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Regular Maps on Surfaces with Large Planar Width

ROMAN NEDELA AND MARTIN ŠKOVIERA

A map isa cell decomposition of a closed surface; it is regular if its automorphism group acts
transitively on the flags, mutually incident vertex-edge-face triples. The main purpose of this paper
is to establish, by elementary methods, the following result: for each positive integerw and for each
pair of integersp ≥ 3 andq ≥ 3 satisfying 1/p + 1/q ≤ 1/2, there is an orientable regular map
with face-sizep and valencyq such that every non-contractible simple closed curve on the surface
meets the 1-skeleton of the map in at leastw points. This result has several interesting consequences
concerning maps on surfaces, graphs and related concepts. For example, MacBeath’s theorem about
the existence of infinitely many Hurwitz groups, or Vince’s theorem about regular maps of given type
(p,q), or residual finiteness of triangle groups, all follow from our result.
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1. INTRODUCTION

Tessellations of surfaces byp-gons withq of them meeting at each vertex have been studied
for a long period of time as a natural generalization of the Platonic solids, extending the idea
of regular polyhedra from the 2-sphere to other closed surfaces. General(p,q)-tessellations,
however, may lack several important properties typical of the regular polyhedra. In particular,
they may fail to be symmetrical and, because of the multiple connectivity of the supporting
surface, they may havep-gonal faces with repeated occurrence of some vertices on their
boundary. Thus, by restricting to symmetrical(p,q)-tessellations which do not contain self-
touching faces, a more accurate generalization of the regular polyhedra can be obtained. It is
the purpose of this paper to study such objects.

Let us make the above ideas more precise. Atessellationconsists of a connected surface
S without a boundary and a connected locally finite graphK embedded inS, such that each
component ofS− K is simply connected and has compact closure; these are thefacesof the
tessellation. WhenS is compact (and the graph is finite), a tessellation is called amaponS. An
automorphismor a symmetry of a map is a permutation of its vertices, edges and faces which
can be accomplished by a homeomorphism of the surface onto itself. Equivalently, a map
automorphism is an automorphism of its underlying graph which takes faces to faces. If the
surface is orientable, an automorphism is often required to preserve the selected orientation
of S.

At this point, let us restrict ourselves to orientable surfaces only. It is well known that
the number of orientation-preserving automorphisms of each map is bounded from above
by the doubled number of its edges [16]. This bound is attained precisely when the map
automorphism group acts regularly on the set ofarcs of the map, the directed edges where
each edge is represented twice,once in each direction. Accordingly, such a map is called
regular, or more preciselyorientably-regular. Thus, in a certain sense, regular maps, such as
the Platonic solids, are the most symmetrical of all maps.

Modern history of regular maps goes back at least to Klein (1878) who described in [20] a
regular map of type(7,3) on the orientable surface of genus 3. In its early times, thestudy
of regular maps was closely connected with group theory as one can see in Burnside’s fa-
mous monograph [4], and more recently in Coxeter’s and Moser’s book [6, Chapter 8]. The
present-day interest in regular maps extends to their connection to Dyck’s triangle groups,
Riemann surfaces, linear fractionaltransformations of the complex plane, algebraic curves,
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Galois groups and other areas. Many of these links are nicely surveyed in the recent papers of
Jones [15] and Jones and Singerman [17].

While regularity (in either arithmetical or group-theoretical sense) isan obvious property
of any generalization of the Platonicsolids, it is somewhat less obvious whether or how their
planarity should be generalized. From our point of view, it is natural to replace the global
planarity of the Platonic solids by a certain local variant of this notion. This should guarantee
that a sufficiently ‘large’ neighbourhood of each face is simply connected, thereby ruling out
self-touching faces. Recent works in topological graph theory (cf. [25, 28, 29, 31]) suggest the
following concept as a convenient measure of local planarity. A mapM on a closedsurface
S other thanthe 2-sphere is said to haveplanar widthat leastk, w(M) ≥ k, if every non-
contractible simple closed curve onS intersects the underlying graph ofM in at leastk points.
Planar width (most often called ‘face-width’ or ‘representativity’) has recently received con-
siderable attention as an important tool for the study of graph embeddings on surfaces. The
present paper concentrates on the study of planar width of regular maps on orientable sur-
faces. Its main purpose is to show that for every hyperbolic or parabolic type(p,q), that is,
1/p+ 1/q ≤ 1/2, there exists a regular map on some orientable surface having type(p,q)
and arbitrarily large planar width.

MAIN THEOREM. For every pair of integers p≥ 3 and q≥ 3 such that1/p+ 1/q ≤ 1/2
and for every integer k≥ 2, there existsan orientable regular map M of type(p,q) with
w(M) ≥ k.

This theorem has several predecessors in the literature.
In 1976, Gr̈unbaum [12] asked if for every pair of positive integersp andq with 1/p +

1/q < 1/2 (i.e., in the hyperbolic case) there are infinitely many finite regular mapsof type
(p,q). He also remarked, however, that it was not even known whether for suchp andq there
was at least one map of that type. The question was answered in the affirmative by Vince [32]
within a more general framework of higher-dimensional analogues of regular maps. His proof,
based on a theoremof Mal’cev stating that every finitely generated matrix group is residu-
ally finite (see, e.g., Kaplansky [19]), was non-elementary and non-constructive. Construc-
tive proofs of Vince’s theorem were subsequently given by Gray and Wilson [10] and Wil-
son [35, 37] along with some refinements. Further constructions of regular maps of each type
(p,q) haverecently been given by Jendrol’et al. [14] and Archdeaconet al. [1].

Parallel to this development there is another line of research which isclosely related to our
Main Theorem.The bridge between the two streams is the observation that an orientable
regular map of type(p,q) exists if and only if there is a finite group with presentation
〈x, y; xq

= y2
= (xy)p

= 1, . . . 〉. Indeed, given such a groupH , let us view its elements
as arcs of a map to be constructed. Consider the action ofH on itself by left translation and
represent orbits of〈x〉, 〈y〉, and〈xy〉 as vertices, edges and faces, respectively, with incidence
being given by non-empty intersection. Taking ap-gon for each face and making the obvious
identifications between the faces results in a map of type(p,q) on an orientable surface. It is
easy to show that the map is regular. Conversely, the automorphism group of a regular map is
a finite group admitting the required presentation.

With this relationship in mind, the solution of the above Grünbaum’s(p,q)-problem can
be derived from an old result (1902) of Miller [24] (rediscovered by Fox [8] in 1952) which
states:For any three integers p, q, and r , all greater than 1, there exist infinitely many pairs
of permutations α, β such that α has order p, β has order q, and αβ has order r , except that
the three numbers are 2,3,3 or 2,3,4 or 2,3,5 (ordered arbitrarily) or two of the numbers
are 2. In the latter cases, the triples determine the groups uniquely: they are the tetrahedral,
the octahedral and the dodecahedral group, and the dihedral groups.
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The special case wherep = 7, q = 3 andr = 2 (or its dual, with the roles ofp andq inter-
changed) was the object of an extensiveresearch in the area of Fuchsian groups, hyperbolic
geometry and Riemann surfaces originating from the famous theorem of Hurwitz (1893):For
any Riemann surface S of genus g ≥ 2, the number of its automorphisms (that is, conformal
homeomorphisms)does not exceed 84(g− 1). This bound is attained precisely when Aut(S)
is a Hurwitz group, a finite groupH generated by an elementx of order 3 and an element
y of order 2 whose product has order 7. As mentioned above, such a group gives rise to a
regular map of type(7,3) on S, a (trivalent)Hurwitz map, whose automorphism group is iso-
morphic toH . In this context, the fact that there are infinitely many Hurwitz groups was first
established by MacBeath in 1969 [23].

Observe, however, that MacBeath’s theorem immediately follows from Vince’s theorem
which in turn is a consequence of our Main Theorem. Indeed, it is sufficient to take an infinite
sequence of regular maps of any type(p,q) (in particular,(7,3)) with increasing planar width.
Thus our Main Theorem has the following two corollaries.

COROLLARY 1 (VINCE’ S THEOREM [32]). For any pair of integers with p≥ 2, q ≥ 2
and1/p+ 1/q ≤ 1/2 there exist infinitely many orientable regular maps of type(p,q).

COROLLARY 2 (MACBEATH’ S THEOREM [23]). There exist infinitelymany Hurwitz
groups.

Another notable consequence of the Main Theorem is also of group-theoretical nature. Let
T+(2, p,q) be the oriented triangle groupwith presentation〈x, y; xq

= y2
= (xy)p

= 1〉.
Then for any integerw ≥ 1 there exist infinitely many finite quotientsH of T+(2, p,q) such
that in any presentation ofH in terms ofx andy all reduced identities that are not identities
of T+(2, p,q) have length greater thanw. The latter sentence is nothing but a reformulation
of the well-known fact that triangle groupsT+(2, p,q) are residually finite [19]. A group
G is calledresidually finiteif for each elementg ∈ G there exists a finite quotientH of G
such that the epimorphismG → H does not sendg onto identity. Furthermore,the group
T+(2, p,q) is easily seen to be isomorphic to the even-word subgroup of the full triangle
groupT(2, p,q) = 〈x, y, z; a2

= b2
= c2

= (ab)p
= (bc)q = (ac)2〉. Hence, by using

our Main Theorem (as well as its unoriented version, Theorem4.7) we deduce the following
corollary.

COROLLARY 3. For each pair of integers p and q such that1/p + 1/q ≤ 1/2, both the
oriented and the full triangle group T+(2, p,q) and T(2, p,q) are residually finite.

As was noted, Vince [32] proved Grünbaum’s conjecture by employing the residual finite-
ness of triangle groups. In contrast, we have just shown that our Main Theorem implies both
Vince’s theorem and the residual finiteness of triangle groups. In fact, the residual finiteness
of triangle groups is equivalent to the Main Theorem.

It is well known (see [13, 21, 30]) that the fundamental groups of compact surfaces are
residually finite. Alternatively, this can be proved by using Corollary3 and observing that
every fundamentalgroup of a closed surface embeds into some triangle groupT(2, p,q). A
natural way to ensure that the fundamental group of a given surface embeds into a triangle
groupT(2, p,q) is to try to construct a map of type(p,q) supported byS. For instance, if
the surface is orientable of genusg one can takep = 4g = q.

High symmetry combined with high local planarity of tesellations are very restrictive con-
ditions: in general, a map of type(p,q) will neither be highly symmetric nor highly lo-
cally planar. If these conditions are relaxed, much stronger results can be proved. Under these
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weaker conditions the problem of the existence of(p,q)-tessellations of closed surfaces was
completely solved in 1982 by Edmonds, Ewing and Kulkarni [7]by establishing the follow-
ing remarkable theorem:Given a closed surface S with Euler characteristic χ there exists a
(p,q)-tessellation of S with n vertices, m edges and r faces whenever the obvious necessary
conditions are satisfied: n − m+ r = χ and pr = 2m = qn. It is important to note that in
order to obtain this statement onemustallow faces with repeated occurrence of some vertices
on the boundary (the planar width of such maps is 1).

Our paper is organized as follows.
The next section contains preliminaries on maps on surfaces and their combinatorial rep-

resentation. Dealing with combinatorial representations of maps rather than with topological
maps themselves is essential in this paper. We introduce two different combinatorial descrip-
tions of maps. In the case of oriented surfaces we utilize rotation-involution pairs acting on
arcs, whereas in the latter case triples consisting of a longitudinal, rotary and transversal in-
volution acting on flags, incident vertex-edge-face triples, are appropriate.

Section3 introduces the key ingredient of the method behind the proof of our Main Theo-
rem. It is the concept of the generic regular map over a given map, theuniversal smallest reg-
ular map covering it. This concept enables us to derive the required regular maps as generic
regular coverings over suitable irregular maps.

The final section is devoted to the proof of the main result. In short, the proof proceeds
as follows. We first take the infinite regular hyperbolic tessellationTp,q of type (p,q) with
a distinguished fundamental polygon. We form a discDw consisting of all polygons whose
distance from the fundamental polygon does not exceed a given valuew. Then we glue two
copies ofDw along their boundaries to form a mapM0 on the 2-sphere, the identified bound-
aries giving rise to theEquatorof M0. In M0, valencies and covalencies (face-sizes) are cor-
rect everywhere except the Equator. Therefore we perform certain corrections in the vicinity
of the Equator to get rid of irregularities and to obtain a map of type(p,q). These modifi-
cations are possible since, at this stage of the proof, we may allow semiedges, that is, edges
having only one incident vertex. The corrections split into a number of cases most of which
treat situations wherep ≤ 8 orq ≤ 6. The modified spherical map is then lifted to its generic
regular covering (which necessarily has no semiedges), and this map is shown to be the re-
quired regular map with planar width at leastw.

Finally, let us note that this paper generalizes and improves the results of Jendrol’ and the
present authors [14] where the special casep = 3 (or q = 3) is treated. Although the main
idea consisting in construction of a generic regular map over anirregular map remains the
same, the proof presented here essentially differs from that in [14] even when restricted to
maps of type(3,q) or (p,3).

2. TOPOLOGICAL AND COMBINATORIAL MAPS

A mapon a surface is a cellular decomposition of a closed surface into 0-cells calledver-
tices, 1-cells callededgesand 2-cells calledfaces. The vertices and edges of a map form its
underlying graph. A map is said to beorientableif the supporting surface is orientable, and
is orientedif one of two possible orientations of the surface has been specified; otherwise, a
map isunoriented. Unless explicitly stated otherwise, all maps in this paper are oriented.

Typically, a map on a surface is constructed by embedding a connected graph in the sur-
face. Graphs considered in this paper are finite, non-trivial and connected unless the opposite
follows from the immediate context. Edges of our graphs may belong to one of three kinds:
links, loops and semiedges. Multiple adjacencies are allowed. A link is incident with two
vertices while a loop or a semiedge is incident with a single vertex. A link or a loop gives
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rise to two oppositely directed arcs that are reverse to each other. A semiedge incident with a
vertexu gives rise to a single arc initiating atu that is reverse to itself. From thetopological
point of view, a semiedge is identical with a pendant edge except that its pendant end-point
is not listed as a vertex. This property enables us to use semiedges as a convenient technical
device in many constructions. Summing up, a graph seen as a topological space is just a finite
one-dimensional cell complex.

With each map we can associate itsdual mapon the same surface. Given a mapM , the dual
mapM∗ is formed by placing a vertex in the interior of each face ofM , and by subsequently
constructing, for each edgee of M , an edgee∗ of M∗ which transversally crossese and
connects the new vertices in the faces on either side ofe. If e is a semiedge, thene∗ is also a
semiedge.

Let M be a map formed by embedding a connected graphG in a closed surfaceSother than
the sphere. Then every simple closed curveC on S (in particular, a cycle inG) falls into one
of the following two classes. IfC can be continuously contracted to a point inS, that is to say,
if C is homotopically null, thenC is said to becontractible; otherwise it isnon-contractible.
The planar widthof M , denoted byw(M), is the minimum of|C ∩ G| taken over all non-
contractible simple closed curvesC in S—provided thatM contains no semiedges; otherwise,
for convenience we setw(M) = 1. It can be shown that, for maps without semiedges, the
planar width ofM is equal to the smallest number of faces whose union together with their
boundaries contains a non-contractible simple closed curve; the curve can be chosen to cross
G at vertices only. Moreover,w(M) = w(M∗) (see Mohar [25, Proposition 3.2]).

For the sake of technical convenience we shall usually replace topological graphs and maps
by their combinatorialcounterparts. Formally, a (combinatorial)graph is a quadrupleG =
(D,V; I , L)whereD = D(G) andV = V(G) are disjoint non-empty finite sets,I : D→ V
is a surjective mapping, andL = LG is an involutory permutation onD. The elements ofD
andV arearcs andvertices, respectively,I is the incidence function assigning to every arc
its initial vertex, andL is thearc-reversing involution; the orbits of the group〈L〉 on D are
edgesof G. If an arcx is a fixed point ofL, that is,L(x) = x, then the corresponding edge
is asemiedge. IfI L (x) = I (x) but L(x) 6= x, then the edge is aloop. The remaining edges
arelinks. Note that the same type of graphs are considered in Jones and Singerman [16] and
in our paper [26].

The usual graph-theoretical concepts such as cycles, connectedness, etc., easily translate to
our presentformalism. In particular, thevalencyof a vertexv is the number of arcs havingv
as their initial vertex, and acyclein a graph is a connected 2-valent subgraph.

As far as maps on surfaces are concerned, there are two essentially different approaches to
their combinatorial description. The first approach, based on a rotation-involution pair acting
on arcs, involves the orientation of the supporting surface and so is suitable only for maps
on orientable surfaces [11, 16]. The corresponding combinatorial structure is called a combi-
natorial (or, sometimes, algebraic) oriented map. The other approach, using three involutions
acting on mutually incident (vertex, edge, face)-triples called flags, is orientation insensitive
and thus allows us to represent maps on non-orientable surfaces as well [18, Section 2]. The
resulting combinatorial structure will be called a combinatorial unoriented map. Although we
will exclusively deal with maps onorientable surfaces, we will also occasionally employ the
three-involutions approach. It should be emphasized, however, that the primary object for us
is a topological map, and a combinatorial map is just a convenient technical device for proving
results about topological maps. Accordingly, we shall normally employ the same notation for
a topological map and for the corresponding combinatorial structure on it.

We start with necessary definitions concerning oriented maps. By a (combinatorial)ori-
ented mapwe henceforth mean a tripleM = (D; R, L) whereD = D(M) is a non-empty
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finite set ofarcs, andR andL are two permutations ofD such thatL is an involution and the
group Mon(M) = 〈R, L〉 acts transitivelyon D. The group Mon(M) is called the oriented
monodromy groupof M . The permutationR is called therotation of M . The orbits of the
group〈R〉 are theverticesof M , and elements of an orbitv of 〈R〉 are the arcsradiating (or
emanating) fromv, that is,v is their initial vertex. The cycle ofR permuting the arcs emanat-
ing from v is thelocal rotation Rv at v. The permutationL is thearc-reversing involutionof
M , and the orbits of〈L〉 are theedgesof M . The orbits of〈RL〉 define the face-boundaries
of M . The incidence between vertices, edges and faces is given by non-trivial set intersection.
The vertices, arcs and the incidence function define theunderlying graph M, which is always
connected due to the transitive action of the monodromy group.

An oriented map can be equivalently described as a pairM = (G; R) whereG = (D;
V, I , L) is a connected graph andR is a permutation of the arc-set ofG cyclically permuting
arcs with the same initial vertex, that is,I R(x) = I (x) for every arcx of G.

Combinatorial unoriented maps are built from three involutions acting on a non-empty finite
setF of flags[18]. A (combinatorial)unoriented mapis a quadrupleM = (F; λ, ρ, τ ) where
λ, ρ andτ are fixed-point free involutory permutations ofF = F(M) called thelongitudinal,
therotaryand thetransversal involution, respectively, which satisfy the following conditions:

(i) λτ = τλ; and
(ii) the group〈λ, ρ, τ 〉 acts transitively onF .

This group is the unorientedmonodromy groupMon\ (M) of M .
We define theverticesof M to bethe orbits of the subgroup〈ρ, τ 〉, theedgesof M to be

the orbits of〈λ, τ 〉, and theface-boundariesto be the orbits of〈ρ, λ〉 under the action onF ,
the incidence being given by non-trivial set intersection. Note that each orbitz of 〈λ, τ 〉 has
cardinality 2 or 4 according to whetherz is a semiedge or not.

Clearly, the even-word subgroup〈ρτ, τλ〉 of Mon\ (M) always has index at most two. If
the index is two, thenM is said to beorientable.

With every oriented mapM = (D; R, L) we associate thecorresponding unoriented map
M\
= (F\; λ\, ρ\, τ \) by settingF\ = D × {1,−1} and defining for a flag(x, j ) ∈ D ×

{1,−1}:

λ\(x, j ) = (L(x),− j ), ρ\(x, j ) = (R j (x),− j ), and τ \(x, j ) = (x,− j ).

Conversely, from an unoriented mapM = (F; λ, ρ, τ ) we can construct a pair of oriented
mapsM ′ = (D; R, L) andM ′′ = (D; R−1, L) that are themirror imageof each other. We
takeD to be the setF/τ of orbits ofτ on F , and for an arc{z, τ (z)} = [z], wherez ∈ F , we
setR([z]) = [ρτ(z)] andL([z]) = [λτ(z)]. (The definitions are readily verified to be correct.)
Instead ofR we could have taken the rotationR′([z]) = [τρ(z)], but sinceR′ = R−1 we get
nothing but the mirror image—as expected. Of course,(M ′)\ ∼= (M ′′)\ ∼= M .

The concept of the dual mapM∗ for a mapM can be combinatorially introduced as fol-
lows: if M = (D; R, L) is an oriented map, we setM∗ = (D; RL, L). In the unoriented
case, forM = (F; λ, ρ, τ ) we setM∗ = (F; τ, ρ, λ), that is, the roles ofλ andτ are inter-
changed. The dual concept to valency of a vertex is thecovalencyof a face, the valency of the
corresponding vertex of the dual map.

Let M1 = (D1; R1, L1) andM2 = (D2; R2, L2) be two oriented maps. Ahomomorphism
ϕ : M1→ M2 of oriented maps is a mappingϕ : D1→ D2 such that

ϕR1 = R2ϕ and ϕL1 = L2ϕ.
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Analogously, ahomomorphismϕ : M1→ M2 of unoriented mapsM1 = (F1; λ1, ρ1, τ1) and
M2 = (F2; λ2, ρ2, τ2) is a mappingϕ : F1→ F2 such that

ϕλ1 = λ2ϕ, ϕρ1 = ρ2ϕ and ϕτ1 = τ2ϕ.

The properties of homomorphisms ofboth varieties of maps are similar except that ho-
momorphisms of unoriented maps ignore orientation. Every map homomorphism induces an
epimorphism of the corresponding monodromy groups. Furthermore, transitive actions of the
monodromy groups ensure that every map homomorphism is surjective and that it also induces
an epimorphism of the underlying graphs. Topologically speaking, a map homomorphism is a
graph preserving branched covering projection of the supporting surfaces with branch points
possibly at vertices, face centres or free ends of semiedges. Therefore we can say that a map
M̃ covers Mif there is a homomorphism̃M → M .

With map homomorphisms we use also isomorphisms and automorphisms. The automor-
phism group Aut(M) of an oriented mapM = (D; R, L) consists of all permutations in the
full symmetry groupS(D) of D which commute with bothR andL. Similarly, the automor-
phism group Aut\(M) of an unoriented mapM = (F; λ, ρ, τ ) is formed by all permutations
in the symmetry groupS(F) which commute with each ofλ, ρ andτ . Hence, in both cases
the automorphism group is nothing but the centralizer of the monodromy group in the full
symmetry group of the supporting set of the map (cf. [16, Proposition 3.3(i)]). In particular,
Aut (M∗) = Aut (M) and Aut\ (M∗) = Aut\ (M).

It is well known and easy to see that|Aut (M)| ≤ |D(M)| for every orientedmapM and
|Aut\ (M)| ≤ |F(M)| for every unoriented mapM (see, e.g., [9, 16, 18]). If the equality is
attained, then the monodromy group acts regularly on the supporting set, and therefore the
map is calledorientably-regularor regular, respectively. Our use of the termregular map
thus agrees with that of Gardineret al. [9] and Wilson [36], but is not yet standard. For
instance, [18] uses the term ‘reflexible’, and [34] calls such maps ‘reflexible symmetrical’.
On theother hand, our orientably-regular maps are called ‘regular’ in Coxeter and Moser [6],
‘symmetrical’ in [3] and [34], and ‘rotary’ in Wilson [36].

In a general situation, amap that has the set of face-covalenciesP and theset of vertex-
valenciesQ will be said to havepattern(P; Q) andtype(p,q), wherep andq are the least
common multiple of the elements ofP andQ, respectively.

For each homomorphismϕ : M1→ M2 of oriented maps there is the corresponding homo-
morphismϕ\ : M\

1→ M\
2 defined byϕ\(x, i ) = (ϕ(x), i ). If M1 = M2 = M , that is,ϕ is an

automorphism, then this definition and the assignmentϕ 7→ ϕ\ yield the isomorphic embed-
ding of Aut(M) → Aut\ (M\). This allows us to treat Aut(M) as a subgroup of Aut\ (M\)

and, consequently, say that every orientable regular map is orientably-regular (but not nec-
essarily vice versa). It is easy to see that the index|Aut\ (M\) : Aut (M)| is at most two. If
it is two, then the mapM is said to bereflexible, otherwise it ischiral. In the former case,
there is an isomorphismψ of the mapM = (D; R, L) with its mirror image(D; R

−1
, L)

called areflectionof M . Clearly,ψ\ is an automorphism that extends Aut(M) to Aut\ (M\).
Topologically speaking, oriented map automorphisms preserve the chosen orientation of the
supporting surface whereas reflections reverse it.

3. GENERIC REGULAR MAPS

It is well known that every map can be covered by a finite regular map—oriented or
unoriented—see [16, Theorem 6.7, Corollary 6.8] and [18, Theorem 3]. Among the regu-
lar maps that cover a given mapM there is a mapN smallest in the sense of the following
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universal property. There exists a coveringπ : N → M such that forevery regular mapM̃
and a coveringϕ : M̃ → M there exists a unique coveringϕ′ : M̃ → N suchthat the diagram

M̃
ϕ′ //

ϕ
  @@@@@@@@ N

π
��~~~~~~~~

M

commutes, that is to say,ϕ = πϕ′. If M is an oriented map (in which case the covering
projections are representedby oriented map homomorphisms), then the mapN is denoted by
M# and is called thegeneric orientably-regular mapover M ; in the unoriented case,N is
denoted byM+ and called thegeneric regular mapover M .

The above definitions do not provide any hint of how the generic map can be constructed
from a given oriented or unoriented map. It is a consequence of the theory of Schreier rep-
resentations of maps developed in [26, Section 3] that to construct the generic mapM#

=

(D#
; R#, L#) for an oriented mapM = (D; R, L) it is sufficient to setD#

= Mon(M),
R#(x) = Rx, and L#(x) = Lx for any x ∈ D#. Observe that the automorphismsof M#

are just the right translations ofD#
= Mon(M) by the elements of Mon(M), and soM#

is indeed an orientably-regular map. Similarly, ifM = (F; λ, ρ, τ ) is an unoriented map,
then the generic regular mapM+ = (F+; λ+, ρ+, τ+) over M can be constructed by set-
ting F+ = Mon\ (M), λ+(x) = λx, ρ+(x) = ρx, andτ+(x) = τx, for any x ∈ F+.
Again, the map automorphisms are given by the right translations ofF+ by the elements of
Mon\ (M) = F+.

It is obvious that ifM is orientable, then so isM+. Moreover, the above diagram with
N = M# andM̃ = M+ implies thatM+, as a topological map, coversM#.

EXAMPLE . Recall from the Introduction that a trivalentHurwitz map is an orientably-
regular map of type(7,3), and aHurwitz groupis a group isomorphic toits automorphism
group. Below we give two examples of Hurwitz maps as generic maps over spherical quo-
tients.

(1) Let M1 be the spherical map represented in Figure1. Clearly, M1 is not reflexible.
Nevertheless, the generic mapM#

1 is a reflexible Hurwitz map of genus 3 whenceM+1
∼= M#

1
(as topological maps).The dual of this map is known as Klein’s triangulation of genus 3. The
automorphism group of this map is the smallest Hurwitz group and is isomorphic to PSL(2,7).

(2) Let M2 be the spherical map shown in Figure2. Again,M2 is not reflexible. It can be
shown that the generic orientably-regular mapM# is a Hurwitz map of genus 17whereas the
generic regular mapM+ has genus 129. ThusM#

2 is not isomorphic toM+2 in this case and,
of course, is chiral.

We conclude this section by an easy but important lemma which will be crucial for the proof
of our main result.

PROPOSITION3.1. For any map M, the type of the generic maps M# and M+ is thesame
as the type of M.

PROOF. We prove the lemma onlyin the case of oriented maps; the unoriented case is
analogous. Let the mapM = (D; R, L) and its generic mapM# have types(p,q) and
(p′,q′), respectively. The verticesin M# have valencyq′ which, by the definition ofM# equals
the length of an arbitrary cycle ofR#. Since the cycles ofR# have the form(x, Rx, R2x, . . . )
for somex ∈ D#, q′ equals the order ofR, that is, the least common multiple of the lengths
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FIGURE 1. An example of an irreflexible mapM with M+ ' M#.

FIGURE 2. An example of a mapM with M+ 6' M#.

of cycles inR. The length of any cycle ofR coincides with the valency ofthe corresponding
vertex andso q′ equals the least common multiple of vertex-valencies inM , that is,q. The
proof thatp′ = p is similar. 2

4. PROOF OF THEMAIN RESULT

We start with a series of preparatory lemmas. Then-semistar Ssn is the graph consisting of
a single vertex andn incident semiedges. Up to isomorphism, it has only one embedding and
this embedding forms a regular and reflexible map.

LEMMA 4.1. The only regular or orientably-regular maps containing semiedges are the
n-semistarsSsn embedded into the2-sphere.

LEMMA 4.2. For each pairof positive integers c and d with c> d thereexists a rooted
tree Sc,d with c arcs (semiedges allowed) in whicheach vertex is of valency d or1 and the
root is of valency1.

PROOF. Sincec > d, there exist integersk ≥ 1 andr ≥ 0, withr < d, such thatc = kd+r .
Let P be a path onk vertices with end-verticesu andv.

If k = 1, thenu = v, andr ≥ 1 becausec 6= d. FormSc,d by attachingr pendant links and
d− r semiedges tov (see Figure3). Clearly, the resulting tree hasr vertices of valency 1 and
a single vertex of valencyd; the number of arcsis therefore 2r + (d − r ) = c.

If k ≥ 2, thenu 6= v. Now we formSc,d by attachingd−1 semiedges tou, d−2 semiedges
to each inner vertex ofP, andr pendant links andd − r − 1 semiedges tov (see Figure4).
The resulting tree has every vertex of valencyd or 1, and the total number ofits arcs is the
valency sum, i.e.,d + (k− 2)d+ (1+ r + d − r − 1)+ r = kd+ r = c. 2
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r

d − r

FIGURE 3.

d − 1 d − 2 d − 2 d − 2

r

d − r − 1

FIGURE 4.

When embedded into the 2-sphere, the treeSc,d gives rise to a map of type(c,d). The
resulting tree-like maps are essential for a simpleproof of the following result answering
Grünbaum’s problem of the existence of regular maps of arbitrary type [12].

THEOREM 4.3. For every pair of integers p≥ 2 and q≥ 2 there exists anorientable map
of type(p,q) not containing semiedges. Moreover, the map can bechosen to be regular and
reflexible.

PROOF. As shown in Lemma4.2, for every pair of integersc andd with c > d there exists
a spherical mapM of type(c,d). By Proposition3.1, the generic mapM+ is regular and has
the same type,proving the theorem in the case whenc > d. Taking into account thatthe dual
map toM+ has type(d, c) and is also regular, it remains to construct a regular map of type
(c, c) for eachc ≥ 2. Consider a map obtained from the embedding of a cycle of length 2 in
the sphere by addingc − 2 semiedges to each vertex in such a way that both faces contain
exactlyc − 2 of them on the boundary (see Figure5). Clearly, the resulting map has type
(c, c). By Proposition3.1, the corresponding generic map is regular and has the same type
(c, c). As it has at least two vertices, Lemma4.1 implies that it contains no semiedges. 2

Let Tp,q be the infinite regulartessellation of the hyperbolic plane byp-gons,q meeting
at a vertex (for the relevantnotions see [5, 6]). Thus 1/p + 1/q < 1/2. Let Bp,q be the
underlying infinite graph, the 1-skeleton ofTp,q. In Tp,q we may define the distance between
two polygonsP andQ to be dist(P, Q) = min |J ∩ Bp,q| wherethe minimum is taken over
all simple arcsJ in the hyperbolic plane starting in the interior ofP and ending in the interior
of Q.

For every integerk ≥ 0 we construct a closed diskDk in the hyperbolic plane as follows. Fix
an arbitrary closedp-gon D0 of the tessellationTp,q, the fundamental polygon. Ifk ≥ 1, let
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c − 2

c − 2

FIGURE 5.

Dk be the union ofDk−1 and all the closedp-gons ofTp,q which have a point in common with
the boundaryof Dk−1. In otherwords,Dk consists of all closed polygons of the tessellation
whose distance from the fundamental polygonD0 does not exceedk. Theboundary polygons
of Dk are those contained inDk but not inDk−1.

Let us now look at the boundary of the diskDk ⊆ Tp,q. Our analysis splits into two cases
according to whetherq = 3 orq ≥ 4.

First, if q ≥ 4, there are two kinds of boundary polygons inDk:

(a) a boundarypolygon over a vertexwhich intersects the boundary ofDk−1 in a vertex;
(b) a boundarypolygon over anedgewhich intersects the boundary ofDk−1 in an edge.

If q = 3, the boundary polygons inDk are two otherkinds:

(a′) a boundarypolygon over a path of length2 which intersects the boundary ofDk−1 in a
path of length 2;

(b′) a boundarypolygon over an edgewhich intersects the boundary ofDk−1 in an edge.

The structure of the boundary ofDk in Tp,q is nowdescribed by the following two straight-
forward lemmas.

LEMMA 4.4. Let Dk be the closed disk in the regular hyperbolic tessellation Tp,q, and
assume that q≥ 4 and k≥ 1. Then all the vertices on the boundary of Dk are either2-valent
or 3-valent.Moreover, any two vertices of valency3 on the boundary of Dk are separated by
a sequence of p− 3 or p− 4 vertices of valency2, according to whether they are contained
in the boundary polygon over a vertex or over an edge.

LEMMA 4.5. Let Dk be the closed disk in the regular hyperbolic tessellation Tp,3 (that
is, q = 3), and assumethat k ≥ 1. Then all the vertices on the boundary of Dk are either
2-valent or3-valent. Any two vertices of valency3 on the boundary of Dk are separated by a
sequence of p− 4 or p− 5 vertices of valency2, according to whether they are contained in
the boundary polygon over an edge or over a path of length2. Moreover, two polygons over
a path of length2 are separated by a sequence of p− 5 polygons over an edge.

Finally, we need the following topological lemma.

LEMMA 4.6. Letψ : S̃→ S be a branched covering projection of surfaces. Let U⊆ S be
an open disk which containsno branching point ofψ , and letŨ be any connected component
ofψ−1(U ). Then the restrictionψ |Ũ : Ũ → U is a homeomorphism.
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FIGURE 6.

(a)

(b)

5-gon over a vertex

5-gon over an edge

FIGURE 7. (a) Type (5,5), the modification of a path of length 3 on the Equator. (b) Type (5,5), the
modification of a path of length 2 on the Equator.

Now we are in position to prove the main result of this paper.

THEOREM 4.7. For every pair of integers p≥ 3 and q≥ 3 such that1/p+ 1/q ≤ 1/2
and for every integerw ≥ 2 there exists a regular map M of type(p,q) with w(M) ≥ w.
Moreover, M can be required to be reflexible.

PROOF. Let us first deal with the parabolic case, that is, 1/p+ 1/q = 1/2. Clearly,(p,q)
is one of the pairs(3,6), (4,4) and(6,3), and therequired maps must be toroidal.

Let us consider a rectangular gridQ with each side of lengthw. By identifying the opposite
sides ofQ we obtain a map of type(4,4) with planar widthw. The map is easily seen to be
regular and reflexible (see [6, Section 8.3]).

In order to obtain the maps of type(3,6) take, for eachw, the map of type(4,4) already
constructed in the previous step and add the ‘main’ diagonal into each face. Again, the map
has planar widthw and is both regular and reflexible. Finally, the dual of this map is of type
(6,3) and has all the desired properties (again, see [6, Section 8.4]).

We proceed to the heart of the proof, the hyperbolic case 1/p+ 1/q < 1/2. We fixw and
assumethat p ≥ q ≥ 3. The latter assumption is possible in view of surface duality.

We first describe the general strategy and then finish the proof by applying our strategy to
several particular cases we have to distinguish. The general part of the proof starts by taking
two differently oriented copiesD′ and D′′ of the disk Dw and identifying the boundaries
isomorphically. The isomorphism need not be the identity—the choice of this isomorphism
will depend upon the particular type(p,q) considered. In each case, the result is a spherical
mapM0 with a distinguished cycle, theEquator. The centre of the fundamental polygonD0
in one ofD′ andD′′ is selected as theNorth Poleof M0.

In M0, the valencies and covalencies are correct everywhere except the vertices and faces
incident with the Equator. The next step is therefore to perform certain modifications near to
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(a)

(b)

FIGURE 8. (a) Type (6,5), the modification of a path of length 3 on the Equator. (b) Type (6,5), the
modification of a path of length 4 on the Equator.

the Equator in order to amend the valencies and covalencies and thereby create a mapM1 of
type (p,q) with the property thatDw−1 ⊆ M1. These modifications vary according to the
particular type(p,q).

We show that the genericmap(M1)
# or (M1)

+ is the required regular mapM withw(M) ≥
w. Suppose this is not the case. Then there exists a non-contractible simple closed curveC
with |C ∩ G| < w whereG is the underlying graph ofM . SinceM is orientably-regular or
regular, it is face-transitive, and so we may assume thatC contains a preimagẽn of the North
Pole. Consider the branched covering projectionπ : M → M1. Let B be the copy ofDw−1 in
M1 containing the North Pole,U = Int(B), and letŨ be the component ofπ−1(U ) containing
ñ. SinceU ⊆ M1 is an open disk containing no branching points ofπ , Lemma4.6yields that
Ũ is homeomorphic toU . HenceŨ is also an open disk. But̃n ∈ C and|C ∩G| ≤ w− 1, so
C ⊆ Ũ . ThusC is contractible, contrary to our assumption. This proves thatw(M) ≥ w.

To finish the proof we describe in detail how the mapM1 of type(p,q) can be constructed.
We distinguish eight cases.

Type(p,q), p ≥ q ≥ 7. In this general case, the mapM0 is constructed by glueing the
boundaries ofD′ and D′′ identically. It follows that every vertex on the Equator ofM0 has
valency 2 or 4. By replacing every edge on the Equator by two parallel edges we obtain a
map with pattern(p,2;q,4,6). All the digons of the latter map and all the vertices of valency
4 or 6 are located on the Equator. The digons form a chainF1, F2, . . . , Fk in which, for
1 ≤ i ≤ k− 1, Fi andFi+1 share a vertexui of valencyd = 4 or 6. The idea is to insert into
eachFi a planar mapT having the following properties:

• the outer face ofT has sizep− 2;
• the sizes of all other faces (if any) dividep;
• exactly one vertexu on the boundaryof the outer face, theroot of T , has valencyq−d;
• the valencies of all other vertices inT (if any) divideq.

By placingT in the interior ofFi and identifyingu with ui the digon will transform into a
face of sizep and the vertexui into a vertex of valencyq. The desired mapM1 of type(p,q)
is obtained by performing the above procedure for every vertexui .



256 R. Nedela and M.̌Skoviera

(a)

(b)

FIGURE 9. (a) Type (7,5), the modification of a path of length 5 on the Equator. (b) Type (7,5), the
modification of a path of length 4 on the Equator.

We have to show that the planar mapT satisfying the above properties does exist for all
p ≥ q ≥ 7 andd ∈ {4,6}. There are two subcases according to whetherd = 4 ord = 6.

Subcase 1:d = 6. Let us consider the treeTp+4,q constructed in Lemma4.2. If p ≥ 2q−4,
the tree has at least two vertices of valencyq. Sinceq ≥ 7, there areq − 1 ≥ 6 semiedges
attached to the vertexu. By removing six of them we produce a tree which in turn determines
a planar map satisfying all the required properties. Thus we have to deal with the cases where
7 ≤ q ≤ p ≤ 2q − 5. First of all, the 1-vertex tree havingr pendant links andq − 6− r
semiedges,r ranging from 6 toq − 6, covers the situations whereq ≤ p ≤ 2q − 10. To
complete the proof of the subcase we have to consider the situations with 2q−9≤ p ≤ 2q−5.
If p = 2q − 4− s and 1≤ s ≤ 3, we take a planar map with two vertices joined by a single
link in which the root vertex is incident withq − 7 semiedges and with the link, while the
second vertex is incident withq− 2s− 1 semiedges,s loops and with the link. Ifp = 2q− 8
or 2q − 9, we take a planar map with two vertices joined by a single link such that there
areq − 9 semiedges and one loop incident with the root and there are three, respectively
four, loops andq − 7, respectivelyq − 9, semiedges incident with the other vertex. The only
situation not covered by the above constructions isp = q = 8. This is solved by the planar
map represented in Figure6.

Subcase 2:d = 4. If p ≥ 2q − 2, then the treeTp+2,q constructed in Lemma4.2contains
q − 1 semiedges incident with the vertexu. To obtainthe required planar map it suffices to
remove four of them. Further, the 1-vertex treeTp−2,q−4 covers the cases whereq ≤ p ≤
2q − 6. Thus we are left with the situation wherep = 2q − 2− s ands ranges from 1 to
3. Here we take a planar map with two vertices joined by a single link such that the root is
incident withq − 5 semiedges and with the link, whereas the other vertex is incident withs
loops,q − 2s− 1 semiedges and with the link.

Type(p,4), p ≥ 4. Again, the mapM0 is constructed by identifying the boundaries of
the disksD′ and D′′ according to the identity isomorphism. This time, however, no further
modifications are made; in other words,M1 = M0. It follows that every vertex on the Equator
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(a)

(b)

FIGURE 10. (a) Type (8,5), the modification of a path of length 6 on the Equator. (b) Type (8,5), the
modification of a path of length 5 on the Equator.

of M1 is of valency 2 or 4. HenceM1 is of type(p,4), as required.

Type(p,6), p ≥ 6. Before glueing the boundaries ofD′ and D′′, the diskD′ is rotated
onestep counterclockwise. No further modifications on the Equator are made afterwards, i.e.,
M1 = M0. By Lemma4.4, every 3-valent vertex of one of the disks is identified with a
2-valent vertex of the other disk. ThereforeM1 has pattern(p;2,3,6) and type(p,6).

Type(p,5), p ≥ 9. We glue the boundaries ofD′ and D′′ identically. Thus, in this case,
the mapM0 has pattern(p;2,4,5). The Equator ofM0 is formed by paths of length at least
3 where the internal vertices are of valency 2 and the end-vertices are of valency 4. LetP =
u0,e1,u1,e2, . . . ,ek,uk be one of these paths. For 2≤ i ≤ k we replace each edgeei by a
digon Fi . Sincep ≥ 9, Lemma4.2guarantees that we can take the rooted treesT = Sp−2,5
andT ′ = Sp−3,5. Furthermore, inT attach a semiedge to the root to obtain a treeT ′′. Now
we placeT ′′ into F2 and identify the root withu1. Similarly, for i ≥ 3 we placeT ′ into Fi

and identify the root withui−1. By repeating this procedure for each of the pathsP on the
Equator we obtain the required mapM1 of type(p,5).

Types(5,5), (6,5), (7,5), and(8,5). In each of the singular types(p,5), p ∈ {5,6,7,8},
the mapM0 is constructed by glueing the disksD′ andD′′ identically. As above, the Equator
is a union of paths with end-vertices of valency 4 and internal vertices of valency 2 inM0. Let
P be one of these paths. Then the length ofP is eitherp− 2 or p− 3 depending on whether
P is a part of ap-gon over a vertex or over an edge. The necessary modifications leading to
the mapM1 are shown in Figures7, 8, 9 and10, respectively. It is easy to check that all the
resulting maps have the required type.

Type(p,3), p ≥ 9. Before glueing the boundaries ofD′ and D′′, the diskD′ is rotated
one step counterclockwise. It follows that every vertex on the Equator of the mapM0 has
valency 2 or 3, and between any two 3-valent vertices there arep − 5 or p − 6 vertices of
valency 2, depending on whether they are contained in ap-gon over an edge or in ap-gon
over a path of length 2, respectively. We modify the Equator in two steps. First, we replace
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Dw−1, North

Dw−1, South

Dw−1, North

Dw−1, South

EquatorEquator

Equator Equator

FIGURE 11. Type (7,3).

the paths of lengthp− 4 or p− 5 joining the consecutive 3-valent vertices on the Equator by
pathsof length 3, thereby reducingthe size of the boundary polygons inD′ and D′′. Let P
be one of these new paths. Clearly, it constitutes the intersection of a polygonQ′ ⊆ D′ with
the corresponding polygonQ′′ ⊆ D′′. As the second step we take the rooted treeT = Sc,3,
wherec = p− 7 or c = p− 8 according to whetherQ′ (and alsoQ′′) is a polygon over an
edge or a polygon over a path of length 2; the existence of the tree is guaranteed by Lemma
4.2 and the assumption thatp ≥ 9. Letu′ andu′′ be the two 2-valent vertices onP. We place
a copy ofT into the interior ofQ′ and another copy into the interior ofQ′′ and identify the
root of each copy withu′ andu′′, respectively. This turns both polygonsQ′ andQ′′ back into
p-gons. The desired mapM1 of type (p,3) is now obtained by repeating the procedure for
each pair of the corresponding boundary polygons.

Type(7,3). To construct the mapM0 we first rotate the diskD′ five steps counterclockwise
and then identify the boundary ofD′ with the boundary ofD′′. Lemma4.5implies that inDw
any two boundary 7-gons over a path of length 2 are separated by two 7-gonsover an edge. A
part of the mapM0 near the Equator including boundary polygons ofD′ andD′′ is depicted
in the upper part of Figure11. It follows that to constructM1 it suffices to indicate how
the marked part ofM0, which cyclically repeats along the Equator, is to be modified. The
corresponding modification is shown in the bottom of Figure11. It is easy to check thatM1
thus constructed has indeed type(7,3).
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Dw−1, North

Dw−1, South

Dw−1, North

Dw−1, South

EquatorEquator

Equator Equator

FIGURE 12. Type (8,3).

Type(8,3). Before identifying the boundary ofD′ with the boundary ofD′′, the diskD′

is rotated one stepcounterclockwise. By Lemma4.5any two boundary8-gons ofDw that are
attached to a path of length 2 are separated by three 8-gons over an edge. As inthe previous
case, the rest can easily be completed by employing Figure12.

In the above cases we have described theconstruction of a mapM1 of any hyperbolic type
(p,q). The proof is complete. 2

Note that given integersp andq, the right choice of planar width in our main result may
lead to some additional properties of the constructed maps. By employing this idea we may,
for example, strengthen classical work on the existence of regular graphs with large girth [2,
22, 33] and guarantee the precise value of girth. A detailed proof together with some other
applications of the Main Theorem can be foundin our paper [27].

THEOREM 4.8. For every pair of integers k≥ 3 and g ≥ 3 there exists ak-valent arc-
transitive graph of valency k and girth g;for k = 3 the graph can be required to be2-arc-
transitive. Moreover, if1/k+ 1/g ≤ 1/2, or if (g, k) = (3,4), there are infinitely many such
graphs.
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9. A. Gardiner,R. Nedela, J.̌Siráň and M.Škoviera, Characterization of graphs which underlieregular

maps on closed surfaces,J. London Math. Soc., 59 (1999), 100–108.
10. A. Gray and S. Wilson, A more elementary proof of Grünbaum’s conjecture,Congr. Numer.,72
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des graphes,Colloq. int.C.N.R.S. 260, Paris, (1978),191–197.
13. J. Hempel, Residual finiteness of surface groups,Proc. Am. Math. Soc.,32 (1972), 323.
14. S. Jendrol’, R. Nedela and M.̌Skoviera, Constructing regular mapsand graphs from planar quo-

tients,Math. Slovaca,47 (1997), 155–170.
15. G. A. Jones, Maps onsurfaces and Galois groups,Math. Slovaca,47 (1997), 1–33.
16. G. A. Jones and D. Singerman, Theory of maps on orientable surfaces,Proc. London Math.Soc.

(3), 37 (1978), 273–307.
17. G. A. Jones and D. Singerman, Belyı̆ functions, hypermaps and Galois groups,Bull. London Math.

Soc., 28 (1996), 561–590.
18. G. A. Jones and J. S. Thornton, Operations on maps, andouter automorphisms,J. Comb. Theory,

Ser. B,35 (1983), 93–103.
19. I. Kaplansky,Commutative Rings, University of Chicago Press,Chicago, 1974.
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