Research Letter

Prenatal diagnosis of trisomy 8 mosaicism

Chih-Ping Chen, Yi-Ning Su, Schu-Rern Chern, Yu-Ting Chen, Jun-Wei Su, Chen-Wen Pan, Wayseen Wang

A 38-year-old, gravida 3 para 1, woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Cytogenetic analysis of cultured amniocytes revealed a karyotype of 47,XX,+8[1]/46,XX[24]. Of 25 colonies of cultured amniocytes, one colony had the karyotype 47,XX,+8, whereas the other 24 colonies had the karyotype of 46,XX (Fig. 1). The single colony with trisomy 8 had three metaphase cells, all with a karyotype of 47,XX,+8. The parental karyotypes were normal, and prenatal ultrasound findings were unremarkable.

Repeated amniocentesis was performed at 21 weeks of gestation. Array comparative genomic hybridization (aCGH) and interphase fluorescence in situ hybridization (FISH) were applied to uncultured amniocytes, and conventional cytogenetic analysis was applied to cultured amniocytes. The aCGH analysis of uncultured amniocytes revealed no genomic imbalance in chromosome 8. Interphase FISH analysis of uncultured amniocytes using an 8p11.1–q11.2-specific probe (Vysis CEP 8, D8Z2, green spectrum; Abbott Laboratories, Abbott Park, IL, USA) showed three green D8Z2 signals in 15.8% (6/38 cells) of uncultured amniocytes and two green signals in 84.2% (32/38 cells) of uncultured amniocytes (Fig. 2). Cytogenetic analysis of cultured cord blood lymphocytes revealed a karyotype of 46,XX in 40 cells, and cytogenetic analysis of cultured amniocytes revealed a karyotype of 46,XX in 30 cultured colonies.

The parents elected to continue the pregnancy, and a healthy 3504-g female baby was delivered at term with no phenotypic abnormalities. Postnatal cytogenetic analysis of the blood revealed a karyotype of 46,XX in 40 cultured lymphocytes. The umbilical cord, placenta, and amnion had a normal 46,XX karyotype in 40 cultured cells. Interphase FISH analysis on uncultured urinary cells using the CEP 8 (D8Z2) probe (green spectrum) showed three green D8Z2 signals in 4.1% (4/98 cells) of uncultured urinary cells (Fig. 4). The neonate was normal in growth and psychomotor development at 6 months of age.

Trisomy 8 mosaicism has an estimated frequency of 1:25,000 to 1:50,000 births [1,2] and is more prevalent in males than females [3,4]. Trisomy 8 mosaicism has marked phenotypic and cytogenetic variability, and there appears to be little correlation between the level of mosaicism in the blood or skin and the severity and incidence of abnormal microsatellite markers revealed a 1:1 biparental diallelic pattern for chromosome 8 and thus excluded uniparental disomy 8.

The woman underwent a third amniocentesis and simultaneous cord blood sampling at 23 weeks of gestation. Interphase FISH analysis of uncultured amniocytes using the CEP 8 (D8Z2) probe (green spectrum) showed three green D8Z2 signals in 15.8% (6/38 cells) of uncultured amniocytes and two green signals in 84.2% (32/38 cells) of uncultured amniocytes (Fig. 3). Cytogenetic analysis of cultured cord blood lymphocytes revealed a karyotype of 46,XX in 40 cells, and cytogenetic analysis of cultured amniocytes revealed a karyotype of 46,XX in 30 cultured colonies.

The parents elected to continue the pregnancy, and a healthy 3504-g female baby was delivered at term with no phenotypic abnormalities. Postnatal cytogenetic analysis of the blood revealed a karyotype of 46,XX in 40 cultured lymphocytes. The umbilical cord, placenta, and amnion had a normal 46,XX karyotype in 40 cultured cells. Interphase FISH analysis on uncultured urinary cells using the CEP 8 (D8Z2) probe (green spectrum) showed three green D8Z2 signals in 4.1% (4/98 cells) of uncultured urinary cells (Fig. 4). The neonate was normal in growth and psychomotor development at 6 months of age.

Trisomy 8 mosaicism has an estimated frequency of 1:25,000 to 1:50,000 births [1,2] and is more prevalent in males than females [3,4]. Trisomy 8 mosaicism has marked phenotypic and cytogenetic variability, and there appears to be little correlation between the level of mosaicism in the blood or skin and the severity and incidence of abnormal
Fig. 1. A karyotype of 47,XX,+8.

Fig. 2. Interphase fluorescence in situ hybridization analysis of uncultured amniocytes using the CEP 8 (D8Z2) probe (green spectrum) at the second amniocentesis shows (A) two green signals in an amniocyte with disomy 8, and (B) three green signals in an amniocyte with trisomy 8.

Fig. 3. Interphase fluorescence in situ hybridization analysis of uncultured amniocytes using the CEP 8 (D8Z2) probe (green spectrum) at the third amniocentesis shows (A) two green signals in an amniocyte with disomy 8, and (B) three green signals in an amniocyte with trisomy 8.
The reported abnormalities associated with trisomy 8 mosaicism include moderate mental retardation, agenesis of the corpus callosum, congenital heart defects, renal anomalies, deep palmar and longitudinal plantar furrows, absent or hypoplastic patellae, camptodactyly, spinal deformity, limitation of joint motion, a long and slender trunk, narrow shoulders and pelvis, a short and webbed neck, and facial dysmorphisms of hypertelorism, a broad nasal root, a prominent forehead, a high arched palate, or facial clefts [1,2].

The present case provides evidence that interphase FISH on uncultured amniocytes is practical for rapid confirmation of low-level trisomy 8 mosaicism on amniocentesis. The present case also provides evidence that the abnormal trisomy 8 cell line in pregnancy with trisomy 8 mosaicism in amniotic fluid may disappear after culture of the amniocytes. Trisomy 8 mosaicism has been reported to be missed by conventional cytogenetic analysis using cultured amniocytes at amniocentesis [6–10]. Hulley et al [11] observed a selective growth advantage of normal cells versus a growth disadvantage of trisomy 8 cells in cases with trisomy 8 mosaicism. In our case, it is likely that the abnormal trisomy 8 cell line disappeared by selective growth disadvantage following the culture procedure.

Several reports have proposed that cordocentesis rather than repeated amniocentesis is recommended for confirmation when trisomy 8 mosaicism is diagnosed at chorionic villus sampling [8,10]. However, recent studies have suggested that repeated amniocentesis using interphase FISH on uncultured amniocytes is useful for the confirmation of trisomy 8 mosaicism [4]. The present case additionally shows that the application of interphase FISH to uncultured amniocytes is better than cordocentesis in prenatal confirmation of trisomy 8 mosaicism.

Acknowledgments

This work was supported by research grants NSC-99-2628-B-195-001-MY3 from the National Science Council, and MMH-E-101-04 from Mackay Memorial Hospital, Taipei, Taiwan.

References