JOURNAL OF DIFFERENTIAL EQUATIONS 13, 32-47 (1973)

Periodic Boundary Value Problems for
Systems of Second Order Differential Equations

J. W. BEBERNES

Department of Mathematics, University of Colorado, Boulder, Colorado 80302, and
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

AND

K. ScaMmrrt*

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Received November 22, 1971

1. InTRODUCTION

Let I denote the compact interval [0, 1], R* k-dimensional Euclidean
space with Euclidean norm |} - ||, and let f: 7 X D CI X R? — R" be con-
tinuous. In this paper, we consider the existence of periodic solutions for the
system of second order equations

& = f@t, % x), (= djdi). (L.1)

A solution x(2) of (1.1) is called 1-periodic (or periodic, since the period will be
fixed throughout) in case

x2(0) = x(1), x¥'(0) = x'(1). (1.2)
More generally, if G: I x D CI x R* —R?* is continuous, a solution y(z) of

¥y =G y) (1.3)

is periodic if y(0) = y(1). In either case, a periodic solution in this sense may
be extended so as to be a periodic solution in the usual sense in case the
right side of the equation in either (1.1) or (1.3) is a 1-periodic function of #
in the usual sense.

* Research of second author supported by U. S. Army Contract ARO-D-37-124-
71-G146.
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We establish essentially three different classes of results concerning the
existence of periodic solutions for (1.1) utilizing a method based on a slight
generalization (Theorem 2.1) of a result of Krasnosel’skii [6] together with
a variation of the Borsuk-Antipodensatz (Theorem 2.3).

The method can be described as follows. Define a modification F of f
which is bounded and continuous on I X R®*® and agrees with fon I X D.
Apply Theorems 2.1 and 2.3 to the system

8" = F(t, x, %) (1.4)

to show that {1.4) has a periodic solution x(f) by observing that the degree of
a certain natural mapping associated with (1.4) is nonzero. In addition, there
are conditions imposed on f which imply that (x(2), #'(2)) € D for all £ & {0, 1]
and hence x(t) is a periodic solution of (1.1).

This approach has several advantages. The key theorems (of Section 2}
are proven using only basic ideas from the theory of ordinary differential
equations and degree theory. These basic results are in turn easy to apply to
the problems considered and permit us to give a unified approach to several
classes of problems, previously studied by Knobloch [4, 5], Mawhin [7],
and Schmitt [§, 9]. With our approach we are able to obtain the results of
[5] and [7] and several generalizations more directly, since we do not have to
employ the functional analytic method of Cesari [1]. Further, we are able
to show that the results in [9] remain valid without assuming one of the major
hypotheses in [9].

2. A GeNERAL PRINCIPLE

Let I denote the compact interval [0, 1], R the real line and R™ Euclidean
m-space. Let £ be a nonempty bounded open set inR™and let g: I X R™—»R™
be a continuous function having the following properties:

(@) 20,9 =y,

(b) &,y =,

(c) for every 2, g(t, - ) is one—one,

(d) for every y, € 082 the function y,(¢) defined by

Yo(#) = &, 3o)
has the property that y,(¢) is differentiable at =0 and
810, ¥o) = (d]dt) yo(t)ls—o

is a continuous function of y, , y, € 82.
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DeriniTioN 1. For y,e, {g(t, »)l0 <t <1} is called the set of
recurrence points of y, with respect to the function g.
Let G: I x R™ —R™ be continuous and consider the differential equation

¥y =06y, 0<:<1 (2.1)

The following theorem, which is a generalization of a result of Kras-
nosel’skii [6, Theorem 6.1, p. 81] is the general principle which we shall
employ throughout this paper.

Tueorem 2.1. Assume that every solution of (2.1) emanating from 0
exists on [0, 1] and that for every y, e 02, every solution y(t) of (2.1) with
W0) =1y, is such that y(t) # g(t, ¥,) == yo(t), 0 <<t < 1 (ie., 82 consists
of nonrecurrence points only). Then there exists a 1-periodic solution of (2.1),
whenever

deg(—G(0, ) + £40, ), 2, 0) # 0.

Remark. Theorem 2.1 implicitly assumes that the function T'(y,) =
—~G(0, ¥,) + 240, ¥,) does not vanish on &2 in order that the topological
degree deg(T'(y,), £2, 0) with respect to 2 and 0 € R™ be defined.

Proof of Theorem 2.1. We first prove the theorem under the additional
assumption that for every y, € {2 there exists a unique solution y(#) of (2.1)
such that ¥(0) = v,; this solution will be denoted by (¢, ¥,). We next define
the vector field U(¢, ¥,) on 2 by

Ult, yo) = &(t, y0) — ¥(2, %)
= yy(t) — ¥(t, ¥,)-

Since g(1, ¥,) = ¥, , we shall have demonstrated the existence of a periodic
solution once we have shown that the vector field U(1, ¥,) has a zero in £.
By hypothesis, U(#, y,) 7 0 when £ > 0 and y, € 9£2. Hence,

deg((1/) U1, 3,), £2, 0)

is defined. Further, our continuity and uniqueness assumptions imply that
the vector fields (1/8)U(2, ¥,) and (1/5)U(s, 3,), 0 << s <C 1 are homotopic
which implies

deg((1/8)U(t, ,), 2, 0) = constant.

Letting t — 0, , we find that

lim (1/2) U(t, 35) = —G(0, o) + £:0, %)
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and therefore that

deg(U(1, 3,), £, 0) = deg((1/))U(, 3o), £2, 0)
= deg(—G(0, yo) + £40, ¥), £2, 0) # 0.

This in turn implies the existence of at least one zero of U(1, y,) in £2.

To prove the general case, we use an approximation procedure, i.e., we
approximate G by a sequence of locally Lipschitz continuous functions
which have the same properties as G, apply what has just been said to each
of the approximations, and then complete the proof by means of a limiting
argument. The reader will find that a slight modification of the arguments on
pp. 81-83 of [6] will accomplish what has been described above.

In the first set of applications of Theorem 2.1, we make use of the special
case where g(¢, ¥) = y. We state this special case as

CororLaARY 2.2 (Krasnosel'skii). Assume that solutions of (2.1) exist on
[0, 1] and that for every y, € 02 every solution y(t) of (2.1) with y(0) ==y, is
such that y(t) 5= vy, 0 <t < 1. Then there exists a 1-periodic solution of (2.1)
whenever deg{—G(0, y,), 2, 0) £ 0.

Together with either Theorem 2.1 or Corollary 2.2, we shall need the
following result which is a consequence of the Borsuk-Antipodensatz

6, p. 751.

DrrinitioN 2. Let £2 be a convex bounded open set in R™, The (fixed
point free) involution S of 82 determined by 2 € 2 is the mapping on o£2
onto 982 which maps each y & 8Q2 onto Sy by projecting y along the line joining
y and 2.

TurorEM 2.3. Let 8 be a convex bounded open set in R™, let h: L—>Rmbe
continuous and such that h(y) 5 0 for all y € 08, and let S be the fixed point
Sree involution of 0 determined by = € Q2. If h(y) and k(Sy) do not have the same
direction for all v € 08, then

deg(h(y), £, 0) # 0.

Proof of Theorem 2.3. Without loss of generality we may assume that
the point 2 = 0 e R™, Let B = {y] || ¥ || < a}, where ais chosen small enough
so that B C 2. We now retract £ onto B along rays through z = 0. This
homeomorphism is denoted by H: 2 — B.

Let r € 0B and let y == HY(r); then it is clear from the definition of S that
Sy = HY(—r). Hence, the involution S induces the antipodal map on 8B.
Let k: 0B — R™ be defined by & == ko HL, Then k(r) = h(y) and &(—r) =
h(Sy), where y = H-Y(r). Thus k(r) and 2(—7) do not have the same direction
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and, furthermore, &(r) 5 0 on éB. It follows from Theorem 5.13, p. 75, of
[6] that

deg(k, B, 0) # 0.

Using the product theorem of degree theory (see, e.g., [3, Theorem 7, p. 244])
we conclude that deg(h, £, 0) # 0.

3. SoME EXISTENCE THEOREMS

In this section we show how Corollary 2.2 and Theorem 2.3 can be used to
establish the existence of a periodic solution of the second order system

x” = f(t, %, x) 3.1

by imposing various assumptions on f. Our first theorem of this section is a
generalization of Theorem 1 of Knobloch [5] and of Theorem 3.1 of Schmitt
[9]. We first establish a lemma.

Lemma 3.1. If f(2, %, &) is a continuous vector function on

D ={{ x «)tel,||x] <R e R%

and if
@ x-f+|F=0 i x-o=0]xl=R, (3.2)
(®) 171l < el 1) (3.3)

where @ is a positive continuous function on [0, 0o) with [y (s/p(s)) ds = oo for all
(¢, %, x') € D,
(c) there exist o >0, K > O such that

I <20(x-f+ (4" IF)+ K forall (¢ 4)eD,  (34)

then there exists a continuous bounded function F:1 X R® X R* > R"® with

Ft, v, ) =f(t, », &) on E={¢tx«)tel|x] <R || <M}

satisfying
x F+«2>0 for x-& =0« >R, (3.5)
1FII<ellal) forall (4 «)eD, (3.6)

|F|| < 2ux F+||&®) K forall (t,%x)eD, (3.7)

and
x-F>0 Jor llx|=R+1,tel, & R (3.8)
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Proof of Lemma 3.1. Define F:I X R* X R*—>R" by
F(g, %, &) = Sl &' [) f(& %, &), {2l <R
and
F(t, x, &) = Sx(ll x ) F (&, Rufl| x ||, &) + (1 — S(l 2 [D)]l] [}

where 8,(s) is a continuous function on [0, 00) with 8(s) =1 on 0 s ¢
and 8{s) =O0fors >t 4 1.

1t is straightforward to verify that F is a continuous bounded function on
I x R* x R® with F(2, x, ') = f{3, », ') on E satisfying (3.5)-(3.8).

TreoREM 3.2. Let f(¢, x, &) be continuous on D and satisfy (3.2)-(3.4),
then (3.1) has a periodic solution x(t) with || x(t)] < R.

Proof of Theorem 3.2. By (3.3) and (3.4) [2, Lemma 5.2, p. 429], there
exists a4 positive constant M depending on o, K, ; and R such that if #(f) is a
solution of (3.1) with {[x(#)}] << R on [0, 1], then || ()} << M on [0, 1].

Consider

" =F(t, x, &), (3.9

where F is a modification of f relative to R and M as defined in proof of
Lemma 3.1 which satisfies (3.5)—(3.8).

Let Sy ={x || <R+ 1}, Sy ={"||&'| <M +2}, & =5 X S,
y = (x, "), G, ) = (Gy(¢, %, &), Gy, », &')) = (', F(t, x, %)) and con-
sider

y' =G, y), (3.10)

the first-order system equivalent to (3.9).

We will apply Corollary 2.2 to (3.10) to prove that (3.10) has a periodic
solution ¥{t) on [0, 1]. It suffices for this to show that (i) all solutions of initial
value problems for (3.10) exist on [0, 1], (ii) every solution y(£) of (3.10)
with y(0) = y,€ 8% is not in the set of recurrence points with respect to
£(t,3) = %o , and (i) deg(—G(0, %), £2, 0) # 0.

Since F(t, x, ') is continuous and bounded on [0, 1] X R* X R?, it follows
that G(z,3) is continuous on [0, 1] X R?", that | G(t, y)| <!y || + B, and
hence that solutions of initial value problems for (3.10) exist on [0, 1]. Thus,
(i) is satisfied.

No solution #(2) == (x(z), x'(z)) of (3.10) with ¥(0) = y, € 82 is in the set of
recurrence points with respect to g(t, ¥p) =3,. For if y,€8Q, then
Vo = (%, %g') €Sy X Sy0r v, = (%5, %) €5y X 8S,. Let(x,, %) €05, X S
and assume y(f) = (%(2), #'(¢)) is a solution of (3.10) with (x(0), #'(0)) =
(%0, %) which is in the set of recurrence points for (3.10) relative to (%, , %)
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for some # € (0, 1]. Since x(0) = x(#,) and x'(0) = &'(#y), w(t) = || x(2)|]2
has a maximum at £, € [0, ;] with u(s) > (R + 1) #'(¢,) = 0, and
and #”(f,) << 0. But then

w'(ty) = (x(ty) * ¥'(8))" = x(t5)  F 2y, 2(8a), #'(2)) + | €' (%)* > O

by (3.5) which is impossible. Let y, = (%, , %,") € S; X &S, , then by the
definition of F, any solution y(¢) = (x(2), £'(¢)) of (3.10) with (x(0), x'(0)) =
(%9 , %) satisfies x”(t) = O for all ¢ in a right neighborhood of 0 as long as
|2'(#)]| > M + 1 and || #(2)]| << R. This clearly implies that y(2) = (x(2), 2'(2))
is not in the set of recurrence points with respect to (%, , %)) € S; X 0S5, .
If || %(2)}l > R for some ¢, then, by an argument similar to the one at the
beginning of this paragraph, condition (3.5) prevents y(t) from being in the
set of recurrence points.

Define k: 2 — R2" by k(y) = —G(0, y) = (—«', —F(0, x, x')). Then & is
continuous on £2 and is nondegenerate on &52. For certainly k(y) # 0, when-
ever & % 0. If ¥ =0, then A(y) = 0 implies —F(0, », 0) = 0 with
|lx]] = R -+ 1. But by definition of the modification F, F(0, x, 0) = /|| 2 || £ 0
for| x| = R -+ 1. Hence, &(y) + 0 for all y € 012 and deg(k, £2, 0) is defined.

By Theorem 2.3, we know that deg(%, £2, 0) = 0 provided k(y) and &(Sy)
do not have the same direction for any y € 082, where S is the involution of
02 determined by 0 € £2. Note that the involution is Sy = —y. Itis immediate
that k(y) and k(—y) have different directions for all 2 € 8Q2 with & 5% 0.
Ifx’ = 0, then x - F(0, x, 0) > Oand —& - F(0, —x, 0) > Ofor||x||=R + 1
by (3.8) which means that k(y) and k(—y) have different directions for
v € 82 with »" = 0. In all cases, we have that k(y) and k(—y) have different
directions. Thus, deg(k, £, 0) £ 0.

By Corollary 2.2, (3.10) has a periodic solution y(z) on [0, 1] with ¥(0) € 2.
Hence, there is a solution x(£) of (3.9) with (x(0), ¥'(0)) = (x(1), ¥'(1)) € L.

But (3.5) implies that |[x(f)| <R on [0,1], and (3.6), (3.7) imply
| ()l < M on [0, 1]. This means that (¢, #(¢), '(f)) € E on [0, 1] and, since
F(z, x, &) = f(t, x, ') on E, x(t) is a periodic solution of (3.1).

Remark. Theorem 3.2 is a generalization of Knobloch’s Theorem 1
[5], p. 68] since there it is assumed that f satisfies a local Lipschitz condition
with respect to x and x'. Our theorem also follows from Knobloch’s Theorem 2
[5, p. 75] by taking r = || x ||? — R?; however, as emphasized in the introduc-
tion, we believe that our approach is somewhat simpler. It generalizes
Theorem 3.1 of Schmitt [9] in that a weaker Nagumo condition is imposed
and po assumption concerning uniqueness of boundary value problems is
needed.

InR" letx << yifand only if »; <Cy;, 1 <7 <, and » <y if and only if
x<_’y¢,1<z<n Also, let [4, B]__{xER" A<x, B;.
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Turorem 3.3.  Assume there exist A, Byp, pe R with 4 < B, p <0 <4
such that f is continuous on [0, 1] X [4, B] X [p, {] and satisfies

7 ’ 7 7
i, 30y yeny Ry s Ai s Bigg seves B s By peves Kig 5 Oy Bipq ey %)
Y ’ ’ ¢ 7
<O < filE, 2 yeees sy s Bis Bigg soons Fnys Fr'seees Fig » Oy Koy oenr 85)

(3.11)
forall 4; < x; < B;,j #i,and all ¥’ e {y eR* | y; = 0} for each i = 1,..., n;

Fll ® 8 s Big s gy Kipg yoes By} a0 [ty %, By ey Xy i s Koy seees )

(3.12)

are nonzero for all 1€[0,1], 4 <x < B, and all ¢; </ <3y, j #1,
i=l..,n

Then there exists a periodic solution x(1) of (3.1) with A < x() < B and
<) LHon]0, 1]

Proof of Theorem 3.3. We proceed by defining a modification H of f in
such a way that the differential system defined by H has a periodic solution by
Corollary 2.2 and Theorem 2.3. We then show that this solution Is actually
a solution of (3.1).

Define a modification of f as follows. For each i = 1,..., n, let

B
1, x,x)+1+ %, > B;,
Hx(@, %, &) = ({fi{t, % &), A; L x; < By,
fi(t, % &) + +4 x; < A,

where & = (& ,..., %,) is defined by

Bj, 3C'5>B§,
Xy = {x, 4; <% < By,
A4;, x; < Ay,

and x’ € R™. Then define for each ¢
Hi*(t> X, 55!): xi, > 3&1' 3

Hyft, x, ') = {H¥{t x5, o <x <y,
Hz‘*(t’ %, 55’)’ X < @iy
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where ' = (%,',..., %,’) is given by

bis % >y,
& = {xj, P <X < Yy,
@i > % < @5,
and £€0, 1], xeR™.

The vector function H = (H,,..., H,) so defined is continuous and
bounded on [0, 1] x R”? x R". Consider

" = H(t, %, x') (3.13)
and its equivalent first-~order 2n-dimensional formulation
¥y = G(t, ), (3.14)

where y = (x, x'), G(2, ) = (Gy(t, ), Got, ) = (', H(t, x, £)).
As in Theorem 3.1, we shall apply Corollary 2.2 to (3.14) on

Q = int{[4, B] X [g, 4]}

Again all solutions of initial value problems for (3.14) exist on [0, 1]. It remains
only to show that no solution y(z) of (3.14) with y(0) = ¥, € 02 is in the set of
recurrence points with respect to g(¢, ) = y and that deg(-G(0, y), 2, 0) 0.

Let y, € 02. Theny, = (%o, %y') € 2[4, B] X [p, ] oryoe[4, B] X oo, ].
If (x, ') € 2[4, B] X [p, ¥], then 4 < x < B with x; = A; or B, for some ¢
and ¢ < & < . To consider a specific case assume x; = B; and that thereis a
solution (x(¢), #'(t)) of (3.13) with (x(0), x'(0)) = (»; »’) and (x(t,), ¥'(,)) =
(», «') for some #, € (0, 1]. This means, using (3.11), that there is an interval
[%, %] C[O0, ,] such that x,(s;) = B;,j=1,2, and x,() > B; on (¢, &,).
The difference ,(¢) — B; therefore assumes a positive maximum at some
point s € (¢, , ;) with x;/(s) = 0, &/(s) < 0. At s,

22(s) = Hils, ), '6))
- 1;(3, xl(s)""a xi—l(s)’ Bz ) xz'-i—l(s)"") xn(s)’ xll(s)v'-,
( ) B xi,l(s), 0» 'x;—fl(s)’"', xn,(s))
o =t XA\S) — Dy = =7
= zz-(s, x(s), #'(s)) + T+ GO — Jils, ®(s), ®'(5))
=>4,

which contradicts x,(t) — B; having a positive maximum at s.
If (x, x) €[4, B} X 0[p, ¢], then 4 <2 < B¢ <& <Y witha, =g 0rg;
for some 7. Assume ¥, = @, and that there is a solution y(¢) of (3.14) which
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is in the set of recurrence points of (%, x") with respect to g{Z, v) = y. Then
0) = (%, #") = {2y} for some £, (0, 1]. Since, by (3.12), H0, x, &') =
A0, x, &’} is nonzero, assume to be specific that H;(0, %, ") > 0. This implies
that &,() > ¢, for all # in some right neighborhood of 0 and this in turn
implies {since y(#) is in the recurrent set for (%, ¥} the existence of a %,
0 <t < tysuch that x,/(f) = @, and 2,/()) > g, on {0, ). A L ) < B
on [0, 4], then HyZ, x(2), ¥' (1)) 30 on the ¢, face of &[4, B] X [g, ¥])
for all &[0, 1] which contradicts (3.12). If x{¢) ¢ [4, B] for all {0, ],
then x,(2) ¢ [4;, B;] for some j and for all ¢ in some subinterval of [0, 4]
But by the definition of H, this too is impossible. We have thus shown that
no solution y(2) of (3.14) is the set of recurrence points for any y, € 802

Define k: Q>R by k(y) = —G(0,y) = (—', —H(0, x,%)). % is
continuous on {2 and nondegenerate on 82 so deg(k, 2, 0) is defined.

The degree, deg(k, 2, 0), is nonzero provided k(y) and A{Sy) do not have
the same direction for any y € 82 where .S is the involution of 82 determined
by (A -+ B), e +4) Q. It is clear that 2 and k¢ .S have different
directions for all (x, #') € 82 with &" 5% 0. If " = 0, then (3.11) implies that
k and k o S have different directions.

By Corollary 2.2, (3.13) has a periodic solution x(2) on [0, 1] with

(#(0), #'(0)) = (x(1), ¥ (1)) e [4, B] x [o, #].

But 4 <C x(t) < B on [0, 1] by construction of H (using an argument iden-
tical to the one given showing that no solution is in the set of recurrence
points for any (x, 2"} € 8[4, B] X [g, #]). But then (3,12) implies x'(2) € [p, ¥]
on [0, 1]. Hence, #(2) is a periodic solution of (3.1) on [0, 1] with 4 < x() < B.

By using an approximation argument, Theorem 3.3 can be improved.
We state such an improvement and outline a proof.

Tueorem 3.4.  Assume the conditions of the previous theorem permitting
A < B and replacing (3.11) by

il 2y ey Xag s Ay s Ry yeees By 3 % 500y Xig 5 0, &g ey )
KO KL, By yeees Byg s By Kigy yeens Xy s By seeey X3q5 0y Xig yees %)
forall A; < x; < By, f+4, and X e{veR|y, =0 (3.15)

Then there is a periodic solution x(t) of (3.1) with A < x(t) < B on [0, 1.

Proof of Theorem 3.4. Define the modification H of f exactly as in
Theorem 3.3. Since, by (3.12), each f; is nonzero on the ¢, and -faces of
{4, Bl xlp, 4l forall 1[0, 1], 4 <2 < B, ¢; <&/ <<y, 7 54, there is
an ¢, > such that for each ¢ = 1., n, fi(t, ®, % see, X3, Pi s Fpgq seees ¥n)
and  f{f, %, 0 5, %55, P2, Xy e %) are nonzero for all ze[0, 1}
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A — e < x < B+ e where e = (1,..., ) eR? and o¢; << ) <oy, 7 414
Hence, there is an ¢, , 0 < ¢, < ¢;, such that

’ ’ ’ r
Hyt, %, %) ey %535 @5y Kigg seeer %)

and Hy(t, %, %, ,..., %,y , s, %44 ,..., ¥,") are nonzero for all ze]0, 1],
A—ege<x< B+ ¢, andp; <& <¢y,7 %4~ 1,...,n.

Define oo = A4 — e and B = B + ¢e, then for each i =1, 2,..., n,
Hi(t, ®psee ®igs Gy Xiggpeeny Xy Xy X g, 0, Xy, ®,)) =
Sty Byyees Figy Apy Bpggees Fpy 8 sy Xjy, 0, X, %)) —
[er/1 4 (A; — )] < O < Hy(t, #y yoeey X315 Biy Rirg yony By ¥y peesy 54, 0,
Hipq reeey %y ) forall £ €0, 1], oy < 2; < By, 7 # 4, and all x” e { eR"* | y, = 0}.

Let 2 = [o, 8] X [, #]. The argument proceeds as in Theorem 3.3 to get
a periodic solution #(¢) of (3.13) on [0, 1] with (x(z), '(z)) € 2 for all z € [0, 1].

If x(¢) is a periodic solution of (3.13) then 4 < x(¢f) <C B. Forif x(¢) ¢ [4, B],
then assume x(Z,) << B for some ¢, € [0, 1] which implies x,(¢,) > B; for some
1. Then x; — B, has a positive maximum at some * € [0, 1] with x,/(z*) = 0,
x7(t*) < 0. But the definition of H and (3.15) imply that x/(z*) > 0.

Hence, (%(t), #'(£)) €[4, B] X [p,¥] and x(f) is a periodic solution of
(3.1) on [0, 1].

The proof of the next theorem is analogous to the proofs of Theorems 3.2
and 3.3.

THEOREM 3.5. Assume there exist A, BeR" with A < B such that f is
continuous on [0, 1] X [4, B] X R” and satisfies (3.15) and a Nagumo condition
given by

IFIF << (| & ||) where @ is a positive nondecreasing
continuous function on [0, o) with [§ sjp(s) ds = +co  (3.3)
Jor all (¢, 2, 2')€[0,1] X [4, B] X R", and

there exist o. = 0, k = 0 such that
<2 - f+ (&P + K (3.4)
for all (¢, x, £') [0, 1] X [4, B] x R~

Then there exists a periodic solution x(t) of (3.1) with A < x(t) < Bon [0, 1].

Remark. 'We observe that Theorem 3.3 may also be proved by applying
Theorem 3.5 to f(t, x, ¥'), where &' is defined as in the proof of Theorem 3.3.
The conditions of Theorems 3.4 and 3.5 may be considered so as to yield
still more general results. For example, consider system (3.1) where
F=HrNFIxR»>RE f*: 1 X R —R*"¥ k <n, and assume that
either (3.11) or (3.15) ate satisfied. In addition, assume that f; satisfies (3.12)
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for i = 1,..., k uniformly with respect to the variables (x4 ,..., ¥,") whereas
F* satisfies (3.3) and (3.4') with &" replaced by (7,4 ..., #,") but uniformly
with respect to (x;,..., x;'). It then follows from the proofs of the preceding
theorems that (3.1) will have a periodic solution. Using these ideas we may
obtain as a corollary to Theorems 3.4 and 3.5 a generalization of Theorem 2
of Mawhin [7] for the system

ny = xzfz(t) X, x,) + gz(ta X, xl)) 1= 1;"') n. (3‘16)

CoroLLArY 3.6. For i =1,...,n, let f,,g;,: I X R¥*» R be continuous
and let the following conditions be satisfied:

@ fi=0

(i) there exists a constant C; such that |g[t, x, v)| < C,f{t %, %)
for all (ta % _')’), Yi = 0,

(i) [gdt, %, y){ >0 and [t % )/ gt, %, 9)| >0 as [y;|—c0
uniformly on compact (i, x) sets and uniformly with respect fo v;,j %1,
i=1,.,m,0 <ny, <n,

() (St oD [F—>0, [gdts 2 MY F~>0, i =m+ L., m,
as | y"}| - co uniformly on compact (1, x,y")-sets where ¥' == (¥q ., ¥u)s
Y= (yn0+1 yeers V)

Then (3.16) has a periodic solution x(t) such that | x,(t)} < C;.

Proof of Corollary 3.6. Conditions (i) and (ii) imply that condition (3.15)
of Theorem 3.4 is satisfied with B = (C} ,..., C;) and 4 = —B. On the other
hand, (iii) implies that for f; , 1 <{ 7 <n,, there exist constants g, , ¢; so that
condition (3.12) is satisfied. Condition (iv) implies that f* = ( Fagi seees Iu)
satisfies (3.3') and (3.4'). By the remark above, we obtain the desired con-
clusion.

Remark. Corollary 3.6 is more general than Theorem 2 of [7] in that f;
need not be strictly positive. This allows us to further generalize a result of
Corduneanu [7, p. 528] for the system

= f(t, %). (3.17)

CororLarY 3.7. Let f:I X R"—>R"™ be continuous and let of;[dx; be
continuous and nonnegative. Further assume that

‘fi(t’ X, sners Xy s 0> Xig1 seees xn)! < Ci(a.fz'/a’xi)(t: x)’

where C; is a positive constant. Then there exists a periodic solution x{f) of
(3.17) with | x,(t)] < C;.
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Proof of Corollary 3.71. Write (3.17) as

1 a )

7 k2
x] = x, f P (2y g yoeny Byg 5 SKj 3 Biyy yeesy %) dS

0 X;

A S %y ey %y, 0, Xppq ey Xy) (3.18)
and. then apply the previous corollary.

Remark. Theorem 3.5 may also be obtained from Knobloch’s Theorem 3
[5, p. 79] by taking the functions p(¢, x) of the form 4, — x;, x, — B;,
i=1,..,n, N = 2n. A similar remark applies to Theorem 4.1.

4, ANoTHER EXISTENCE THEOREM

In this section, we present an application of Theorems 2.1 and 2.3 in the
case where the function g(¢, ¥) of Theorem 2.1 is not necessarily the identity
map for each t. The result obtained here is essentially a generalization of
Theorems 4.2 and 4.3 of Schmitt [9]; in fact, we show that Theorems 4.2 and
4.3 of [9] remain valid without the uniqueness assumption on solutions of
certain two point boundary value problems which was made in [9] although
condition (4.2) of our Theorem 4.1 is somewhat more restrictive. In order
to avoid notational difficulties, we shall assume in this section that f is
independent of #'. T'his will shorten the proof somewhat; however, the result
remains valid if f depends on & provided we assume conditions concerning
the " dependence of f analogous to those in the previous section. It is clear
from the discussion in Section 3 how one must proceed to treat this more
general situation.

Counsider the n-dimensional second order system

x" = f(t, x). “4.1)
TreoREM 4.1.  Assume that «, B: 1-—R", ot) < B(2), are twice continu-
ously differentiable functions, that f is continuous on
{# ) 20, 1], oft) < 2 < B()},
and that
«(0) = «(1), B(0) = B(1), «/(0) = «'(1), B'(0) = B'(1), (4.2)

(X;;(t) >fz(t, x]_ yeeoy xi_l 5 ai(t), xi+1 yavey x,n),
and 4.3)

;,(t) <fz(t » X1 ooy Xpq s ﬁi(t), Kg41 3o xn)’
Jor oi(t) < x; < BE), jH£4 i=1,..,mn
Then (4.1) has a periodic solution x(t) with o(t) < x(t) < B(2) on [0, 1].
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Proof of Theorem 4.1. Let & = (%, ,..., &,), where

Bd®), x> Bi1),
o= {xy, oft) < x < BLD),
OCi(t), X; <C ai(t))

and define F(i, x) by
It ®) + (m;— B + 25, 2 > Bi0),

fz'(t: E): ai(t) L < Bi(t),
Fits ®) + (2 — (D)1 + 25, 2, < oyft),

Ft, x) =

for all 2 [0, 1], e R™
It follows from the definition of F and condition {4.3) that if x() is a periodic
solution of

¥ = F(t, x), (4.4)

then oft) < x(2) < B(2) on [0, 1] and hence that x(¢) is a periodic solution of
(4.1) (see proof of Theorem 3.4). Because of this reason, it suffices to consider
4.4).

Let ¢ >0 be given and let A(¢), B(¢) be defined by A(f) = oft) — e
B(t) = B(t) + ee, where e = (1,..., 1) €R”. Then, by (4.3), 4 and B satisfy

A:(t) > Fz(t, xl seeey Koy y Ai y Xiag seres xn), (4'5)
B:(t) < Fi(t, xl gesey xiﬁl N Bi ) x,—H yravy xn),

if Af) < < ByE),§ %14, i = 1,.., n.
Let x(t) be any solution of (4.4) with »(0) e [4(0), B(0)]. Then

x(£) = #(0) + #'(0) + (FLE; , #(EM(B2), 0 <& <t (4.6)
and therefore,
(@)l = 1| %" (O)lit — [| %(O)} — I} (Fol€s » %(EMN (£/2)- (4.7)

Since F is bounded, it follows from (4.7} and (4.6) and an elementary
indirect argument that there exists £, (0, 1] and a constant N == N{#;),
N= || A, | B'(®)|| such that x(z,) & [A(%,), B(t,)], whenever | x'(0)] = N
and x(¢) = x(0), 0 << t < #, . Furthermore, it follows from the definition of
F and (4.5) that if x(#) is a solution of (4.4) such that x(#;) & [4(%,), B(#)],
x(ty) & [A(ty), B(ty)] for some #,2%,,0<Ch 1,0t <t <1, then
x(8) & [A@), B(t)] forany t > ¢, .
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Let Ql == {(xz', xz") ] AZ(O) < X3 < Bi(O), —N < x@" < N} and
=0 xQ X x8,.Define g, : I X 02;,—~R2by

O4e) + (1 — ) Bt), £NV),
i, — AA,0) + (1 — 3 B(0)
n and x/ = +N
£t 50 %) = (), D) + (1 — ) €/, i 2= C0) D)
5 = W(EN) + (1 — ) CA0)
Cz‘ =4;,B;

and extend g; to [ X £; so that, for every (x;, x;') €£2;, g, is differentiable
with respect to # at # = 0, and so that this derivative is continuous on £2; .
This is easily accomplished by observing the definition of g; given in (4.8).
(We emphasize that in (4.8) six separate cases are notationally combined for
each z.)

Next define g: I X £ — R by

g(t) X x') = (&(t’ xl ’ xl’))"ﬂ gn(t! Xn 5 xn,))'

To show that the hypotheses of Theorem 2.1 are satisfied, let

y = (xl ’ xll,-", xn s xn,)

and

G(t, y) = (%, Fy(2, ), 25, Fot, %),ee0y 2, Foult, x)). (4.9)

It follows from the definition of g and the discussion preceding it that every
solution y(¢) of

¥y = G(,y) (4.10)

with y(0) = v, € 612 has the property that y(z) # g(z, ¥,), 0 < £ < 1, and that
¥(2) exists on [0, 1].

We next need to show that deg(—G(0, ¥) -+ 240, »), £, 0) is nonzero.
Let =, €2, be the point of intersection of the straight lines joining the
points (B(0), B/(0)), (40), 4/(0)) and (4(0), —N), (By(0), ), respectively,
and set 2 = (2 ,..., 2,). Let .S denote the involution of 82 defined by that
point.

It will be clear from what is to follow that k(y) = —G(0, y) + g0, ¥)
is nondegenerate on 862 and hence that deg(k(y), £2, 0) is defined. In turn,
we know by Theorem 2.3 that the degree is nonzero provided that, for every
y € 682, k(y) and k(Sy) do not have the same direction. If y € 8%, then there
exists 7, 1 < 7 <{n, such that y, € 82, . If we show that %,(y) is not zero and



PERIODIC BOUNDARY VALUE PROBLEMS 47

does not have the same direction as k,(Sy), the proof will be complete. Com-
puting k), we obtain

Bz’(O) — X3 ’ Xy — Ai(o)
B0)— 40) O T Bloy= a,0)

fx = LN, A0) <x <BO). (@11

k(y) = (£N + B{(0), —F{0, %))

i ’ ’ xi’ + N ”
k(y) = (Ci 0) -/, W C70) = F(0, 1 5.uy %51, Ci(0), %545500 xn)

if x; = Cy(0), —N < %/ < C/(0), C; = A4;0r B;. (412)

’ [ N~ xi, ”
k(y) = (Cz' (0) - =7, m CHO) ~Fy0, x4 5.0, %11, C0), ‘x'i-l-lr"',xn))

lf x,— == CZ(O)’ C,L,(O) < x,‘;' ~< N, C’b = Az or B,{ . (4.13)

The verification that k;(v) and %,(Sy) do not have the same direction now
follows from (4.11)-(4.13), (4.5), and the choice of N, This completes the
proof.
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