maximal rank if and only if there exists a γ ∈ C such that Eγ  has non-zero deter-
minant.

Proof. Assume that the ne×ne matrix Eγ  has non-zero determinant. One can write the determinant
as a linear combination with coefficients in {−1,0,1} of the c-minors of the submatrix E, so Ξ = E
has maximal rank. To prove the converse, assume that E has maximal rank, i.e. rank c. The matrix
 has maximal rank, ne, so the rows of  span kne . Therefore, one can choose γ = {t1, . . . , tg} in C
such that rows number t1, . . . , tg in  together with the rows of E span kne . That is, the rows of
Eγ  span kne , so the determinant of Eγ  is non-zero. �

The determinants Pγ = det (Eγ Z⊕e), for γ ∈ C , yield
(me

g

)
homogeneous polynomials of degree e

in k[χ0, . . . ,χN ]. Under the Plücker embedding, π is mapped to a point in the complement of the
algebraic variety ⋂

γ∈C

Z(Pγ )⊆ PN
k

if and only if det (Eγ Π⊕e) is non-zero for some γ ∈ C . By the claim such a γ exists if and only if Ξ
has maximal rank, that is, if and only if π belongs to Hk(e). �
(8.8) Remark. Let (R,m, k) be a local k-algebra with m3 = 0. The argument that shows the openness
of Ek(e) yields additional information. Namely, if there is an exact zero divisor in R , then one of
the polynomials Fi in the variables ζ1, . . . , ζe is non-zero, and every point in the complement of its
vanishing set Z(Fi)⊆ Pe−1

k corresponds to an exact zero divisor. Thus if k is infinite, then a generic
homogeneous linear form in R is an exact zero divisor.

9. Short local rings without exact zero divisors—An example

Let k be a field; set

R = k[s, t,u, v]/(s2, sv, t2, tv,u2,uv, v2 − st − su
)

and m = (s, t,u, v)R.

Conca mentions in [7, Example 12] that although R is a standard graded k-algebra with Hilbert series
1 + 4τ + 3τ 2 and (0 : m) = m2, empirical evidence suggests that there is no element x ∈ R with
(0 : x) = (x); that is, there is no Conca generator of m. Proposition (9.1) confirms this, and together
with Proposition (9.2) it exhibits properties of R that frame the results in the previous sections.
In particular, these propositions show that non-free totally reflexive modules may exist even in the
absence of exact zero divisors, and that exact zero divisors may exist also in the absence of Conca
generators.

(9.1) Proposition. The following hold for the k-algebra R.

(a) There is no element x in R with (0 : x)= (x).
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(b) If k does not have characteristic 2 or 3, then the elements s + t + 2u − v and 3s + t − 2u + 4v form an
exact pair of zero divisors in R.

(c) Assume that k has characteristic 3. If ϑ ∈ k is not an element of the prime subfield F3 , then the element
(1 − ϑ)s + ϑt + u + v is an exact zero divisor in R. If k is F3 , then there are no exact zero divisors in R.

(d) If k has characteristic 2, then there are no exact zero divisors in R.

(9.2) Proposition. The R-module presented by the matrix

Φ =
(

t −t + u − v
t + u − v s + u

)
is indecomposable and totally reflexive, its first syzygy is presented by

Ψ =
(−t + v 2s + t − u + 2v

t + u s − u + v

)
,

and its minimal free resolution is periodic of period 2.

Proof of Proposition (9.1). For an element x = αs + βt + γ u + δv in m we denote the images of α,
β , γ , and δ in R/m ∼= k by a, b, c, and d. For x and x′ = α′s + β ′t + γ ′u + δ′v the product xx′ can be
written in terms of the basis {st, su, tu} for m2 as follows:

xx′ = (
ab′ + ba′ + dd′)st + (

ac′ + ca′ + dd′)su + (
bc′ + cb′)tu. (1)

The product xm is generated by the elements xs = bst + csu, xt = ast + ctu, xu = asu + btu, and
xv = dst + dsu. By Remark (7.2) the equality xm = m2 holds if and only if the matrix

Ξx =
(b a 0 d

c 0 a d
0 c b 0

)

has a non-zero 3-minor; that is, if and only if one of

μ1(x)= −2abc,

μ3(x)= bd(c − b),
and

μ2(x)= cd(c − b),

μ4(x)= −ad(c + b)
(2)

is non-zero. Thus elements x and x′ with xx′ = 0 form an exact pair of zero divisors if and only if one
of the minors μ1(x), . . . ,μ4(x) is non-zero, and one of the minors μ1(x′), . . . ,μ4(x′) of the matrix
Ξx′ is non-zero.

(a): For the equality (0 : x)= (x) to hold, x must be an element in m\m2. If x = αs + βt + γ u + δv
satisfies x2 = 0, then (1) yields

2ab + d2 = 0, 2ac + d2 = 0, and 2bc = 0.

It follows that b or c is zero and then that d is zero. Thus each of the minors μ1(x), . . . ,μ4(x) is zero,
whence x does not generate (0 : x).

(b): For the elements x = s + t + 2u − v and x′ = 3s + t − 2u + 4v , it is immediate from (1) that
the product xx′ is zero, while (2) yields μ3(x)= −1 and μ1(x′)= 12. If k does not have characteristic
2 or 3, then μ1(x′) is non-zero, so x and x′ form an exact pair of zero divisors in R .
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(c): Assume that k has characteristic 3. If k properly contains F3, then choose an element ϑ ∈ k\F3
and set

x = (1 − ϑ)s + ϑt + u + v.

Observe that μ2(x)= 1 − ϑ is non-zero. If ϑ is not a 4th root of unity, set

x′ = (1 + ϑ)s + t − ϑu − (
1 + ϑ2)v,

and note that the minor μ2(x′)= ϑ(1 + ϑ)(1 + ϑ2) is non-zero. From (1) one readily gets xx′ = 0, so
x and x′ form an exact pair of zero divisors. If ϑ is a 4th root of unity, then one has ϑ2 = −1. Set

x′′ = (1 − ϑ)s + t + ϑu − v;
then the minor μ2(x′′)= ϑ(1 − ϑ) is non-zero, and it is again straightforward to verify the equality
xx′′ = 0. Therefore, x and x′′ form an exact pair of zero divisors.

Assume now k = F3 and assume that the elements x = αs + βt + γ u + δv and x′ = α′s + β ′t +
γ ′u + δ′v form an exact pair of zero divisors in R . One of the minors μ1(x), . . . ,μ4(x) is non-zero,
and one of the minors μ1(x′), . . . ,μ4(x′) is non-zero, so it follows from (2) that abc or d is non-zero
and that a′b′c′ or d′ is non-zero.

First assume dd′ �= 0; we will show that the six elements a,a′,b,b′, c, c′ are non-zero and derive
a contradiction. Suppose b = 0, then (1) yields cb′ = 0 and ab′ �= 0, which forces c = 0. This, however,
contradicts the assumption that one of the minors μ1(x), . . . ,μ4(x) is non-zero, cf. (2). Therefore, b is
non-zero. A parallel arguments show that c is non-zero, and by symmetry the elements b′ and c′
are non-zero. Suppose a = 0, then it follows from (1) that a′ is non-zero, as dd′ �= 0 by assumption.
However, (1) also yields

a
(
b′ − c′) = a′(c − b),

so the assumption a = 0 forces c = b, which contradicts the assumption that one of the minors
μ1(x), . . . ,μ4(x) is non-zero. Thus a is non-zero, and by symmetry also a′ is non-zero. Without loss
of generality, assume a = 1 = a′ , then (1) yields

b′ + b = c′ + c and bc′ + cb′ = 0. (3)

Eliminate b′ between these two equalities to get

b
(
c′ − c

) + c
(
c′ + c

) = 0. (4)

As c and c′ are non-zero elements in F3, the elements c′ − c and c′ + c are distinct, and their product
is 0. Thus one and only one of them is 0, which contradicts (4) as both b and c are non-zero.

Now assume dd′ = 0. Without loss of generality, assume that d is zero, then abc is non-zero. It
follows from (2) that the elements a′ , b′ , and c′ cannot all be zero, and then (1) shows that they
are all non-zero. Thus all six elements a,a′,b,b′, c, c′ are non-zero, and as above this leads to a
contradiction.

(d): Assume that k has characteristic 2 and that the elements x = αs + βt + γ u + δv and x′ =
α′s + β ′t + γ ′u + δ′v form an exact pair of zero divisors in R . From (2) one gets d �= 0, d′ �= 0, b �= c,
and b′ �= c′ . Arguing as in part (c), it is straightforward to verify that the six elements a,a′,b,b′, c, c′
are non-zero. Without loss of generality, assume a = 1 = a′ . From (1) the following equalities emerge:

b′ + b + dd′ = 0, c′ + c + dd′ = 0, and bc′ + cb′ = 0.
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The first two equalities yield b′ +b �= 0 and c′ + c �= 0. Further, elimination of dd′ yields b′ = b + c + c′ .
Substitute this into the third equality to get

b
(
c′ + c

) + c
(
c′ + c

) = 0.

As c′ + c is non-zero this implies b = c, which is a contradiction. �
Proof of Proposition (9.2). It is easy to verify that the products ΦΨ and ΨΦ are zero, whence

F : · · · −→ R2 Φ−→ R2 Ψ−→ R2 Φ−→ R2 −→ · · ·

is a complex. We shall first prove that F is totally acyclic. To see that it is acyclic, one must verify the
equalities ImΨ = KerΦ and ImΦ = KerΨ . Assume that the element

( x
x′
)

is in KerΦ . It is straightfor-
ward to verify that m2 R2 is contained in the image of Ψ , so we may assume that x and x′ have the
form x = as + bt + cu + dv and x′ = a′s + b′t + c′u + d′v , where a,b, c,d and a′,b′, c′,d′ are elements
in k. Using that {st, su, tu} is a basis for m2, the assumption Φ

( x
x′
) = 0 can be translated into the

following system of equations

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a − a′ − d′,
a′ − d′,
c + b′ − c′,
a − d + b′,
a − d + a′ + c′,
b + c + b′.

From here one derives, in order, the following identities

a′ = d′, a = 2a′, d = 2a′ + b′, c′ = −a′ + b′, c = −a′, and b = a′ − b′,

which immediately yield
( x

x′
) = Ψ

(b′
a′
)
. This proves the equality ImΨ = KerΦ . Similarly, it is easy to

check that m2 R2 is contained in ImΦ , and for an element(
x

x′

)
=

(
as + bt + cu + dv

a′s + b′t + c′u + d′v

)
, (1)

where a,a′, . . . ,d,d′ are elements in k, one finds that Ψ
( x

x′
) = 0 implies

( x
x′
) = Φ

(b′
a′
)
. This proves

the equality ImΦ = KerΨ , so F is acyclic. The differentials in the dual complex HomR(F , R) are
represented by the matrices ΦT and Ψ T. One easily checks the inclusions m2 R2 ⊆ ImΦT and m2 R2 ⊆
ImΨ T. Moreover, for an element of the form (1) one finds

ΦT
(

x

x′

)
= 0 implies

(
x

x′

)
= Ψ T

(
b′

a′ − 2b′

)
and

Ψ T
(

x

x′

)
= 0 implies

(
x

x′

)
=ΦT

(−b′

a′

)
.

This proves that also HomR(F , R) is acyclic, so the module, M , presented by Φ is totally reflexive.
Moreover, the first syzygy of M is presented by Ψ , and the minimal free resolution of M is periodic
of period 2.
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To prove that M is indecomposable, assume that there exist matrices A = (aij) and B = (bij) in
GL2(R), such that AΦB is a diagonal matrix; i.e. the equalities

0 = (a12b22)s + (
(a11 + a12)b12 − a11b22

)
t + (

a12b12 + (a11 + a12)b22
)
u

− (a12b12 + a11b22)v (2)

and

0 = (a22b21)s + (
(a21 + a22)b11 − a21b21

)
t + (

a22b11 + (a21 + a22)b21
)
u

− (a22b11 + a21b21)v (3)

hold. As the matrices A and B are invertible, neither has a row or a column with both entries in m.
Since the elements s, t , u, and v are linearly independent modulo m2, it follows from (2) that a12b22
is in m. Assume that a12 is in m, then a11 and a22 are not in m. It also follows from (2) that a12b12 +
a11b22 is in m, which forces the conclusion b22 ∈ m. However, this implies that b21 is not in m, so
a22b21 is not in m which contradicts (3). A parallel argument shows that also the assumption b22 ∈ m

leads to a contradiction. Thus M is indecomposable. �
10. Families of non-isomorphic modules of infinite length

Most available proofs of the existence of infinite families of totally reflexive modules are non-
constructive. In the previous sections we have presented constructions that apply to local rings with
exact zero divisors. In [12] Holm gives a different construction; it applies to rings of positive dimen-
sion which have a special kind of exact zero divisors. Here we provide one that does not depend on
exact zero divisors.

(10.1) Construction. Let (R,m) be a local ring and let � = {x1, . . . , xe} be a minimal set of generators
for m. Let N be a finitely generated R-module and let N1 be its first syzygy. Let F � N be a projective
cover, and consider the element

ξ : 0 −→ N1
ι−→ F −→ N −→ 0

in Ext1
R(N,N1). For i ∈ {1, . . . , e} and j ∈ N recall that x j

i ξ is the second row in the diagram

ξ : 0 N1
ι

x j
i

F N 0

x j
i ξ : 0 N1

ω(i, j)

P (i, j) N 0,

where the left-hand square is the pushout of ι along the multiplication map x j
i . The diagram defines

P (i, j) uniquely up to isomorphism of R-modules. Set

P(�; N)= {
P (i, j)

∣∣ 1 � i � e, j ∈ N
};

note that every module in P(�; N) can be generated by βR
0 (N)+ βR

1 (N) elements.
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(10.2) Lemma. Let (R,m) be a local ring and let N be a finitely generated R-module. If, for some minimal
set � = {x1, . . . , xe} of generators for m, the set P(�; N) contains only finitely many pairwise non-isomorphic
modules, then the R-module Ext1

R(N,N1) has finite length.

Proof. Let � = {x1, . . . , xe} be a minimal set of generators for m and assume that P(�; N) contains
only finitely many pairwise non-isomorphic modules. Given an index i ∈ {1, . . . , e}, there exist posi-
tive integers m and n such that the modules P (i,m) and P (i,n+m) are isomorphic. Since xn+m

i ξ equals
xn

i (x
m
i ξ), the module P (i,n+m) comes from the pushout of ω(i,m) along the multiplication map xn

i ;
cf. Construction (10.1). Thus there is an exact sequence

0 −→ N1
α−→ N1 ⊕ P (i,m) −→ P (i,n+m) −→ 0,

where α = ( xn
i −ω(i,m) ). It follows from the isomorphism P (i,m) ∼= P (i,n+m) and Miyata’s theo-

rem [16] that this sequence splits. Hence, it induces a split monomorphism

Ext1
R(N,N1)

Ext1
R (N,α)−−−−−−→ Ext1

R(N,N1)⊕ Ext1
R(N, P (i,m)).

Let β be a left-inverse of Ext1
R(N,α), set mi = m and notice that the element

xmi
i ξ = β Ext1

R(N,α)
(
xmi

i ξ
) = β ( xn+mi

i ξ 0 )= xn+mi
i β ( ξ 0 )

belongs to mn+mi Ext1
R(N,N1).

For every index i ∈ {1, . . . , e} let mi be the positive integer obtained above. With h = m1 +
· · · + me there is an inclusion mh Ext1

R(N,N1) ⊆ mh+1 Ext1
R(N,N1), so Nakayama’s lemma yields

mh Ext1
R(N,N1)= 0. �

(10.3) Theorem. Let (R,m) be a local ring and let � = {x1, . . . , xe} be a minimal set of generators for m. If
there exists a totally reflexive R-module N and a prime ideal p �= m such that Np is not free over Rp , then the set
P(�; N) contains infinitely many indecomposable and pairwise non-isomorphic totally reflexive R-modules.

Proof. It follows from the assumptions on N that every module in the set P(�; N) is totally reflexive
and that the R-module Ext1

R(N,N1) has infinite length, as its support contains the prime ideal p �= m.
By (10.2) the set P(�; N) contains infinitely many pairwise non-isomorphic modules. Every module
in P(�; N) is minimally generated by at most βR

0 (N) + βR
1 (N) elements; see Construction (10.1).

Therefore, every infinite collection of pairwise non-isomorphic modules in P(�; N) contains infinitely
many indecomposable modules. �
Acknowledgments

It is our pleasure to thank Manoj Kummini and Christopher Monico for helpful conversations re-
lated to some of the material in this paper.

References

[1] Maurice Auslander, Mark Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). MR0269685.
[2] Winfried Bruns, Udo Vetter, Determinantal Rings, Lecture Notes in Math., vol. 1327, Springer-Verlag, Berlin, 1988.

MR953963.
[3] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, Frank-Olaf Schreyer, Cohen–Macaulay modules on hypersurface singularities II,

Invent. Math. 88 (1) (1987) 165–182. MR877011.
[4] Lars Winther Christensen, Anders Frankild, Henrik Holm, On Gorenstein projective, injective and flat dimensions—A func-

torial description with applications, J. Algebra 302 (1) (2006) 231–279. MR2236602.
[5] Lars Winther Christensen, Greg Piepmeyer, Janet Striuli, Ryo Takahashi, Finite Gorenstein representation type implies sim-

ple singularity, Adv. Math. 218 (4) (2008) 1012–1026. MR2419377.



L.W. Christensen et al. / Journal of Algebra 350 (2012) 340–373 373
[6] Lars Winther Christensen, Oana Veliche, Acyclicity over local rings with radical cube zero, Illinois J. Math. 51 (4) (2007)
1439–1454. MR2417436.

[7] Aldo Conca, Gröbner bases for spaces of quadrics of low codimension, Adv. in Appl. Math. 24 (2) (2000) 111–124.
MR1748965.

[8] Vesselin N. Gasharov, Irena V. Peeva, Boundedness versus periodicity over commutative local rings, Trans. Amer. Math.
Soc. 320 (2) (1990) 569–580. MR967311.
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