
Coordination of plant cell growth and division:
collective control or mutual agreement?
Robert Sablowski

Available online at www.sciencedirect.com

ScienceDirect
Plant tissue growth requires the interdependent cellular

processes of cytoplasmic growth, cell wall extension and cell

division, but the feedbacks that link these processes are poorly

understood. Recent papers have revealed developmentally

regulated coupling between plant cell growth and progression

through both mitotic cycles and endocycles. Modeling has

given insight into the effects of cell geometry and tissue

mechanics on the orientation of cell divisions. Developmental

inputs by auxin have been highlighted in the control of cell

turgor, vacuole function and the microtubule dynamics that

underlies oriented growth and division. Overall, recent work

emphasizes growth and proliferation as processes that are

negotiated within and between cells, rather than imposed on

cells across tissues.
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Introduction
Both in plants and animals, organ growth can tolerate wide

variations in cell proliferation through compensatory

changes in cell size and shape, supporting the idea that

cell growth and division are controlled in parallel by

external signals that co-ordinate cell behavior at the tissue

and organ level [1,2]. At the same time, growth and cell

cycle progression appear to be connected by homeostatic

feedback loops within each cell [3,4,5��] and this intracel-

lular coordination would be expected to modify responses

to external signals. The relative importance of external and

intracellular integration of the processes required for cell

and tissue growth is unclear in all multicellular organisms.

In plants, the rate and direction of cell growth depend on

the balance between turgor pressure and the resistance of
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the cell walls to tensile stress [6,7]. As the walls yield to

turgor pressure, the larger cell volume is occupied

through a combination of increased macromolecular syn-

thesis and enlargement of vacuoles (Figure 1) [8]. During

the proliferative stage, the enlarged cell eventually

divides in a particular direction. The coordinated process-

es of cell growth and division also respond to external

signals, such as nutrient availability and mechanical stress

[9,10], and to developmental control, typically mediated

by hormones and localized expression of transcription

factors [11]. Here, I review recent insights on the intra-

cellular mechanisms that coordinate plant cell growth and

division, how these mechanisms respond to external

inputs and how integration within each cell feeds back

on the growth of tissues and organs. I focus on meristems

and organ primordia, where cell growth and division

coexist, discussing initially the coordination of rates, then

directions of cell growth and division.

Coordination between rates of growth and cell
cycle progression
As mentioned above, turgor pressure is the mechanical

driver for plant cell growth. It is often assumed that turgor

is constant, but this is not always the case: the emergence

of lateral root primordia is facilitated by softening of cell

walls in the overlying cortex and epidermis [12] and by

localized regulation of turgor mediated by aquaporins

[13]. It has recently been shown that during the earliest

stages of lateral root emergence, enlargement of pericycle

cells is accommodated by an auxin-induced reduction in

the size of neighboring endodermal cells, presumably

requiring turgor changes; without this accommodating

response, the lateral root cannot develop [14��].

The increased cell volume associated with turgor-driven

wall extension is occupied by a combination of macromo-

lecular synthesis and vacuolar growth. In the root meri-

stem, auxin has been shown to limit the enlargement of

late meristematic cells through rapid post-transcriptional

increase in the abundance of vacuolar SNARE proteins,

which control vacuolar morphology [15�]. These auxin-

induced changes were mediated by the actin cytoskeleton

and reduced the volume of the vacuole relative to that of

the cell [16��]. The auxin-dependent changes in vacuole

morphology were proposed to regulate cytosol density

during cellular expansion [16��]; if this is the case, vacuo-

lar function might also be expected to be coordinated

with overall macromolecular synthesis (Figure 2).

Ultimately, cell growth depends on macromolecular

synthesis, which is coordinated by the conserved
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2016.09.004&domain=pdf
mailto:robert.sablowski@jic.ac.uk
http://dx.doi.org/10.1016/j.pbi.2016.09.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/13695266


Coordination between cell growth and division Sablowski 55

Figure 1

Vacuolar
growth &
function

Cell growth

Macromolecular
synthesis

Cell cycle
progression

Tu
rg

or
 p

re
ss

ur
e

C
el

l w
al

l e
xt

en
si

on

Cell division

Current Opinion in Plant Biology

Overview of the coordinated cellular processes required for meristem and organ primordium growth.
Ser/Thr kinases TOR and SnRK1 [10]. When sufficient

sugar is available, TOR promotes meristem activity and

organ growth not only through its conserved role in

promoting macromolecular synthesis, but also through
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External inputs (solid blue arrows) and internal feedbacks (dashed blue

arrows) in the coordination of cellular processes required for growth.

Question marks indicate hypothetical feedbacks. Numbers correspond

to recent papers relevant to the interactions shown
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direct regulation of the cell cycle regulator E2Fa and

potentially through control of cell wall remodeling [17–
19]. At the same time, high sugar levels lead to inhibition

of the SnRK1 kinase, which promotes catabolism and

inhibits cell cycle progression [20]. Recently, a link

emerged between SnRK1 and the differential growth

that establishes the boundaries between the meristem

and emerging organs [21]: overexpression of the catalytic

subunit of SnORK1 (AtKIN10) caused organ fusions [22]

and AtKIN10 directly interacted with the transcription

factor PETAL LOSS, which controls organ boundary

development [23].

When nutrients are not limiting, overall meristem activity

is high, but the growth rate of neighboring cells within the

meristem and developing organs is surprisingly variable

[5��,24��]. Detailed analysis in developing sepals sug-

gested that growth curves are similar in neighboring cells,

but shifted and scaled by size [25]. This local heterogeneity

of growth rates is affected by microtubule dynamics, which

probably mediates cellular responses to the mechanical

stress that builds up during tissue growth [24��]. Presum-

ably the response of individual cells to local stress leads to

variable growth rates through changes in cell wall extensi-

bility [9,26,27]. However, it remains unknown whether

vacuolar function and turgor pressure might also be locally

regulated and whether different rates of cell enlargement

are accompanied by variation in biosynthetic rates.

Over time, variable cellular growth rates combined with

the imprecision of cell divisions [5��,28] would be
Current Opinion in Plant Biology 2016, 34:54–60
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expected to increase variability in cell sizes, but meristem

cell sizes remain uniform for extended periods. In yeast

and in at least some animal cell types, uniform cell sizes

are maintained by checkpoints that link cycle progression

to growth [1,3,4,29]. Computer simulations and recovery

from perturbation of cell sizes suggested that a feedback

between cell size and cell cycle progression also operates

in the shoot meristem [5��]. This raises the question of

why uniform cell sizes should matter. In unicellular

organisms, the reasons proposed relate to cell physiology,

which is affected by the ratio between cell volume and

surface [4,30]. In the meristem, an additional function

could be to achieve the spatial resolution required to

pattern structures at a scale comparable to cell sizes, such

as organ boundaries [5��].

As in animals, it remains unclear how plant cells could

assess their size and feed back the information on cell

cycle progression (Figure 2). It will be important to

determine what aspect of size (e.g. cell volume, cyto-

plasmic volume or cell surface area [29]) best correlates

with cell cycle progression. A potential molecular mech-

anism is illustrated by recent work in budding yeast, with

dilution of a cell cycle inhibitor whose synthesis rate does

not scale with cell volume [31��]. In the unicellular alga

Chlamydomonas, cell growth in the light is followed by

multiple rounds of rapid division in the light, restoring the

initial cell size; in this case, accumulation of a variant

cyclin-dependent kinase during light growth determined

the subsequent number of divisions and consequently the

final cell size [32��].

In contrast to the meristem, differentiating organs show a

wide range of cell sizes and shapes, suggesting that the

mechanisms that link cell growth to cell cycle are devel-

opmentally regulated. Accordingly, the coordination be-

tween cell size and S-phase entry changes at the transition

from meristem to organ identity [33], and cell sizes

diverge in developing sepals due to variability in cell

cycle length and in the switch to endocycles [34]. The

shift to endocycles is caused by selective inhibition of

mitosis, while allowing repeated re-entry into S-phase;

the consequent increase in cell ploidy is believed to

increase the physiologically sustainable cell size [35].

Consistent with this permissive role of endoreduplication,

the transition to endocycles precedes cell enlargement in

the root meristem [36]. However, like the coupling be-

tween the mitotic cycle and cell size, the relation between

endocycles and cell size appears to be developmentally

regulated and dependent on cell type [37].

Coordination between oriented growth and
division
Morphogenesis depends not only by on the rates, but also

the directions of growth [38]. Directional cell growth is

influenced by the deposition of cellulose microfibrils,

which increase tensile strength in the direction along
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which they are laid down [7]. The deposition of cellulose

microfibrils is in turn guided by the orientation of cortical

microtubules, which serve as tracks for the cellulose

synthase complexes that produce the microfibrils [39].

In addition to the established role of cellulose microfi-

brils, a novel mechanism that controls oriented cell

growth has been revealed: targeted vesicle traffic to the

edges of cell walls (i.e. to the intersection of wall facets)

was required for anisotropic growth in root and leaf

primordia, suggesting that edges have a special role in

cell wall mechanics [40��]. Like the pattern of microfibril

deposition, this targeted secretion depended on microtu-

bule arrays, although in this case the actin cytoskeleton

was also involved [40��] (Figure 3).

The dynamic and self-organizing properties of microtu-

bule arrays make them, and consequently the direction of

cell growth, highly sensitive to external inputs. One of

these external influences is mechanical stress, which

results in part from the growth of connected cells within

the tissues [9,26,27], and recent work has shown how cells

integrate mechanical stress conditioned by their own

shape [41�]. Mechanical stress also influences oriented

growth by altering auxin transport independently of the

microtubule arrays [26,42]. Auxin accumulation, which

can result from altered transport, disrupts microtubule

arrays to promote isotropic cell growth during primordium

emergence [43��]. The emerging picture is that multiple

feedback loops coordinate cell wall mechanics, microtu-

bule dynamics and auxin transport and to regulate orient-

ed growth of cells and tissues.

Cell cycle is connected to oriented growth through the

placement of cell division planes. It is generally accepted

that in the absence of external cues, plant cells divide by

default along the smallest possible plane that produces

equally-sized daughter cells [28,44]. In practice, however,

individual cells often deviate from this general rule. To

describe and simulate realistic cell division patterns,

statistical image analysis has been combined with models

including a stochastic component [28,44,45]. This sto-

chastic component may reflect the underlying molecular

mechanism. It has been proposed that the cell division

plane is determined by tensile microtubule strands that

radiate from the nucleus and are stabilized on the shortest

path to the cell walls [46], and microtubule dynamics may

explain how alternative division planes may be selected,

corresponding to local minimal areas [44]. The involve-

ment of microtubule arrays both in responses to mechan-

ical stress and in connecting cell division plane to cell

geometry suggests that both processes converge compet-

itively on the regulation of microtubule dynamics [47].

The geometrical and biophysical rules mentioned above

are considered to operate by default during proliferative

growth, but they can be overridden by chemical signaling.

This is observed most clearly in asymmetric, formative
www.sciencedirect.com
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Overview of cellular processes required for oriented cell growth and division. Blue arrows correspond to inputs that affect oriented cell behavior;

numbers in brackets correspond to relevant recent papers.
cell divisions, which give rise to different cell types.

During early embryogenesis, numerous divisions do not

follow the default geometric rules described above for

proliferative growth. These asymmetric divisions require

auxin signaling and correlate with the acquisition of

different cell fates [48��]. Presumably auxin re-orients

cell division by altering the dynamics of microtubule

arrays as discussed above, but the molecular details

remain unknown.

By changing cell connectivity, intercellular communica-

tion and cell fate, asymmetric divisions are expected to

have major effects on subsequent development, as shown

by recent work on vascular patterning in the growing

embryo, in which an auxin-induced source of cytokinin

induces periclinal cell divisions in neighboring cells to

create vascular progenitors [49�]. This work also sug-

gested that correct patterning depends on the initial cell

geometry, which originated from a symmetry-breaking

division very early in embryogenesis.

What remains unclear, however, is to what extent orient-

ed divisions impact on the mechanics of tissue growth. A

causative role for oriented divisions has been suggested

based on periclinal divisions seen in subepidermal cells

before the outgrowth of leaf primordia [50,51]. On the

other hand, classic work on the maize tangled-1 mutant, in

which the orientation of cell divisions is disrupted,
www.sciencedirect.com 
showed relatively modest effects on leaf size and shape

[52]. More recent work on the development of pitcher

leaves in the carnivorous plant Sarracenia purpurea has

suggested that changes in the orientation of cell division

in subepidermal layers cause differences in primordium

growth that initiate the formation of the pitcher [53]. It

remains difficult, however, to exclude that oriented divi-

sions are a response to mechanical stress within the

tissues, which could result from regulation of growth

through cell wall mechanics.

New walls are expected to bear load and alter the distri-

bution of mechanical stress, at least locally. Although it

has been considered that the placement of new walls has

little effect on overall tissue mechanics, simulations have

shown that the rules to orient new cell divisions do affect

the local variability of growth and the overall tissue

growth [6,47]. The placement of cell walls also deter-

mines the overall shape of daughter cells, and mechanical

models have shown how the shape of individual cells can

influence patterns of tissue growth [54]. The cumulative

effect that a regulated pattern of cell divisions can have on

tissue growth remains unclear and is an important topic

for future work.

Conclusions and perspectives
The details of how different growth processes interact

within and across cells is important are important for our
Current Opinion in Plant Biology 2016, 34:54–60
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understanding of how the size and shape of plant organs

are genetically determined. An extreme view, articulated

by Kaplan in the 1990s, is that subdivision of organs into

cells provides physiological support, allows cell speciali-

zation and may have mechanical consequences, but rates

and orientations of tissue growth are controlled chiefly by

supra-cellular cues [55]. Many current models of plant

morphogenesis embrace a similar view, partly due to the

difficulties of implementing spatial models of organ

growth with cellular resolution [6]. The work reviewed

here emphasizes growth as a process of negotiation within

and between cells, in which internal coordination of

metabolism, cell wall functions and cell cycle progression

are integrated with mechanical and chemical signals

operating across tissues. The outcome of this intracellular

integration, in turn, feeds back on the directions and rates

of tissue growth and on patterning. Quantitative imaging

of cell behavior combined with computational models

that specify the properties and interactions of individual

cells [56�] will be key for future progress in this area.
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