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Abstract

This paper handles two problems in manufacturing system design: resource sharing and system
abstraction. In a manufacturing system, resources such as robots, machines, etc. are shared by several
processes. When the resources are switched from one process to another, they may need some modi-
fications such as cleaning oil, adding equipments and so on. Previous designing methods assume that
the resources have no intermediate modifications. Hence, they need to be extended to handle such
kinds of resource-sharing problems. As for abstraction, modeling operations with single places in
manufacturing system design is very popular. From the viewpoint of verification, the objective is to
verify whether the reduced model has the same desirable properties as the original one. This paper
presents three kinds of property-preserving subnet reduction methods. For each reduction method,
conditions are presented for ensuring that the properties liveness, boundedness and reversibility are
preserved.Applications of these reduction methods to handling the above resource sharing and system
abstraction problems are illustrated with an example from the manufacturing system.
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1. Introduction

1.1. Motivation and problems

Two problems arise frequently in system design, namely, resource sharing and system
abstraction. Every system needs some resources. In software engineering, buffers, data-type
libraries, servers, software agents, databases, etc. are examples of computing resources. In
manufacturing engineering, a resource may be a robot, a machine, an assembly line, etc.
In software coding, a subprogram or an operation may also be regarded as a resource. For
various reasons, these resources often have to be shared among several parts of the system.
In software engineering, for example, the well-known Mutual Exclusion Problem deals
with the issues of how to share the access to some common data resources arising in many
practical applications. In manufacturing engineering, in order to reduce the idling time of
the expensive robots and machines, their utilization is often shared among several processes
[20]. Abstraction plays an important role in system development. In component-based sys-
tem design, for example, a component is abstracted into a single function. In a programming
language, a library is abstracted into a data type. In manufacturing engineering, a set of re-
sources is represented by a single ‘super’ resource.

Both problems are complex and error-prone. Note that ‘sharing’ does not imply simulta-
neous usage. While simultaneous usage can be handled by re-enterable codes in software
systems and is not allowed in manufacturing systems, ‘sharing’ requires a resource to be
occupied by some part(s) exclusively during utilization and is released afterwards. For
multiple-resource systems, a wrong order in occupying and releasing these resources may
cause deadlocks or overflow. As for abstraction, from the viewpoint of verification, the
objective is to check whether a system is still valid when every replaced part operates as a
single function while ignoring its internal logic. This is not a simple task either, especially
if the parts under abstraction form subsystems with multiple entries and exits. A logical
mishandling will make an abstraction erroneous.

Based on Petri nets, this paper presents a unified approach for the modeling and veri-
fication of these two different problems. Briefly, both problems are modeled as property-
preserving subnet-reducing transformations. According to the structure of the shared re-
sources or the replaced parts, three classes of transformations are formulated. For each
transformation, conditions are presented for ensuring that properties liveness, boundedness
and reversibility are preserved. This approach is summarized in terms of four specification
or verification problems as follows:
1. Modeling the system—The type of a Petri net used for modeling the system under design

not only determines its scope of application but also affects the process of verification
[15]. In manufacturing engineering, most of the systems are modeled as finite state
machines or marked graphs[33]. In use-case-based software system design, the use
cases may be specified as case nets[6]. This paper investigates general Petri nets.

2. Representing the resources and abstracted parts—In the literature, a resource is uniquely
represented as a place. Zhou’s exclusions[33,35]and Chu’s augmented marked graphs
[9] are formal descriptions of such representations. Also, it is assumed that a resource is
switched from one user to another without any intermediate modification. In this paper,
it is assumed that the given system is composed of connected or disconnected parts.
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(For the sake of flexibility, a part in this paper has no fixed definition.) Each resource is
originally represented by a set of places (calledresource-placeshereafter), one in each of
the parts it is involved in. Also, a resource may go through some intermediate processing
when switching from one user to another. This implies that the resource-places may
form a connected subnet whose transitions represent the intermediate processes. As
for abstraction, sequential systems are represented as directed paths and non-sequential
systems having multiple entries and exits as state-machine subnets.

3. Formulating resource sharing and subsystem abstraction as subnet-reducing transfor-
mations—In all the models appearing in the literature, a resource is represented uniquely
as a place. This paper takes a synthesis approach. When a resource is shared by several
parts or a part is abstracted into a single function, its representation (i.e., a subnet) will
be merged into a single place or a single transition. Formally, this is a transformation that
reduces a subnet to a single place or transition. Three transformations are formulated
according to the structure of the shared resources or abstracted parts.

4. Verifying the system—To verify a system is to show whether it possesses certain prop-
erties or not. For example, the deadlock and overflow issues mentioned above are in-
vestigated as the liveness and boundedness properties of the system’s Petri net rep-
resentation. In the literature dealing purely with resource-sharing or system abstrac-
tion, rarely any ‘specific and systematic’ methods for verification have been reported.
Most of the time, just general techniques are used. By viewing these two problems
as transformations, this paper proposes a property-preserving approach. First, it is as-
sumed that the system possesses certain properties before the transformation. For each
of the transformations, conditions are proposed so that it will preserve the system’s
properties.

1.2. Property-preserving transformations

Petri nets are well known for their graphical and analytical capabilities in specification
and verification, especially for concurrent systems. Many properties can be analytically
defined and many techniques are available for development and verification. In particular,
the approach based on property-preserving transformations will be described in more detail
below as it is the main theme of this paper.

Usually, a design may be subject to many transformations, such as compositions, refine-
ments, place-reductions, etc.A transformation may be used for system generation or system
verification. For the former, a transformation creates a needed and ‘permanent’ modifica-
tion on a design. For the latter, a transformation is purely temporary so that verification
may proceed more easily under the transformed specification. Naturally, for both purposes,
it is important that a transformation should not destroy or create those properties under
investigation.

Some relevant issues concerning a property-preserving transformation are discussed be-
low:
1. Forward preservation and backward preservation—A transformation may preserve a

property in two directions. Forward (resp., backward) preservation guarantees that a
property of the original (resp., transformed) system is satisfied by the transformed (resp.,
original) system while being unable to guard against the creation of new and probably



464 H.J. Huang et al. / Theoretical Computer Science 332 (2005) 461–485

undesired properties in it. Backward preservation is particularly useful if a transformation
serves purely verification purposes.

Although highly desirable, it is uncommon that a transformation can preserve a prop-
erty in both directions. In fact, even for one-way preservation, additional conditions often
have to be imposed. In this paper, for each transformation, conditions are presented for
two-way preservation.

2. Preservation of multiple properties—Very often, a system has several desirable prop-
erties. Then, for both system generation and verification, it is a challenge to discover a
singletransformation that can preserve all of them. Recent research aims at exploring
for transformations which can preserve as many properties as possible[6,19,26].

Brief review on property-preserving transformations(see [26] for more detailed
reviews):

Transformations on Petri nets may be roughly classified into three groups, namely re-
duction, refinement and composition. Most of the early works belong to the first two
groups. Research in reduction methods began with simple pattern modifications on Petri
nets[10,12,23–25,30]. Desel[10] showed that a live and safe FC net without frozen tokens
can be reduced either to a live and safe marked graph or to a live and safe state machine.
Esparza[12] provided reduction rules that reduce a live and bounded FC net to a circuit
containing only one place and one transition. A well-known recent result is the preser-
vation of well-formedness and Commoner’s property under the merge of places within a
free-choice net[11,13,14]or an asymmetric-choice net[21]. As for refinement methods,
[30] introduced a refinement method for expanding a Petri net to the desired level of de-
tail. Variations on refinement were studied in[5,30,31]. Brauer et al.[5] provided a survey
on behavior and equivalence-preserving refinement methods. Recently, Huang et al.[7]
showed the preservation of 19 properties under the refinement of a single transition or a
single place. As for the third group (i.e., composition),[2] considered the 1-way merge of
a set of non-neighboring places. P-invariants are shown to be preserved under such merge
operations. Narahari et al.[28] investigated the following properties of the merged system:
absence of deadlocks, conservativeness and boundedness. Soussi et al.[29] proposed the
constraints for the preservation of liveness. Cheung[6] considered the problem of merg-
ing the places of two marked graphs. He has proposed a condition called cycle-inclusion
property for checking the liveness, boundedness and reversibility of the integrated net. This
condition was proved to be equivalent to the ST-property. However, his method has not
been extended to augmented marked graphs and hence cannot be applied iteratively. Re-
cently, Huang et al.[19] extended this approach to augmented marked graphs and provided
a different method for checking the preservation of liveness, boundedness and reversibil-
ity. Mak [26] and Best et al.[4] showed that many properties are preserved under several
kinds of composition that are induced by various operators, such as parallelism, choice,
disable, etc.

Some papers studied a mixture of transformations. For example, Zeng and Cheung[8]
proposed the conditions for preserving place invariants under five classes of transforma-
tions. [1] presented seven property-preserving transformation rules. Both papers include
reduction, refinement and composition. Mak’s work[26], while mainly for compositions,
also included a path reduction problem which is a special case of the problem studied in
Sections3 and4 of this paper.
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Summary and organization of this paper
This paper first formulates the resource-sharing problem and system abstraction problem

as a subnet-reducing transformation in Petri nets. Then, according to the structure of the
shared resources or the abstracted parts, the following three transformations are presented
for investigation in more detail. All transformations can be applied to both problems in
principle.

Reducing a transition-bordered path to a single transition and reducing a place-bordered
path to a single place(Sections3and4): These two transformations have major applications
in abstracting programs with a single entry and a single exit into single functions. They have
been studied in the literature[25,12,26]but under much more restrictive conditions on the
start and end transitions or places. Conditions are proposed in this paper for preserving
liveness, boundedness and reversibility. Preservations of another seventeen properties such
as siphon, trap, P-invariant, T-invariant and so on are not presented in this paper. They can
be found in[18].

Reducing a place-bordered subnet to a single place(Section5): This transformation is an
extension of the above two path reductions wherein the place-bordered path or transition-
bordered path is changed to a place-bordered subnetNS . This transformation has major
application in abstracting subprograms with multiple entries and/or multiple exits into single
functions. Conditions are proposed for preserving conservativeness, structural boundedness,
consistency, repetitiveness, boundedness, liveness and reversibility.

2. Fundamentals of petri nets

This section presents the preliminaries needed for the rest of the paper.

Definition 1. A net is a 4-tupleN = (P, T , F,W), whereP is a finite set ofplaces, T is a
finite set oftransitionssuch thatP ∩ T = � andP ∪ T �= �, F ⊆ (P × T )∪ (T ×P) is
theflow relationandW is aweight functionsuch thatW(x, y) ∈ N + (positive integers) if
(x, y) ∈ F andW(x, y) = 0 if (x, y) �∈ F . A net is said to beordinary if W = 0 or 1 for
all arcs. In this case,W will be omitted.

For anyx ∈ P ∪ T , thepre-setof x is defined as•x = {y ∈ P ∪ T | (y, x) ∈ F } and
the post-setof x is defined asx• = {y ∈ P ∪ T | (x, y) ∈ F }. Similarly, for any subset
Y ⊆ P ∪ T , •Y (resp.,Y •) denotes the union set of•y (resp.,y•) for all y ∈ Y . A net is
said to bepure or self-loop-freeif •x ∩ x• = �, ∀x ∈ P ∪ T . The incidence matrixV
of a netN is a |P | × |T | matrix whose elementvij at rowpi and columntj is calculated
by vij = W(tj , pi) −W(pi, tj ). If it is clear from the context, symbols between column
vectors and row vectors are not distinguished.

A markingof a netN = (P, T , F,W) is a mappingM : P → {0,1,2, . . .}. A Petri net
is a couple(N,M0) whereN is a net andM0 is a marking ofN called the initial marking.
A placep is markedby M if M(p) > 0. SupposeP ′ ⊆ P , thenP ′ is marked byM if there
existsp ∈ P ′ such thatM(p) > 0.

A transition t of a netN = (P, T , F,W) is enabledor firable at a markingM if
M(p)�W(p, t) ∀p ∈ •t . A transition t may befired if it is enabled. Firing transitiont
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results in changing markingM to a new markingM ′, whereM ′(p) = M(p)−W(p, t)+
W(t, p) ∀p ∈ P . The process is denoted byM[N, t〉M ′. For a sequence� = t1 . . . tk ∈
T ∗, M[N,�〉 means that there exist markingsMi, i = 1, . . . , k such thatM0 = M

andMi−1[N, ti〉Mi andMk−1[N, tk〉. L(N,M0) denotes the language of(N,M0), i.e.,
L(N,M0) = {� |M0[N,�〉}. M[N,�〉M ′ means thatM ′ is reachablefrom M by firing
sequence�. If � is not explicitly specified, the notationM[N, ∗〉M ′ is used.R(N,M0)

denotes the set of all markings reachable from an initial markingM0.
A place invariant, i.e.,P-invariant (resp.,transition invariant, i.e., T-invariant) of a net

N = (P, T , F,W) is a non-negative integer|P |-vector� (resp.,|T |-vector�) satisfying
the equation�V = 0 (resp.,V � = 0), whereV is the incidence matrix ofN.

Definition 2 (Liveness). A transition t is said to belive in (N,M0) iff, for any M ∈
R(N,M0), there exists anM ′ ∈ R(N,M) such thatt can be fired atM ′. (N,M0) is
said to be live iff all transitions are live in(N,M0).

Definition 3 (Reversibility). A net (N,M0) is said to be reversible iffM0 ∈ R(N,M) for
anyM ∈ R(N,M0).

Definition 4 (Boundedness). A placep is said to bebounded(resp.safe) in (N,M0) iff, for
anyM ∈ R(N,M0), there exists a positive integerk such thatM(p)�k (resp.,M(p)�1).
(N,M0) is said to be bounded (resp., safe) iff all places ofN are bounded (resp., safe).N is
said to bestructurally boundediff (N,M0) is bounded for any markingM0.

The following characterization holds for structural boundedness[27]: N is structurally
bounded iff there exists a|P |-vector� > 0 such that�V �0.

Definition 5 (Conservativeness, consistency and repetitiveness). A netN is said to becon-
servative(resp.,consistent, repetitive) iff there exists a|P |-vector� > 0 such that�V = 0
(resp.,|T |-vector� > 0 such thatV � = 0, V ��0), whereV is the incidence matrix ofN.

Definition 6 (State machine (SM) and marked graph (MG)). A netN = (P, T , F ) is said
to be astate machineiff ∀t ∈ T : |t•| = |•t | = 1. N is said to be amarked graphiff
∀p ∈ P : |p•| = |•p| = 1.

Definition 7 (Subnet, connectedness and strongly connectedness). A net N1=(P1, T1,

F1) is said to be a subnet of another netN (in notationN1 ⊆ N ) iff P1 ⊆ P, T1 ⊆ T and
F1 = F ∩ ((P1 × T1) ∪ (T1 × P1)). A subnetN1 of N is said to beinduced(or generated)
by P1 (resp.,T1) iff T1 = •P1 ∪ P •

1 (resp.,P1 = •T1 ∪ T •
1 ). N is connected[11] iff it is

not composed of two disjoint and non-empty subnets.N is strongly connectediff, for every
pair of nodes(x, y), there exists a directed path fromx to y.

Definition 8 (Siphon and trap). LetN = (P, T , F ) be a net andD be a subset ofP. D is
called asiphon(resp., trap) iff•D ⊆ D• (resp.,D• ⊆ •D). A siphon is said to beminimal
if it does not contain any other siphons.
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It is easy to show that (1) the union of siphons (resp., traps) is still a siphon (resp., trap),
(2) a siphon remains token-free once it becomes free of tokens, and (3) a trap remains
marked once it becomes marked.

3. Reducing a transition-bordered path to a transition

This section studies a transformation that reduces an elementary path to a single transition.
The path both starts and ends at a transition. This transformation is formally stated below,
where the placep may represent an elementary directed path starting and ending at a place.
The entire path may also represent a subsystem that has a single entry and a single exit.

Reduce-T-Path(reducing a transition-bordered path to a single transition) (Fig. 1): Let
(N,M0), whereN = (P, T , F ), is an ordinary Petri net. Suppose there exist�i , �o ∈ T and
p ∈ P such that�i �= �o, •p = {�i}, p• = {�o} and•�i∩•�o = �•i ∩�•o = �. Reduce-T-Path
transforms(N,M0) to (N ′,M ′

0) as follows:

P ′ = P − {p},
T ′ = (T − {�i , �o}) ∪ {�′},

F ′ = F − ({(x, �i) | x ∈ •�i} ∪ {(�i , x) | x ∈ �•i } ∪ {(x, �o) | x ∈ •�o} ∪ {(�o, x) | x ∈ �•o})
∪ ({(x, �′) | x ∈ •�i ∪ •�o−{p}} ∪ {(�′, x) | x ∈ �•o ∪ �•i−{p}})

and

M ′
0(p) = M0(p) ∀p ∈ P ′.

The reduction rules studied in[25,3,26]are special cases of Reduce-T-Path in the sense
that they satisfy an additional set of conditions: (a)�•o �= �, •�o = {p} andM0(p) = 0 or
(b) •�i �= �, �•i = {p} andM0(p) = 0.

In the following Theorem1, conclusions for preservation of liveness, boundedness and re-
versibility are presented. Some results about preserving siphon, trap, P-invariant, T-invariant
and so on refer to[18].

Fig. 1. Petri nets before and after applying Reduce-T-Path.
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Fig. 2. An example showing that the properties liveness and reversibility are not preserved under Reduce-T-Path.

Theorem 1(Property preservation under Reduce-T-Path). Let (N,M0) and (N ′,M ′
0) be

the two Petri nets defined in Reduce-T-Path. Then, (1) If (N,M0) is bounded, so is(N ′,M ′
0);

(2) If (N,M0) is live (resp., reversible), in general, (N ′,M ′
0) is not live(resp., reversible).

(N ′,M ′
0) is live (resp., reversible) if any of the following two conditions holds: (a) �•o �=

�, •�o = {p} andM0(p) = 0 or (b) •�i �= �, �•i = {p} andM0(p) = 0.

Proof. (1) Suppose(N ′,M ′
0) is unbounded. Then, there exists an infinite firing sequence

�′ = �1�′�2�′ . . . (or�′ = �1�2 . . .) (where every�i does not contain�′) such thatM ′
0[�′〉M ′

andM ′ become unbounded. Let� = �1�i�o�2�i�o . . . be obtained from�′ by replacing each
�′ with �i�o (or let� = �1�2 . . .). Obviously,� is firable inN andM0[�〉M, whereM(q) =
M ′(q) for everyq ∈ P − {p} andM(p) = M0(p). Hence,(N,M0) is unbounded—a
contradiction.

(2) In general, liveness and reversibility are not preserved. For example, in Fig.2, (N,M0)

is live and reversible but(N ′,M ′
0) is not. Refer to[26] for the proof of liveness under the

particular cases. In the following, preservation of reversibility is proved under the particular
cases.∀M ′ = M ′

0[�′〉, suppose�′ = �1�′�2�′ . . ., where every�i does not contain�′.
∃M = M0[�〉, where� = �1�i�o�2�i�o . . . such thatM(s) = M ′(s) for everys ∈ P − {p}
andM(p) = 0. SinceN is reversible,∃�r = �′

1�i�
′
2�o�

′
3�i�

′
4�o . . . such thatM[�r 〉M0.

For Condition 1, firability of�i in N implies firability of �′ in N ′ and firing�′ in N ′ has
the same effect as firing both�i and �o. Hence, in�r , �i is replaced by�′, �o is ignored
and the resulting�′

r = �′
1�

′�′
2�

′
3�

′�′
4 . . . is firable inN ′. Also,M ′[�′

r 〉M ′
0. Similarly, under

Condition 2, by letting�′
r = �′

1�
′
2�

′�′
3�

′
4�

′ . . . ,M ′[�′
r 〉M ′

0 follows.
The following Propositions1 and2 in the next section are obtained from Suzuki and

Murata[30] and Cheung et al.[7] without proof.

Proposition 1. Suppose ordinary Petri net(N,M0) is obtained from(N ′,M ′
0) by splitting

a transition t ′ ∈ T ′ into a path�ip�o such that(•t ′ in N ′) = (•�i in N), (t ′• in N ′) =
(�•o in N), M0(p) = 0 and the other parts remain unchanged. If(N ′,M ′

0) is live (resp.,
bounded, reversible), then(N,M0) is live (resp., bounded, reversible).

Corollary 1. Let(N,M0) be an ordinary Petri net and(N ′,M ′
0) be obtained from(N,M0)

by applying Reduce-T-Path. Suppose|�•i | = |•�o| = 1.Then(N,M0) is live(resp., bounded,
reversible) iff (N ′,M ′

0) is live (resp., bounded, reversible).
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4. Reducing a place-bordered path to a place

This section studies a transformation that reduces an elementary path to a single place.
The path both starts and ends at a place. This transformation is formally stated below,
where the transition� may represent an elementary directed path starting and ending at
a transition. The entire path may also represent a subsystem that has a single entry and
a single exit.

Conclusions for preservation of liveness, boundedness and reversibility are presented.
Some results about preserving siphon, trap, P-invariant, T-invariant and so on are refer
to [18].

Reduce-P-Path(reducing a place-bordered path to a single place) (Fig.3): Let (N,M0),
whereN = (P, T , F ), be an ordinary Petri net. Suppose there existpi, po ∈ P and� ∈ T
such thatpi �= po,

•� = {pi}, �• = {po} and•pi ∩ •po = p•
i ∩ p•

o = �. Reduce-P-Path
transforms(N,M0) to (N ′,M ′

0) as follows:

P ′ = (P − {pi, po}) ∪ {p′},
T ′ = T − {�},

F ′ = F − ({(x, pi) | x ∈ •pi} ∪ {(pi, x) | x ∈ p•
i } ∪ {(x, po) | x ∈ •po}

∪ {(po, x) | x ∈ p•
o}) ∪ ({(x, p′) | x ∈ •pi ∪ •po − {�}}

∪ {(p′, x) | x ∈ p•
o ∪ p•

i − {�}}),
M ′

0(p) = M0(p) if p �= p′ and M ′
0(p

′) = M0(pi)+M0(po).

The reduction rules studied in[25,26] are special cases of Reduce-P-Path in the sense
that they satisfy an additional set of conditions: (a)p•

o �= �, •po = {�} andM0(po) = 0
or (b) •pi �= �, p•

i = {�} andM0(po) = 0.

Lemma 1. Let(N,M0)and(N ′,M ′
0)be the two Petri nets defined in Reduce-P-Path. Then,

the following propositions hold:
(1) For everyM ∈ R(N,M0), there existsM ′ ∈ R(N ′,M ′

0) such thatM ′(p′) = M(pi)+
M(po) andM ′(p) = M(p) for p ∈ P ′ − {p′}.

(2) If, for eachti ∈ p•
i − {�}, there existsto ∈ p•

o such thatt•i = t•o and •ti − {pi} =
•to − {po}, then, for everyM ′ ∈ R(N ′,M ′

0), there existsM ∈ R(N,M0) such that
M(pi)+M(po) = M ′(p′) andM(p) = M ′(p) for p ∈ P − {pi, po}.

Proof. (1) SinceM ∈ R(N,M0), ∃� ∈ L(N,M0) such thatM0[N,�〉M. ∀� ∈ �, let
M1 andM2 be the two markings just before and just after firing� in N. Then, according
to the way� is eliminated in Reduce-P-Path,M ′

i (p
′) = Mi(pi) +Mi(po) andM ′

i (p) =
Mi(p) for p ∈ P ′ − {p′}, i = 1,2 in N ′. Suppose that�′ is the transition sequence ob-
tained from� by deleting all such�, the above argument shows that�′ ∈ L(N ′,M ′

0) and
M ′

0[N ′,�′〉M ′.
(2) SinceM ′ ∈ R(N ′,M ′

0), ∃�′ ∈ L(N ′,M ′
0) such thatM ′

0[N ′,�′〉M ′. Let us try to fire
�′ in N. Consider anyt ∈ �′. If t /∈ p•

i −{�}, thent is always firable inN. If t = ti ∈ p•
i −{�},

then ti may or may not be firable inN. Eachti that is firable inN is kept in�′, possibly
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Fig. 3. Petri nets before and after applying Reduce-P-Path.

having to insert a� into �′ if necessary. For eachti that is not firable inN, since there exists
to ∈ p•

o such thatt•i = t•o and•ti − {pi} = •to − {po}, ti is replaced with thisto. Since
ti is firable inN ′, to is also firable inN ′, resulting in the same marking as firingti . This
replacement results in a transition sequence� such thatM0[N,�〉M.

Theorem 2 (Preservation of liveness, boundedness, and reversibility under Reduce-P
-Path). Let(N,M0) and(N ′,M ′

0) be the two Petri nets defined in Reduce-P-Path. Suppose
at least one of the following conditions is valid: (a)p•

o �= �, •po = {�} andM0(po) = 0.
(b) •pi �= �, p•

i = {�} andM0(po) = 0. (c)For eachti ∈ p•
i − {�}, there existsto ∈ p•

o

such thatt•i = t•o and •ti − {pi} = •to − {po}. Then, if (N,M0) is live (resp., bounded,
reversible), (N ′,M ′

0) is live (resp., bounded, reversible).

Proof. For Conditions (a) and (b), proof can be found in[25] and[26], respectively. For
Condition (c), the proof proceeds as follows: For any reachable markingM ′ of (N ′,M ′

0)

and any transitiont in N ′, under the assumption of Condition (c), Lemma1 implies that
∃M ∈ R(N,M0) such thatM(pi) + M(po) = M ′(p′) andM(p) = M ′(p) for p ∈
P − {pi, po}. Since(N,M0) is live, ∃M1 ∈ R(N,M), such thatt is firable atM1. By
Lemma1, ∃M ′

1 ∈ R(N ′,M ′) such thatM ′
1(p

′) = M1(pi)+M1(po) andM ′
1(p) = M1(p)

for p ∈ P ′ − {p′}. This implies that∀p ∈ •t , M ′
1(p)�M1(p). The fact thatt is firable at

M1 implies that t is firable atM ′
1. Hence,(N ′,M ′

0) is live. The proofs for boundedness and
reversibility are similar to the above proof for liveness. They are omitted here.

Example 1. In all cases considered below, the pathpi�po in N is reduced top′ in N ′. In
Fig.4, (N,M0) is live, bounded and reversible. Since forti ∈ p•

i −{�}, there existsto ∈ p•
o

such thatt•i = t•o = {p} and•ti − {pi} = •to − {po} = �, it follows from Theorem 2(c)
that(N ′,M ′

0) is live, bounded and reversible.

Note that, in Theorem 2, each of the three Conditions (a), (b) or (c) is sufficient but not
necessary. Figs.5–7 show that different results may occur if none of these conditions holds.
In N of all these figures, since•po �= {�} andp•

i �= {�}, neither Condition (a) nor Condition
(b) is satisfied; and, sincet•i �= t•o , Condition (c) is not satisfied either. Hence,(N ′,M ′

0)

cannot be concluded to preserve all these three properties of(N,M0). In fact, in Fig.5,
(N,M0) is bounded and reversible but(N ′,M ′

0) is unbounded and not reversible. In Fig.6,
(N,M0) is live but(N ′,M ′

0) is not. After firingt1t2t3ti ti in (N ′,M ′
0), transitiont is dead.
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Fig. 4. Both(N,M0) and(N ′,M ′
0) are live, bounded and reversible.

Fig. 5.(N,M0) is bounded and reversible but(N ′,M ′
0) is unbounded and not reversible.

In Fig. 7, both (N,M0) and(N ′,M ′
0) are live. Note that(N ′,M ′

0) is not shown in both
Figs.6 and7.

Proposition 2 (Suzuki and Murata[30] and Cheung et al.[7] ). Suppose(N,M0) is ob-
tained from(N ′,M ′

0) by splitting a placep′ ∈ P ′ into a pathpitpo such that(•pi in N) =
(•p′ in N ′), (p•

o in N) = (p′• in N ′), M0(pi) +M0(po) = M ′
0(p

′) and the other parts
remain unchanged. Then,
(1) If (N ′,M ′

0) is live and•p′ �= �, then(N,M0) is live.
(2) If (N ′,M ′

0) is bounded(resp., reversible), then(N,M0) is bounded(resp., reversible).

Corollary 2. Let(N,M0) be an ordinary Petri net and(N ′,M ′
0) be obtained from(N,M0)

by applying Reduce-P-Path. Suppose|p•
i | = |•po| = 1. Then(N,M0) is live iff (N ′,M ′

0)

is live and•p′ �= �. (N,M0) is bounded(resp., reversible) iff (N ′,M ′
0) is bounded(resp.,

reversible).
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Fig. 6. A live (N,M0) that become nonlive after applying Reduce-P-Path.

Fig. 7. A live (N,M0) that is still live after applying Reduce-P-Path.

5. Reducing a place-bordered subnet to a place

This section studies a transformation that reduces a subnetNS within an ordinary Petri
net to a single place. This is an extension of the case studied in Sections3 and4. Conditions
for the preservation of many properties will be derived.

Reduce-Subnet(reducing a place-bordered subnet to a single place) (Fig.8): LetNS =
(PS, TS, FS) be a place-bordered (i.e.,(•TS ∪ T •

S )∩ (P −PS) = �) subnet of an ordinary
Petri netN = (P, T , F ). Suppose there exists a transition setTI ⊆ T − TS such that
the subnet generated byPS andTS ∪ TI forms a strongly connected SM inN. Reduce-
Subnet reducesNS to a single placeps by transforming(N,M0) to (N ′,M ′

0), where
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Reduce-Subnet 

Fig. 8. The Petri nets before and after applying Reduce-Subnet.

N ′ = (P ′, T ′, F ′,W ′), as follows:

P ′ = P − PS ∪ {ps},
T ′ = T − TS,

F ′ = F − FS − ({(t, p), (p, t) | t ∈ T − TS, p ∈ PS} ∩ F)
∪ {(t, ps) | t ∈ T − TS, t

• ∩ PS �= �} ∪ {(ps, t) | t ∈ T − TS,
•t ∩ PS �= �},

∀t ∈ TA = •PS ∪ P •
S − TS − TI , W

′(ps, t) = |•t ∩ PS | andW ′(t, ps) = |t• ∩ PS |. The
weight of every other edge inF ′ remains 1; and

M ′
0(p) = M0(p) for p ∈ P ′ − {ps} and M ′

0(ps) = ∑
p∈PS

M0(p).

Example 2(Fig. 8). InN, the place-bordered subnetNS lies within the ellipse,TI = {ti , tj }
andTA = {ta, tb}. NS andTI generate a strongly connected SM. InN ′, the transitionsti
andtj form self-loops withps and the weight of the arc(ta, ps) is 2 because|t•a ∩ PS | = 2
in N.

Some of the property-preservation results described later depend on the following
condition.

Internal Path Condition(IPC) (Fig. 9): Consider the subnetNS = (PS, TS, FS) of
(N,M0) in Reduce-Subnet.∀x ∈ ((TI ∪ TA)• ∩ PS) ∪ {p ∈ PS |M0(p) > 0}, ∀y ∈
•(TI ∪ TA) ∩ PS , there exists a path� that starts atx and ends aty such that� lies entirely
within NS .

Discussion on Reduce-Subnet and Internal Path Condition:
a. The subnetNS can model subsystems with multiple entries and exits. For example, the

subsystem inNS of Fig. 8 has two entries{p1, p4} and four exits{p1, p2, p3, p4}.
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TI ∪ TA

Ns

x
y 

  

((TI ∪ TA) • ∩ Ps) ∪ •(TI ∪ TA) ∩ Ps

{p  ∈ Ps Mo(p)>0}

γ

Fig. 9. Internal Path Condition (x is any place in((TI ∪ TA)• ∩ PS) ∪ {p ∈ PS |M0(p) > 0}, y is any place in
•(T1 ∪ TA) ∩ PS and� is a path fromx to y within NS ).

b. Reduce-Subnet takes two practical requirements into consideration in its formulation. It
is flexible enough so that it can have a large scope of application. First, the subnetNS to
be reduced is ‘almost’ a strongly connected SM, meaning thatNS itself is not required
to be a strongly connected SM but must become so when combined with a setTI of
‘included’ transitions. Second, the choice ofTI andTA is not unique. For example, for
the sameNS in Fig. 8, one can chooseTI = {ti} andTA = {ta, tb, tj }. In particular, if
NS is a strongly connected SM itself,TI may even be empty. For example, for the subnet
NS′ within the dotted square in Fig.8, one can letTI = � andTA = {ta, tb, tj }.

c. In the definition of Internal Path Condition,(TI ∪ TA)• ∩ PS denote the set of ‘entry’
places,{p ∈ PS |M0(p) > 0} is the set of initially marked places and•(TI ∪ TA) ∩ PS
denote the set of ‘exit’ places. IPC does not requireNS to be strongly connected. It only
requires that, withinNS , there exists a directed path from every ‘entry’ place or initially
marked place to every ‘exit’ place. Obviously, strongly connectedNS automatically
satisfies IPC. A weaker condition IPC allows more flexibility in selecting a subnet for
reduction during actual application.

Definition 9 (Mappings arising from Reduce-Subnet). Let (N ′,M ′
0) and (N,M0) be the

two Petri nets defined in Reduce-Subnet. For a firing sequence� and a markingM of N
whereM0[N,�〉M, the mappings of� andM from N ontoN ′ are defined as follows:

f : T ∗ → T ′∗ :
f (�) = �, where� is the null sequence,

f (�t) =
{
f (�) if t ∈ TS,
f (�)t if t ∈ T − TS.

M ′ is the restriction ofM from P to P ′:

M ′(p) = M(p) if p ∈ P ′ − {ps}
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M ′(ps) = ∑
p∈PS

M(p).

For the rest of this section, the notationsN ′,M ′
0, TA, TI ,�, f (�) andM ′ have the same

meanings as defined in Reduce-Subnet or Definition9. For simplification, the symbols�
and�′ are also used to denote the set of transitions in the sequences� and�′, respectively.

Lemmas2 and3 below describe the relationships of� andM with their mappingsf (�)
andM ′.

Lemma 2. Let (N ′,M ′
0) and(N,M0) be the two Petri nets defined in Reduce-Subnet. For

any sequence� and marking M of N whereM0[N,�〉M, their mappingsf (�) andM ′
satisfyM ′

0[N ′, f (�)〉M ′.

Proof (by induction on the length of�). For � = �, obviously M = M0. By
Definition 9, f (�) = � ∈ L(N ′,M ′

0) andM ′ = M ′
0. Hence,M ′

0[N ′, f (�)〉M ′. Next,
assume the proposition holds for every�, where|�|�n. That is, for such� and marking
M1,M0[N,�〉M1 implies thatM ′

0[N ′, f (�)〉M ′
1. Let � = �t ∈ L(N,M0) and markingM

satisfyM0[N,�〉M1[N, t〉M.
To show thatf (�) is firable, two cases should be considered:

a. If t ∈ TS , thenf (�) = f (�) ∈ L(N ′,M ′
0) by Definition9 and the above assumption.

b. If t ∈ T − TS , thenf (�) = f (�)t . By the above assumptionM ′
0[N ′, f (�)〉M ′

1, it is
sufficient to show thatt is firable atM ′

1. By Definition9,M ′
1(p) = M1(p) forp ∈ P−ps

andM ′
1(ps) = ∑

p∈Ps M1(p). Sincet is firable atM1 in N,M1(p)�W(p, t),∀p ∈ •t
in N. Hence,M ′

1(p)�W ′(p, t),∀p ∈ •t inN ′. This implies thatt is firable atM ′
1 inN ′.

Hence,f (�) is firable inN ′.
Next, consider two cases oft:
a. If t ∈ TS , thenf (�) = f (�). M ′(ps) = M(PS) = M1(PS) = M ′

1(ps) andM ′(p) =
M(p) = M1(p) = M ′

1(p) for p ∈ P − PS . Hence,M ′ = M ′
1 andM ′

0[N ′, f (�)〉M ′.
b. If t ∈ T − TS , thenf (�) = f (�)t . M ′(p) = M(p) = M1(p) ± 1 = M ′

1(p) ± 1 for
p ∈ •t ∪ t•−ps,M ′(ps) = ∑

p∈Ps M(p) = ∑
p∈(Ps−•t ∪ t•) M1(p)+∑

p∈(PS ∩ •t ∪ t•)
(M1(p) ± 1) = M ′

1(ps) + W(t, ps) − W(ps, t), andM ′(p) = M(p) = M1(p) =
M ′

1(p) for p ∈ P ′ − (•t ∪ t•). Hence,M ′
1[N ′, t〉M ′ andM ′

0[N ′, f (�)〉M ′.

Lemma 3. Suppose N satisfies the Internal Path Condition in Reduce-Subnet. Then, for
any sequence�′ and markingM ′ ofN ′, whereM ′

0[N ′,�′〉M ′, there exist sequence� and
marking M of N such that�′ = f (�) andM0[N,�〉M, whereM ′ is the mapping of M.

Proof. For any sequence�′ and markingM ′ of N ′, whereM ′
0[N ′,�′〉M ′, suppose�′ =

�′
1t1�

′
2t2, . . . , li�

′
i ti , . . . , lj . . . tk�

′
d , where every�′

i ∩ (p•
s ∪ •ps) = �, every ti ∈ •ps

and everyli ∈ p•
s . Then ti , li ∈ TI ∪ TA in N and the Internal Path Condition implies

that ∀x ∈ (PS ∩ t•i ) ∪ {p ∈ PS |M0(p) > 0} and∀y ∈ •li ∩ PS, i = 1,2 . . ., there
exists a path�i from x to y such that�i lies entirely withinNS in N. Since these paths lie
within a connected SM, they are all firable sequences atM1 if M1(pr) > 0, wherepr ∈ �i
andM1 ∈ R(N,M0), and every firing will preserve the number of tokens withinPS . In
particular, some of them are fired so that every placey ∈ •li , i = 1,2, . . . gets a token
eventually inN. Let �i be such a firing sequence if a sequence in�i is fired and a null
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Fig. 10. An example for explaining Lemma3.

sequence otherwise. Hence, the sequence� = �′
1t1�

′
2t2, . . . ,�i li�

′
i ti , . . . ,�j lj . . . tk�

′
d is

firable andf (�) = �′. SupposeM0[N,�〉M2. Since firing�i preserves the number of tokens
within PS,M2(PS) = M ′(ps) andM2(p) = M ′(p) for p ∈ P − PS . HenceM2 = M.

Example 3(Fig. 10). For the place-bordered subnetNS within the square,PS = {pa, p1,

p2}, TS = {t1, t2, t5}, TI = {t3, t4}, TA = {ta}, (TI ∪ TA)• ∩ PS = {pa, p2}, •(TI ∪
TA) ∩ PS = {p1, p2}. ForNS, {pa, p2} is the set of ‘entry’ places and{p1, p2} the set of
‘exit’ places. Since the pathspat1p1, pat2p2, p2t5pat1p1 andp2 all lie within NS , IPC
is satisfied. By Lemma3, for the firing sequences�′

1 = tat3, �′
2 = tat4, �′

3 = tat3t4 and
�′

4 = tat4t3 of (N ′,M ′
0), the firing sequences�1 = tat1t3, �2 = tat2t4, �3 = tat1t3t4 and

�4 = tat2t4t1t3 of (N,M0) satisfy�′
i = f (�i ), i = 1,2,3,4. The other sequences are just

subsequences of these ones.

Without IPC, Lemma3 may be invalid. For example, in Fig.10, supposep1 of Fig. 10 is
initially marked. Since there is no path fromp1 to p2 within NS , IPC is not satisfied. For
the firing sequence�′ = t4 in N ′, there is no firing sequence� in N, such that�′ = f (�).
Similarly, for the subnetNS within the ellipse in Fig.11,PS = {p1, p2, p3},TS = {t1, t2, t3},
TI = {t4},TA = {ta, tb, tc}, (TI∪TA)•∩PS = {p1, p2, p3}, •(TI∪TA)∩PS = {p1, p2, p3}.
Since there is no directed path fromp1 to p3 within NS , IPC is not satisfied. For the firing
sequence�′ = tatatc in N ′, there is no firing sequence� in N, such that�′ = f (�).

Theorem 3 (Preservation of boundedness, liveness and reversibility under Reduce-
Subnet). Let (N,M0) and(N ′,M ′

0) be the two Petri nets defined in Reduce-Subnet. Then,
the following propositions hold:
(1) If (N ′,M ′

0) is bounded, then(N,M0) is bounded.



H.J. Huang et al. / Theoretical Computer Science 332 (2005) 461–485 477

t4 

tb 

tc 

ta 

p3 p2 

p1 

t3 t2 t1 

pi 

ps

t4 

pi

tc 
tb 

ta 

2

(N, M0) (N', M0') 

Fig. 11. An example for explaining the Internal Path Condition of Lemma3.

(2) If (N,M0) is bounded and either the Internal Path Condition is satisfied or•TI ∩ (P −
PS) = � (i.e.,TI has no input places outside the subnetNS), then(N ′,M ′

0) is bounded.
(3) Suppose the Internal Path Condition is satisfied. Then, (N,M0) is live(resp., reversible)

iff (N ′,M ′
0) is live (resp., reversible).

(4) If (N ′,M ′
0) is live (resp., reversible) and •TI ∩ (P − PS) = �, then(N,M0) is live

(resp., reversible).

Proof. (1) Suppose(N ′,M ′
0) is bounded. For every reachable markingM of (N,M0), by

Lemma2, its mappingM ′ is a reachable marking of(N ′,M ′
0). By Definition9, for every

placep in N,M(p) is bounded byM ′(p) orM ′(ps). Hence,(N,M0) is bounded.
(2) Suppose(N,M0) is bounded. For everyM ′ ∈ R(N ′,M ′

0) obtained by firing�′ =
�′

1t1�
′
2t2, . . . , li�

′
i ti , . . . , lj . . . tk�

′
d inN ′, where every�′

i∩(p•
s ∪•ps) = �, everyti ∈ •ps

and everyli ∈ p•
s , if the Internal Path Condition is satisfied, by Lemma3, M ′(p) is ob-

viously bounded byM(p) or byM(PS), whereM andM ′ satisfy the mapping relation in
Definition 9. If the Internal Path Condition is not satisfied,∀x ∈ (PS ∩ t•i ) ∪ {p ∈
PS |M0(p) > 0} and∀y ∈ •li∩PS, i = 1,2 . . ., there exists a path�i fromx toysuch that�i
lies entirely within the strongly connected SM generated byNS andTI in N. By the assump-
tion•TI∩(P−PS) = �, the paths are all firable sequences atM1 if M1(pr) > 0, wherepr ∈
�i andM1 ∈ R(N,M0). Some of them are fired so that every placey ∈ •li , i = 1,2, . . .
gets a token eventually inN. Let�i be such a firing sequence if a sequence in�i is fired and
a null sequence otherwise. Hence, the sequence� = �′

1t1�
′
2t2, . . .�i li�

′
i ti , . . .�j lj . . . tk�

′
d

is firable andf (�) = �′
1t1�

′
2t2, . . . si li�

′
i ti , . . . sj lj . . . tk�

′
d , where everysi ∈ TI . Suppose

M0[N,�〉M2. Then,M2(PS) = M ′(ps)M2(p) = M ′(p) for p /∈ s•i andM2(p)�M ′(p)
for p ∈ s•i . Hence,(N ′,M ′

0) is bounded.
(3) (⇒) Suppose(N,M0) is live. For every�′ ∈ L(N ′,M ′

0) and everyt ∈ T ′, since
the Internal Path Condition is satisfied, by Lemma3, there exists� ∈ L(N,M0) such that
�′ = f (�). Since(N,M0) is live, there exists�1 ∈ T ∗ such that��1t ∈ L(N,M0). By
Definition 9 and Lemma2, f (��1t) = �′�′

1t ∈ L(N ′,M ′
0). Hence,(N ′,M ′

0) is live. (⇐)

Suppose(N ′,M ′
0) is live. For every� ∈ L(N,M0) and everyt ∈ T , by Lemma2, there
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Fig. 12. An example for illustrating the role of•T
I

∩ (P − PS) = � in Theorem 3.

exists�′ ∈ L(N ′,M ′
0) such that�′ = f (�). Since(N ′,M ′

0) is live, there exists�′
1 ∈ T ′∗

such that�′�′
1t ∈ L(N ′,M ′

0). Since the Internal Path Condition is satisfied, by Lemma3,
there exists�1 ∈ T ∗ such that��1t ∈ L(N,M0) andf (��1t) = �′�′

1t . Hence,(N,M0) is
live.

(4) Suppose(N ′,M ′
0) is live. For every� ∈ L(N,M0) and everyt ∈ T , by Lemma2,

there exists�′ ∈ L(N ′,M ′
0) such thatf (�) = �′.

Case1: If t ∈ T − TS in N, then t ∈ T ′ in N ′. Since(N ′,M ′
0) is live, there exists

�′
1 = �1a1a2 . . .�2 b1b2 . . .�3a3a4 . . .�4b3b4 . . .�d t ∈ T ′∗ such that�′�′

1 ∈ L(N ′,M ′
0),

where every�i ∩ (•ps ∪ p•
s ) = �, ai ∈ •ps = •PS − TS andbj ∈ p•

s = P •
S − TS . By the

proof of Proposition (2), for such a firable sequence inN ′, there exists a firable sequence
�1 = �1a1a2 . . .�2�1�2 . . . b1b2 . . .�3a3a4 . . .�4�3�4 . . . b3b4 . . .�d t in N, where each�i
is the firable sequence such that firing�1�2�3�4 . . .. can guarantee thatbj , j = 1,2,3, . . .,
is still firable inN. Hence,��1 ∈ L(N,M0).

Case2: If t ∈ TS , thent /∈ T ′ in N ′. By Case 1, everytj ∈ T − TS is live. Hence, there
exists�1 ∈ T ∗ such that��1tj ∈ L(N,M0), wheretj ∈ •PS − TS . LetM0[N,��1tj 〉Mj .
Then,Mj(PS)�1. SincePS andTS ∪ TI generate a strongly connected SM andTI has no
input places inP −PS , everyt ∈ TS is obviously a potentially firable transition in(N,Mj ).
Hence,(N,M0) is live. The proof for reversibility is similar.

Example 4(Fig. 12). In Theorem 3, without the condition•TI ∩ (P −PS) = �, (N,M0)

may be nonlive although(N ′,M ′
0) is live and(N ′,M ′

0)may be unbounded although(N,M0)

is bounded. For example, for the subnetNS (within the ellipse) ofN andTI = {t}, •TI ∩
(P − PS) = {p} �= �, (N ′,M ′

0) is live but(N,M0) is not becauseN is dead after firing
tat1t t2t3t1. (N,M0) is bounded but(N ′,M ′

0) is not becausep in N ′ becomes unbounded if
the sequencetatb is fired repeatedly.

Corollary 3. Let (N,M0) and (N ′,M ′
0) be the two Petri nets defined in Reduce-Subnet.

Suppose the place-bordered subnetNS is itself a strongly connected state machine. Then,
(N,M0) is live (resp., bounded, reversible) iff (N ′,M ′

0) is live (resp., bounded,
reversible).
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Proof. In this case, letTI = �. It is then always true that•TI ∩ (P − PS) = � and the
Internal Path Condition is satisfied.

The following theorem is about preservation of siphon, trap, conservativeness, structural
boundedness, consistence and repetitiveness under Reduce-Subnet. Because the proof for
this theorem can refer to[19] and[22], we omitted it here.

Theorem 4 (Preservation of siphons, traps, conservativeness, structural boundedness,
consistence, repetitiveness under Reduce-Subnet). Let (N,M0) and(N ′,M ′

0) be the two
Petri nets defined in Reduce-Subnet. Then, the following propositions hold:
(1) For a set of placesD ⊆ P of N, suppose eitherD ∩ PS = � or PS ⊆ D. Then, D is a

siphon(resp., trap) of N iff D orD − PS ∪ {ps} is a siphon(resp., trap) ofN ′.
(2) If there exists a vector� = (�1, Ia) > 0, whereIa = (a, a, . . . , a) is a |PS |-vector,

such that�V = 0 (resp., �V �0), whereV is the incidence matrix ofN , thenN ′ is
conservative(resp., structurally bounded).

(3) If N ′ is conservative(resp., structurally bounded), then N is conservative(resp., struc-
turally bounded).

(4) If N is consistent(resp., repetitive), thenN ′ is consistent(resp., repetitive).

6. Applications to the verification for manufacturing systems

This section illustrates the application of the three transformations to verifying a manu-
facturing system. Although not shown in this paper, the three transformations can also be
applied to system specification since they are two-way preserving transformations.[16] and
[17] illustrate the applications to the specification and verification in multi-agent systems
and manufacturing systems, respectively.

Example 5(Fig. 13and Table1). This manufacturing system consists of three processes:
two workstations WS1 and WS2 (on the left of Fig.13) for assembly work and one machin-
ing center (on the right of Fig.13) for machining. WS1 and WS2 share robot R2 between
themselves and share Robot R1 with the machining center. (Note: The left and right com-
ponents of Fig.13 are extracted from[34]. Zhou et al. used them just for explaining the
concepts of mutual exclusions in resource sharing. They are combined here with some
modifications to create an example for illustrating our results.) The system runs as follows:
A. In the machining center, parts are machined first by machine M1 and then by machine

M2. Each part is automatically fixtured to a pallet and loaded into the machine. After
processing, robot R1 unloads the intermediate part from M1 into buffer B. At machining
station M2, intermediate parts are automatically loaded into M2 and processed. When
M2 finishes processing a part, the robot R1 unloads the final product, defixtures it and
returns the fixture to M1.

B. When either WS1 or WS2 is ready to execute the assembly task, it requests both robots R1
and R2 and acquires them if they are available. When a workstation starts an assembly
task, it cannot be interrupted until it is completed. When WS1 (WS2) completes, it
releases both robots.
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Fig. 13. The original system(N,M0) with two resource subnets (boldfaced).

C. It is assumed that input parts are always available to be fixtured and that the finished
products are removed.
For the specification of the manufacturing system with Petri nets, each operation process

is abstracted to a single place and each transition represents the start or/and completion of a
process. This is similar to the literature[32,34]. For handling resources sharing problems,
this paper has some differences with the literature.

Unlike other systems where the robots are shared among the processes without any
modifications, this example considers a more general situation where a robot has to go
through some intermediate treatments (e.g., cleaning the oil left from the previous process,
adding some parts needed by the next calling process, etc.) when being passed from one
process to another. Hence, for the Petri net specification of the system (Fig.13), each
resource is originally represented by a set of places (calledresource-placeshereafter), one
in each of the parts it is involved in. The resource-places may form a connected subnet whose
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Table 1
The legend for Fig.13

Places Transitions

ri1 (i = 1,2,3): Robot R1 is available t11: starts acquiring R1 and R2
ri2 (i = 1,2): Robot R2 is available t12: starts first step of assembling at WS1
p11: WS1 requests R1 and R2 t13: starts final step of assembling at WS1
p12: WS1 acquires R1 and R2 t14: completes assembling at WS1
p13: first step of assembling at WS1 t21: starts acquiring R1 and R2
p14: final step of assembling at WS1 t22: starts first step of assembling at WS2
p21: WS2 requests R1 and R2 t23: starts final step of assembling at WS2
p22: WS2 acquires R1 and R2 t24: completes assembling at WS2
p23: first step of assembling at WS2 t31: starts activityp32
p24: final step of assembling at WS2 t32: completes activityp32 and start activityp33
p31: pallets are available t33: completesp33 and start the storage activityp34
p32: machine M1 loads, fixtures and pro-
cesses a palleted raw part

t34: completesp34 and start activityp35

p33: R1 unloads an intermediate part to the
buffer

t35: completesp35 and startp36

p34: buffer B stores an intermediate part t36: completesp36
p35: machine M2 loads and processes an in-
termediate part

ti (i = 1,2,3,4,5): intermediate processing on a robot
before passing it from one process to another.

p36: R1 unloads a final product from M2, de-
fixtures and returns the pallet
p37: M1 is available
p38: B is available
p39: M2 is available

transitions represent the intermediate processes. For example, Robot R1 is shared by the
three parts (WS1, WS2 and the machining center) and need some intermediate treatments
when being passed from one part to another. In Fig.13, placesr11, r21 andr31 are resource-
places representing robot R1. Transitionst1, t2 andt3 represent the intermediate processes.
The resource-places and these transitions generate a connected subnet (one of the bold-faced
subnets in Fig.13).

Verification on the final system (Fig.13) proceeds in three steps:
Step1: (N,M0) (Fig. 13) is transformed to(N1,M1) (Fig. 14) by using Reduce-Subnet.
In Fig. 13, the two bold-faced subnetsNS1 (generated by{r11, r21, r31, t1, t2, t3}) and

NS2 (generated by{r12, r22, t4, t5}) are strongly connected SMs. By settingTI1 = TI2 =
�, TA1 = {t11, t14, t21, t24, t32, t33, t35, t36} andTA2 = {t11, t14, t21, t24}, Reduce-Subnet
reducesNS1 andNS2 to placesr1 andr2, respectively, resulting in (N1,M1) (Fig. 14). By
Corollary3, (N,M0) is live, bounded and reversible iff (N1,M1) is.

Step2: (N1,M1) (Fig. 14) is transformed to(N2,M2) (Fig. 15) by using Reduce-T-Path.
In (N1,M1), the transition-bordered pathss1 = t11p12t12p13t13p14t14, s2 = t21p22t22p23

t23p24t24, s3 = t31p32t32, s4 = t33p34t34 and s5 = t35p36t36 satisfy the conditions in
Corollary1. e.g.,|t•11| = |•t14| = 1 for paths1 and|t•33| = |•t34| = 1 for paths4. Reduce-
T-Path reduces the five paths to transitionss1, s2, s3, s4, ands5, respectively, resulting in
(N2,M2) (Fig. 15). By Corollary1, (N1,M1) is live, bounded and reversible iff (N2,M2)
is live, bounded and reversible.
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Fig. 14. The system(N1,M1), resulting from(N,M0) by using Reduce-Subnet.

Step3:Deleting all the places p in(N2,M2) (Fig. 15) satisfying•p = p• andM2(p) > 0
results in Petri net(N3,M3) (Fig. 16).

Since those marked placesp11, p21, p37, p38, p39, r1, r2 consist of self-loops with their
associated transitons in (N2,M2), deleting them and their associated arcs will not affect the
firing sequences and token distribution. Hence, (N2,M2) is live, bounded and reversible iff
(N3,M3) is live, bounded and reversible.

Hence, the complex manufacturing model(N,M0) (Fig. 13) is live, bounded and re-
versible if and only if so is(N3,M3) (Fig. 16). Since(N3,M3) is an initially marked cycle
together with two independently transitions, it is obviously live, bounded and reversible
[27]. Hence, the manufacturing system(N,M0) (Fig. 13) is live, bounded and reversible.
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Fig. 15. The system(N2,M2), resulting from(N1,M1) by using Reduce-T-Path.
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Fig. 16. Deleting self-loops in(N2,M2) results in(N3,M3).

7. Conclusion

Based on Petri nets, this paper has made the following contributions towards solving the
resource-sharing and subsystem abstraction problems in system design:
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A. Enhancing the capability for modeling—In the literature, these problems are described
in quite a straightforward manner as exemplified by Chu’s AMGs and Zhou’s sequential
and parallel mutual exclusions. Also, the systems involved are modeled mostly as an SM
or MG. This paper formulates the problems as subnet-reducing transformations. Three
transformations are proposed so that a designer has considerable flexibility in selecting
an appropriate transformation for specifying the resources, the system, the subsystems
and the problems under investigation. In particular, a resource is now allowed to receive
intermediate processing when switching from one user to another.

B. Formalizing the property-preserving approach for verification—In the literature, very
little has been devoted to the development of formal verification techniques specifi-
cally for the resource-sharing and system abstraction problems. Usually, just general
techniques were suggested. Based on the subnet-reducing transformations, this paper
proposes a property-preserving approach for verification. For each of the three transfor-
mations, conditions are imposed on the structure of the subnets to be reduced so that
various properties of the net will be preserved.

C. Besides their applications to system design, the results obtained in this paper also enrich
the theory for property-preserving transformations in Petri nets.
For the three transformations, they touch only the tip of a scarcely explored research

area. This area obviously still has several open problems, including reducing
transition-bordered subnets, more general subnets, etc. However, even for such simple
path-reduction and subnet-reduction problems as considered in this paper, quite restrictive
conditions are already imposed. Deeper insights are needed in order to investigate these
open problems.
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