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We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon 
sector up to four-body Fock sector truncation (one “scalar nucleon” and three “scalar pions”). The light-
front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the 
n-body norms and the electromagnetic form factor. We find that the one- and two-body contributions 
dominate up to coupling α ≈ 1.7. As we approach the coupling α ≈ 2.2, we discover that the four-body 
contribution rises rapidly and overtakes the two- and three-body contributions. By comparing with lower 
sector truncations, we show that the form factor converges with respect to the Fock sector expansion.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Solving quantum field theories in the non-perturbative regime 
is not only a theoretical challenge but also essential to under-
stand the structure of hadrons from first principles. The light-front 
(LF) Hamiltonian quantum field theory approach provides a natu-
ral framework to tackle this issue [1,2]. A great advantage of this 
approach is that it provides direct access to the hadronic observ-
ables. In the LF dynamics, the system is defined at a fixed LF time 
x+ ≡ t + z. The physical states are obtained by diagonalizing the 
LF Hamiltonian operator. The vacuum in LF quantization is triv-
ial. As a result, it is particularly convenient to expand the physical 
states in the Fock space. For example, a physical pion state can be 
written in terms of quarks (q), antiquarks (q̄) and gluons (g) as 
|π〉 = |qq̄〉 + |qq̄g〉 + |qq̄gg〉 + · · · .

In order to do practical calculations, the Fock space has to be 
truncated. A natural choice, taking advantage of the LF dynam-
ics, is the Fock sector truncation, also known as the light-front 
Tamm–Dancoff (LFTD) method [2]. A number of non-perturbative 
renormalization schemes have been developed based on the LFTD 
[3–6]. Thus we arrive at a few-body problem and predictions can 
be systematically improved by including more Fock sectors. The 
LFTD method is a non-perturbative approach in Minkowski space, 
which can be compared with other non-perturbative methods, e.g., 
Lattice quantum field theory in Euclidean space. Of course, this 
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approach only works if the Fock sector expansion converges in 
the non-perturbative region. In practice, one can compare suc-
cessive Fock sector truncations and check numerically whether 
the relevant physical observables converge. We will see that good 
convergence is achieved for the scalar Yukawa model in a non-
perturbative regime with a four-body Fock sector truncation. Simi-
lar results, though by a different method, were found in Refs. [7,8]
for the Wick–Cutkosky model [9].

We apply this approach to a scalar version of the Yukawa model 
that describes the pion-mediated nucleon–nucleon interaction. The 
Lagrangian density of the model reads

L = ∂μN†∂μN − m2|N|2 + 1
2 ∂μπ∂μπ − 1

2μ2
0π

2

+ g0|N|2π + δm2|N|2, (1)

where g0 is the bare coupling, δm2 is the mass counterterm of the 
field N(x). It is convenient to introduce a dimensionless coupling 
constant

α = g2

16πm2
.

For the sake of brevity, we refer to the fundamental degrees-of-
freedoms (d.o.f.’s) N(x) and π(x) as “scalar nucleon” and “scalar 
pion” field respectively. We also introduce a Pauli–Villars (PV) 
scalar pion (with mass μ1) to regularize the ultraviolet (UV) diver-
gence [10]. Then, a sector dependent method known as the Fock 
sector dependent renormalization (FSDR) developed in Ref. [6]
is used to renormalize the theory. FSDR is a systematic non-
perturbative renormalization scheme based on the covariant light-
front dynamics (CLFD, see Ref. [11] for a review) and Fock sector 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. The diagrammatic representation of the system of equations in the four-body truncation.
expansion. It has shown great promise in the application to the 
Yukawa model and QED [12,13].

The scalar Yukawa model is known to exhibit a vacuum in-
stability [14]. It can be stabilized by either adding the quartic 
terms 1

4!π
4, 1

2 |N|4 and 1
2 |N|2π2 to the Lagrangian, or restricting 

the nucleon–antinucleon d.o.f. [15]. The latter leads to the exclu-
sion of the pion self-energy correction, sometimes referred to as 
the “quenched approximation”. For the sake of simplicity, here we 
study this restricted version of the theory. Then the bare mass of 
the scalar pion becomes the physical mass, μ0 = μ. It should be 
emphasized, though, that our formalism is capable of dealing with 
the (scalar) antinucleon d.o.f. The scalar nucleon and scalar pion 
d.o.f.’s generate non-perturbative dynamics at large coupling suffi-
cient for our purposes.

Previously, this model has been solved in the same approach up 
to three-body truncation (one scalar nucleon, two scalar pions) [6]. 
The results from the two- and three-body truncations agree at 
small couplings; yet they deviate in the large coupling region. 
Therefore, it is crucial to extend the non-perturbative calculation 
to higher Fock sectors. In this paper, we present the calculation of 
the four-body truncation (one scalar nucleon, three scalar pions). 
By comparing successive truncations, we can examine the conver-
gence of the Fock sector expansion. We presented a preliminary 
version of this work in Ref. [16].

We first introduce our formalism in the next section. The LF 
Hamiltonian field theory will be briefly mentioned and the non-
perturbative renormalization procedure will be explained. Then a 
set of coupled integral equations will be derived for the four-body 
truncation. In Section 3, we present the numerical results, includ-
ing the calculation of the electromagnetic form factor. We conclude 
in Section 4.

2. Light-front Hamiltonian field theory

The LF Hamiltonian for the scalar Yukawa model is

P̂− =
∫

d3x
[
∂⊥N† · ∂⊥N + m2|N|2 + 1

2 ∂⊥π · ∂⊥π

+ 1
2μ2

0π
2 − g0|N|2π − δm2|N|2

]
x+=0

. (2)

The physical states can be obtained by solving the time-independ-
ent Schrödinger equation

P̂− |p〉 = p2⊥ + M2

p+ |p〉, (3)

where p⊥ and p+ are the transverse and longitudinal momentum, 
respectively. Thanks to boost invariance in the LF dynamics, we can 
take p⊥ = 0 without loss of generality.
The system is solved in the single-nucleon sector. The state vec-
tor admits a Fock space expansion,

|p〉 =
∑

n

∫
Dn ψn(k1⊥, x1, . . . ,kn⊥, xn; p2)

× |k1⊥, x1, . . . ,kn⊥, xn〉, (4)

where xi ≡ k+
i

p+ , and

Dn = 2(2π)3δ(2)(k1⊥ + · · · + kn⊥)δ(x1 + · · · + xn − 1)

×
n∏

i=1

d2ki⊥dxi

(2π)32xi
.

The n-body Fock state |k1⊥, x1, . . . , kn⊥, xn〉 consists (n − 1) scalar 
pions and 1 scalar nucleon. We use the last pair (kn⊥, xn) to denote 
the momentum of the scalar nucleon. ψn , known as the LF wave 
function (LFWF), is a boost invariant. The LFWFs are normalized to 
unity, 

∑
n In = 1, where

In = 1
(n−1)!

∫
Dn

∣∣∣ψn(k1⊥, x1, . . . ,kn⊥, xn; p2)

∣∣∣2
(5)

is the probability that the system appears in the n-body Fock sec-
tor. In the scalar Yukawa model, these quantities are regulator 
independent, in contrast to more realistic theories such as Yukawa 
and QED. Note that ψ1 = √

I1 is a constant.
It is convenient to introduce the n-body vertex functions,

�n(k1⊥, x1, . . . ,kn−1⊥, xn−1; p2)

= (s1,...,n−1 − p2)ψn(k1⊥, x1, . . . ,kn⊥, xn; p2) (6)

for n > 1 and �1 = (m2 − p2)ψ1, where

si1,...,in−1 ≡ (ki1 + · · · + kin−1 + kn)
2

=
in−1∑
i=i1

k2
i⊥ + μ2

ji

xi
+ k2

n⊥ + m2

xn

is the invariant mass squared of the Fock state, and μ ji ( ji = 0, 1) 
is the mass of the i-th scalar pion. We have suppressed kn⊥ and 
xn in �n , by virtue of the momentum conservations k1⊥ + k2⊥ +
· · · + kn⊥ = 0, x1 + x2 + · · · + xn = 1. For simplicity we will also 

omit the dependence on p2 in �n for the ground state p2 = m2.
Written in terms of the vertex functions �, Eq. (3) can be rep-

resented diagrammatically using the LF graphical rules [17,18] (see 
Ref. [11] for a review). Fig. 1 shows the diagrams for the four-body 
truncation.

The two-body vertex function �2 plays a particular role in 
renormalization. It comprises all radiative corrections allowed 
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Fig. 2. The perturbative expansion of the two-body vertex function. The solid lines represent the scalar nucleons; the dashed lines represent the scalar pions; the double lines 
represent the dressed nucleons.
Fig. 3. The self-energy correction, loop correction � plus mass counterterm δm2, 
expressed in terms of the two-body vertex function �2. Note the external lines are 
amputated.

by the Fock sector truncation, including the amputated vertex 
V 3(k1, k2, p) and the self-energy �((p − k1)

2) (see Fig. 2):

�2(k1⊥, x1; p2) = Z((p − k1)
2)V 3(k1,k2, p)

√
I1, (7)

where the function Z(q2) = (
1 − �(q2)−�(m2)

q2−m2

)−1
is a general-

ization of the field strength renormalization constant Z = (
1 −

∂

∂q2 �(q2)
)−1

q2=m2 = I1. Note the presence of the scalar pion spec-

tator, which means that in the n-body truncation, the self-energy 
correction in the expression for �2 is the (n − 1)-body self-
energy.

The dependence of renormalization constants on the Fock 
sector is a general feature of the Fock sector expansion. We 
use g0n and δm2

n to denote the bare coupling and the mass 
counterterm from the n-body truncation, respectively. According 
to the LSZ reduction formula, the physical coupling g = T f i =√

Z V 	
3(k1, k2, p)

√
I1. Here “	” means that V 3 is evaluated at the 

renormalization point, the physical mass shell s1 = m2 ⇒ k2
1⊥ =

−(1 − x1)μ
2 − x2

1m2 ≡ k	2
1⊥ . These relations provide the on-shell 

renormalization condition [5,6,12],

�
(n)
2 (k	

1⊥, x1; p2 = m2) = g
√

Z (n−1). (8)

Here the Fock sector dependence is shown explicitly. For example, 
�

(n)
2 represents the two-body vertex function found in the n-body 

truncation. Note that k	2
1⊥ is negative, which means Eq. (8) has to 

be imposed through analytic continuation.
The two-body vertex function �2 also provides a non-pertur-

bative means to calculate the self-energy correction (see Fig. 3). 
Following the LF graphical rules, the self-energy in the n-body 
truncation is

�(n)(p2) = −
(

I(n)
1

)− 1
2

∫
d2k1⊥
(2π)3

1∫
0

dx1 g0n

2x1(1 − x1)

× �
(n)
2 (k1⊥, x1; p2)

s1 − p2
. (9)

Note that in our formalism the state vector in Eq. (4), rather than 
its one-body component, is normalized to unity. So according to 
the definition of the self-energy, the one-body LFWF ψ1 = √

I1
is excluded from �2 in the above expression. Then the mass 
renormalization condition in the on-shell scheme implies δm2

n =
�(n)(m2).

As mentioned, the system of equations for �2–4 resulted from 
truncating Eq. (3) to at most four-body (one scalar nucleon and 
three scalar pions) are shown in Fig. 1. After substituting �4 into 
the second equation and applying the renormalization condition 
Eq. (8), the system of equations becomes

�
j1
2 (k1⊥, x1) = g/

√
I(3)
1 + δm2

3 �
j1
2 (k1⊥, x1)

(1 − x1)(s1 − m2)

+
1∑

j2=0

(−1) j2

∫
d2k2⊥
(2π)3

1−x1∫
0

dx2 g03(ξ21)

2x2(1 − x1 − x2)

×
(

�
j1 j2
3 (k1⊥, x1,k2⊥, x2)

s12 − m2

− �̃
0 j2
3 (k	

1⊥, x1,k2⊥, x2)

s	
12 − m2

)
, (10)

�
j1 j2
3 (k1⊥, x1,k2⊥, x2)

= Z (2)(q2
12)

[
g03(ξ21)�

j1
2 (k1⊥, x1)

(1 − x1)(s1 − m2)
+ g2

02

1∑
j3=0

(−1) j3

×
∫

d2k3⊥
(2π)3

1−x1−x2∫
0

dx3

2x3(1 − x1 − x3)(1 − x1 − x2 − x3)

× 1

s123 − m2

�
j1 j3
3 (k1⊥, x1,k3⊥, x3)

(s13 − m2)

]
+ (

1 ↔ 2
)

(11)

where ξ21 = x2/(1 − x1), s	
12 = k	2

1⊥+μ2
0

x1
+ k2

2⊥+μ2
j2

x2
+ (k	

1⊥+k2⊥)2+m2

1−x1−x2
, 

q2
12 = m2 − (1 − x1 − x2)(s12 − m2), and Z (2) comes from combin-

ing the two-body self-energy corrections. We have included the 
PV scalar pions ( j = 1) in the equations along with the “physical” 
pions ( j = 0). As mentioned, g02, δm2

2, g03, δm2
3 are sector de-

pendent renormalization “constants” obtained from the two- and 
three-body truncations [6]. In fact, g03 depends on the momentum 
fraction x, which is a manifestation of the violation of the Lorentz 
symmetry by the Fock sector truncation [12]. �̃3 is an auxiliary 
function that satisfies the integral equation,

�̃
0 j2
3 (k	

1⊥, x1,k2⊥, x2)

= Z (2)(q	2
12)

[
g03(ξ12)�

j2
2 (k2⊥, x2)

(1 − x2)(s2 − m2)
+ g2

02

1∑
j3=0

(−1) j3

×
∫

d2k3⊥
(2π)3

1−x1−x2∫
0

dx3

2x3(1 − x1 − x3)(1 − x1 − x2 − x3)

× 1

s	
123 − m2

(
�̃

0 j3
3 (k	

1⊥, x1,k3⊥, x3)

s	
13 − m2

+ �
j2 j3
3 (k2⊥, x2,k3⊥, x3)

s23 − m2

)]
, (12)

where ξ12 = x1/(1 − x2), q	2
12 = m2 − (1 − x1 − x2)(s	

12 − m2), s	
123 =

k	2
1⊥+μ2

0
x1

+ k2
2⊥+μ2

j2
x2

+ k2
3⊥+μ2

j3
x3

+ (k	
1⊥+k2⊥+k3⊥)2+m2

1−x1−x2−x3
. Note that Eq. (10)

can be eliminated by substituting �2 into Eq. (11) and Eq. (12).
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Fig. 4. The Fock sector norms I1–4 as a function of the PV mass μ1 for α = 1.0
(top), α = 2.0 (bottom). Results evaluated on different grids are shown.

3. Numerical results

We employ an iterative procedure to solve Eqs. (10)–(12). The 
momenta are discretized on chosen grids in the transverse ra-
dial and angular coordinates as well as in the longitudinal co-
ordinate, where the grid sizes are controlled by the number of 
abscissas, Nrad, Nang, and Nlfx. Then the integrals are approximated 
by the Gauss–Legendre quadrature. We start with an initial guess 
of the vertex functions and update them iteratively, until reaching 
a pointwise absolute tolerance max{|��|} < 10−4. We solved the 
system at m = 0.94 GeV, μ0 = 0.14 GeV. The numerical results are 
obtained using Cray XE6 Hopper at NERSC.

Fig. 4 plots the Fock sector normalization factors In (see Eq. (5)) 
as a function of the PV mass μ1 for two selected coupling con-
stants. It shows that for sufficiently large grids, In converge as μ1
increases. However, for a fixed grid, increasing μ1 would increase 
the numerical error while decreasing the systematic error intro-
duced by the finite regulator, as larger μ1 requires more coverage 
in the UV hence larger grid size. A PV mass μ1 = 15 GeV suffices 
for our purposes here.

There exist two critical couplings at αc ≈ 2.6 and α′
c ≈ 2.2. In 

the two-body truncation, one finds the bare coupling,

1

g2
− 1

g2
02

= 1

16π2m2

[
f
(μ0

m

)
− f

(μ1

m

)]
,

where f (λ) = ∫ 1
0 dx x(1 − x)/((1 − x)λ2 + x2) and f (λ → ∞) = 0. 

If the physical coupling constant α > αc ≡ π/ f (μ0/m), the two-
body bare coupling g02 diverges at some finite PV mass. Such a 
singularity in g02 (known as the “Landau pole” in a similar case 
in QED) propagates from the two-body truncation to the four-body 
truncation via g02 used in the FSDR. At α = α′

c , the determinant of 
the Hamiltonian in the three-body truncation crosses zero. Simi-
Fig. 5. The Fock sector norms I1–4 as a function of the coupling constant α. Results 
are evaluated on the grid Nlfx = 41, Nrad = Nang = 20, with a PV mass μ1 = 15 GeV.

Fig. 6. Comparison of the Fock sector norms I1 (top) and I2 (bottom) from succes-
sive two-, three- and four-body truncations.

larly, this singularity propagates from the three-body truncation to 
the four-body truncation and the iterative procedure in the four-
body truncation diverges at α � α′

c .
Fig. 5 shows the contribution of each Fock sector in the four-

body truncation for couplings up to α = 2.12. A natural Fock sector 
hierarchy I1 > I2 > I3 > I4 can be observed, up to α ≈ 1.7. Beyond 
α ≈ 1.7, I4 exceeds I3 and begins a steep climb with increasing α. 
Meanwhile, I2 turns over and starts to fall. The net effect is that 
I4 exceeds I2 and I3 at about α ≈ 2.1. Clearly, as we approach α′

c , 
dramatic changes in the In ’s are emerging and it appears that the 
Fock space expansion breaks down. Nevertheless, the lowest sec-
tors |N〉 + |Nπ〉 are observed to dominate the Fock space up to 
α ≈ 2.0, where these two sectors constitute 80% of the full norm.

Fig. 6 compares the Fock sector norms from the four-body 
truncation with their counterparts from the two- and three-body 
truncations. The result suggests a convergence as the number of 
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Fig. 7. The various Fock sector contributions to the electromagnetic form factor for 
the scalar nucleon (solid lines). The dashed lines represent the internal scalar pions. 
The wavy lines represent the external photons.

Fig. 8. The elastic electromagnetic form factor F (Q 2) in the four-body truncation for 
couplings α = 0.2, 0.4, 0.8, 1.6, and 2.1. The numerical results (symbols) are fitted 
by Eq. (15) (lines).

constituent bosons increases, especially for the coupling below 
α ≈ 1.0. Note that the one-body norm I1 changes little from the 
three-body truncation to the four-body truncation, even around 
α ≈ 1.7.

The obtained LFWFs are now available for computing physical 
observables. Here we consider the elastic electromagnetic form fac-
tor for photon coupling to the scalar nucleon, which is obtained 
from the matrix element of the “+” component of the current (see 
Fig. 7),

〈p + q| J+(0)|p〉 = 2p+ F (Q 2), (13)

where q+ = 0, Q 2 = −q2 = q2⊥ > 0. In LF dynamics, the form factor 
obtains the form [19]:

F (Q 2) =
∑

n

1
(n−1)!

∫
Dnψ

∗
n (k′

1⊥, x1, . . . ,k′
n⊥, xn)

× ψn(k1⊥, x1, . . . ,kn⊥, xn) (14)

where k′
i⊥ = ki⊥ − xiq⊥ (i = 1, 2, . . . , n − 1), for the spectators and 

k′
n⊥ = kn⊥ + (1 − xn)q⊥ for the struck parton. Fig. 8 shows the 

form factor for some selected couplings. In the limit of Q 2 → 0, 
F (0) = 1, consistent with the charge conservation; in the limit of 
Q 2 → ∞, F (∞) = I1, representing a point-like charge. The form 
factors can be approximated by

F (Q 2) ≈ 1 + c I1 Q 2

2
. (15)
1 + c Q
Fig. 9. Comparison of the form factors calculated in the two-, three- and four-body 
truncations at α = 1.0 (top) and α = 2.0 (bottom). The three- and four-body form 
factors are fitted by Eq. (15).

Fig. 9 compares the form factors obtained from the two-, three-
and four-body truncations for two selected couplings. The three-
and four-body truncation results show good agreement even at the 
non-perturbative couplings, suggesting a reasonable convergence 
with respect to the Fock sector expansion.

4. Discussion and conclusions

We solve the single-nucleon sector of the scalar Yukawa model 
in light-front dynamics within a four-body (up to one scalar nu-
cleon and three scalar pions) Fock sector truncation. Fock sector 
dependent renormalization is implemented. The coupled system of 
linear integral equations is derived and solved numerically. The nu-
merical study of the Fock sector norms suggests that up to α ≈ 1.7
the system is dominated by the lowest Fock sectors. By compar-
ing the form factors from successive Fock sector truncations (two-, 
three- and four-body), we find that the Fock space expansion of 
the form factor for the scalar nucleon converges as the number of 
scalar pions increases even in the non-perturbative region.

Solving the one-nucleon sector is also the first step for the 
study of the two-nucleon sector – a bound-state problem, which 
has been extensively studied in various approaches (see, e.g., [20]
and the references therein). However not all these approaches 
are from first principles. In our approach, the two-nucleon sec-
tor obeys similar integral equations. The bare couplings and the 
mass counterterms, according to FSDR, are already provided by 
the one-nucleon sector (up to three dressing pions). Therefore, 
our approach allows a systematic study of the theory with a non-
perturbative renormalization.

This calculation demonstrates that the light-front Tamm–
Dancoff method, equipped with the Fock sector dependent renor-
malization, is a general ab initio non-perturbative approach to 
quantum field theories. While the solution of the scalar Yukawa 
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model may be useful for, e.g., chiral effective field theory studies, 
this approach has also been applied to more realistic field the-
ories, including the Yukawa model (truncation up to one spinor 
and two scalars) [13] and QED (truncation up to one electron and 
two photons) [5]. In these theories, the vertex functions also di-
verge, in contrast to the scalar Yukawa model. However, after the 
renormalization, the physical observables converge as expected. 
Nevertheless, the study of the higher Fock sector expansion in 
these models is in principle similar to the current one, which in-
dicates the potential of this approach as an alternative to other 
first-principle methods, e.g. the lattice gauge theory, especially in 
the study of hadron structures.
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