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Abstract

h-Out-of-k mutual exclusion is a generalization of the 1-mutual exclusion problem, where there
are k units of shared resources and each process requests h (16 h6 k) units at the same time.
Though k-arbiter has been shown to be a quorum-based solution to this problem, quorums in
k-arbiter are much larger than those in the 1-coterie for 1-mutual exclusion. Thus, the algorithm
based on k-arbiter needs many messages. This paper introduces the new notion that each request
uses di6erent quorums depending on the number of units of its request. Based on the notion,
this paper de8nes two (h; k)-arbiters for h-out-of-k mutual exclusion: a uniform (h; k)-arbiter
and a (k + 1)-cube (h; k)-arbiter. The quorums in each (h; k)-arbiter are not larger than the
ones in the corresponding k-arbiter; consequently, it is more e;cient to use (h; k)-arbiters than
the k-arbiters. A uniform (h; k)-arbiter is a generalization of the majority coterie for 1-mutual
exclusion. A (k + 1)-cube (h; k)-arbiter is a generalization of square grid coterie for 1-mutual
exclusion.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Mutual exclusion is a fundamental problem in distributed systems. When resources,
such as 8les, printers, and communication lines, are shared by multiple processes,
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they must be allocated so that each resource is not allocated to multiple processes at
the same time. Many algorithms for distributed systems have been proposed with a
view to solving this mutual exclusion problem [20,21]. The 8rst case to be considered
was one where there is one shared resource, i.e., a 1-mutual exclusion problem. More
recently considered was the case, where there are k units of an identical shared resource
[17], i.e., a k-mutual exclusion problem. Many algorithms for the k-mutual exclusion
problem have been reported [1–3,6–10,13,15–17,22,24].

In the k-mutual exclusion problem, each process can request one unit of the shared
resource at the same time. The h-out-of-k mutual exclusion approach allows every
process to request h (16h6k) units of the shared resource at the same time [18]. One
example of this type of mutual exclusion is the sharing of a communication bandwidth.
A communication line with a 8xed bandwidth k is shared by several processes. Each
process e6ects audio and video communication over the line. Because the bandwidths
necessary for audio and video communication di6er greatly, the required bandwidth
di6ers from request to request.

Another example is the power consumption of electric appliances. The total power
consumption in a room must be less than a 8xed number of units to avoid tripping the
circuit breaker or overheating the wire. If the appliances are connected to a network,
they may be able to keep their total power usage to less than k units at any time.
The power consumption of each electric appliance di6ers from request to request, for
example, an air conditioner’s power usage varies according to ambient temperature.

While the h-out-of-k mutual exclusion problem can be solved by using a k-mutual
exclusion algorithm and executing h requests when a process needs h units of the
shared resource, two problems arise. The 8rst problem is poor e;ciency. It would
be preferable for the requesting process to make one rather than multiple requests.
The second problem is potential deadlock. Assume that there are k units and two
processes, p1 and p2. Process p1 requests h1 units and process p2 requests h2 units,
but h1 + h2¿k. If process p1 can only obtain h′1(¡h1) units, process p2 can only
obtain h′2(¡h2) units, and h′1 +h′2 = k, a deadlock is created. An additional mechanism
is thus needed to avoid this deadlock in order to solve the h-out-of-k mutual exclusion
when using a k-mutual exclusion algorithm. Thus, this paper discusses obtaining h
units by making one request.

Distributed mutual exclusion algorithms can be classi8ed into three main groups:
broadcast-based algorithms, token-based algorithms, and quorum-based algorithms. In
outline a broadcast-based algorithm is as follows: A process that wants h units sends
a request to every other process. Each process that receives this request replies when
at most k − h units are currently used. By receiving a reply from every process, the
requesting process can use h units. The requesting process sends a release message
to every other process when it 8nishes using the shared resource. This algorithm uses
3(n− 1) messages.

In token-based algorithms, a permission is represented by a token. If a process has
a token, it can access the shared resource. Token-based algorithms generally perform
well with regard to the number of messages exchanged to obtain the shared resource.

In quorum-based algorithms, a permission is divided into pieces that are distributed
among the processes. Each process votes its piece to a requesting process. If a process
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can obtain enough pieces from the other processes to construct a permission, it can
access the shared resource. A set of processes whose pieces can construct a permission
is called a quorum. The concept of mutual exclusion by voting was introduced by
Gi6ord [5] and Thomas [23] and then generalized as coterie by Garcia-Molina and
Barbara [4].

Broadcast-based and token-based algorithms su6er from poor failure resiliency. In
contrast, quorum-based algorithms tolerate failures of nodes and network partitions.
For example, assume that the communication is asynchronous and process might fail
in accordance with the fail-stop model [19]. In token-based algorithms, if the current
token holder process fails, the other processes need to generate a new token. However,
it is impossible to distinguish a token holder’s fail-stop and a long delay in the messages
from the token holder. Thus, it is very hard to generate a new token without violating
the mutual exclusion property. In broadcast-based algorithms, the requesting process
cannot receive enough replies even if the number of fail-stop processes is one, because
the requesting process cannot distinguish between a fail-stop process and a long delay
in a message from the process. On the other hand, since each quorum is a subset
of processes, there can be a fault-free quorum. Thus, by sending a request to a set
of processes that is a superset of quorums, the requesting process can receive replies
from every process in a quorum even if a fail-stop occurs. The set of processes used
to send requests is determined by the set of quorums and f, which is the maximum
number of fail-stop processes. The details of the fault-tolerance procedure is beyond
the scope of this paper and the following discussion assumes that there is no failure
or the failure process is detected. We thus focused on using quorum-based algorithms
for the h-out-of-k mutual exclusion.

The k-arbiter has been shown to be a quorum-based distributed algorithm for the
h-out-of-k mutual exclusion [14]. However, each quorum is larger than that in a
1-coterie for the 1-mutual exclusion algorithm. We thus looked at reducing the size of
the quorums. The quorum-based distributed algorithm based on k-arbiter uses the same
quorum for any request. We propose a new quorum-based solution that uses an (h; k)-
arbiter. This (h; k)-arbiter is a quorum set for each h (16h6k), {Qh; k | 16h6k},
where Qh; k is a set of quorums. A process uses a quorum in Qh; k when it wants to
use h units of the shared resource.

The e6ectiveness of selecting di6erent quorum for each h is as follows. A requesting
process p whose requesting unit h1 is close to k; p can detect that its request is blocked
when it knows the existence of a small number of other requests. By contrast, another
requesting process p′ whose requesting unit h2 is close to 1; p′ can detect that its
request is blocked when it knows the existence of a larger number of other requests.
Thus, the set of processes h1’s quorum intersects to can be small. Therefore, selecting
di6erent quorum for each h reduces the size of quorum when h is large.

This paper shows the condition that (h; k)-arbiter must satisfy and presents two
(h; k)-arbiters. One is a uniform (h; k)-arbiter, which is a generalization of the uniform
k-arbiter. The other one is a (k + 1)-cube (h; k)-arbiter, which is a generalization of
the (k + 1)-cube k-arbiter. The quorums in each (h; k)-arbiter are not larger than these
in the corresponding k-arbiter. Thus, h-out-of-k mutual exclusion can be solved more
e;ciently by using an (h; k)-arbiter than with a k-arbiter. Moreover, each quorum in
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Qk; k of the (h; k)-arbiter can be no smaller than that in the 1-coterie for 1-mutual exclu-
sion because obtaining all units is exactly the same as obtaining the shared resource in
1-mutual exclusion. Each quorum in Qk; k of the uniform (h; k)-arbiter is exactly the
same as that in the majority coterie for 1-mutual exclusion. Thus, the uniform (h; k)-
arbiter can be considered to be a generalization of the majority coterie. Each quorum
in the (k + 1)-cube (k; k)-arbiter when k = 1 is about the same size as that in the
square grid coterie [12] for 1-mutual exclusion, whose size is minimum. Thus, (k+1)-
cube (h; k)-arbiter can be considered to be a generalization of the square grid coterie.
This paper also shows a distributed h-out-of-k mutual exclusion algorithm using (h; k)-
arbiters. Then, its correctness is presented.

Section 2 provides the de8nition of the problem. Section 3 shows the (h; k)-arbiter
and Section 4 gives a distributed algorithm using (h; k)-arbiter. Section 5 concludes
the paper and shows further study.

2. Problem de�nition and previous results

2.1. Distributed system

A distributed system is a set U = {p1; p2; : : : ; pn} of n processes. These processes
communicate by exchanging messages. Each pair of processes is connected by a logical
channel, and the message delay is unpredictable but 8nite. Moreover, each channel
is assumed to have in8nite capacity, to be error-free, and 8rst-in, 8rst-out (FIFO).
Processes do not share either a common clock or a common memory. No bound exists
to the relative speed of processes. The processes fail in accordance with the fail-stop
model [19], and a failure can be detected by the other processes.

2.2. h-Out-of-k mutual exclusion problem

The h-out-of-k mutual exclusion problem is de8ned as follows [18]. There are k
identical units of a resource that is shared by the processes in U . No unit must be
allocated to more than one process at the same time. A process requests h (16h6k)
units of the resource simultaneously and, to avoid deadlock, the process is blocked
until it obtains all its requested units. The process can then start using the units; when
8nished, it releases them all at once. If h= 1 for every request, the h-out-of-k mutual
exclusion problem corresponds to the k-mutual exclusion problem; moreover, if k = 1
we obtain 1-mutual exclusion.

The h-out-of-k mutual exclusion algorithm must satisfy two properties:
Safety: Each unit of the resource may be used by at most one process at any given

time.
Liveness: All requests must eventually be satis8ed.

2.3. Quorums, 1-coteries, and k-arbiters

The following is the de8nition of coterie [4] making it possible to achieve safety
for the 1-mutual exclusion problem.
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De�nition 1. A quorum q under U is a non-empty subset of U .
A set of quorums Q= {q1; q2; : : : ; qm} is a 1-coterie under U i6 the following prop-

erties hold:
• Intersection: For any pair of quorums, qi; qj ∈Q :: qi ∩ qj �= ∅.
• Minimality: For any pair of distinct quorums, qi; qj ∈Q :: qi �⊆ qj.

An outline of the mutual exclusion algorithm using 1-coteries is as follows. A process
selects a quorum from a 1-coterie, sends a request to each process in the quorum, and
waits to receive permissions from them. After receiving the permissions, the process can
use the shared resource. Safety is guaranteed from the intersection property. Minimality
is introduced to remove unnecessary elements. If qi⊆ qj, qj is unnecessary because
using qj needs more communication than using qi.

We brieNy mention two examples of 1-coteries that will be used in the following:
(1) Majority coteries: Q= {q⊂U | |q|= �n=2 + 1}, where n= |U |.
(2) Square grid coteries [12]: Assume that the processes in U are structured into a

square grid (1 : : :
√
n; 1 : : :

√
n).

Q = {qi;j | 1 6 i 6
√
n; 1 6 j 6

√
n};

where qi;j = {(x; y) | x = i} ∪ {(x; y) |y = j}:
The size of each quorum is O(

√
n).

In order to solve k-mutual exclusion, a k-arbiter has been de8ned [14]. Its intersection
property di6ers from that for 1-mutual exclusion as follows.

De�nition 2. A set of quorums Q= {q1; q2; : : : ; qm} is a k-arbiter under U i6 the fol-
lowing properties hold:
• Intersection: For any (k + 1) quorums, qi1 ; qi2 ; : : : ; qik+1 ∈Q ::

⋂
16j6k+1 qij �= ∅.

• Minimality: For any pair of distinct quorums, qi; qj ∈Q :: qi �⊆ qj.

When k = 1, the k-arbiter becomes a 1-coterie. Two examples of k-arbiters are as
follows [14]:
(1) Uniform k-arbiter: Q= {q⊂U | |q|= �k · n=(k + 1) + 1}.
(2) (k + 1)-cube k-arbiter: Suppose that n= ak+1 for some integer a. The processes

are structured into a (k + 1)-dimensional hypercube. Each process is represented
by (x1; x2; : : : ; xk+1) (06xi6a− 1; 16i6k + 1).

Q = {qb1 ;:::;bk+1 | 0 6 bj 6 a− 1; 1 6 j 6 k + 1};
where qb1 ;:::;bk+1 = {(x1; x2; : : : ; xk+1) | x1 = b1} ∪ {(x1; x2; : : : ; xk+1) | x2 = b2}
∪ · · · ∪ {(x1; x2; : : : ; xk ; xk+1) | xk = bk} ∪ {(x1; x2; : : : ; xk+1) | xk+1 = bk+1}:

The size of each quorum is at most (k + 1)nk=(k+1).
When n �= ak+1, the above construction is easily modi8ed to obtain a k-arbiter [14].

The uniform k-arbiter becomes the majority coterie when k = 1. The (k + 1)-cube
k-arbiter becomes the square grid coterie when k = 1. Note that the lower bound on the
size of each quorum of the symmetric k-arbiter is O(nk=(k+1)) [14]. Thus, a (k+1)-cube
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k-arbiter satis8es the lower bound when k is a constant. An outline of the h-out-of-k
mutual exclusion algorithm using a k-arbiter is as follows. When a process wants to use
h units of the shared resource, it selects a quorum from a k-arbiter, sends a request
to each process in the quorum, and waits to receive permissions from them. After
receiving the permissions, the process can use the shared resource. When a process
receives a request to use h units from a process p, it sends permission to p if the
number of units in the requests it sends permission for is not greater than k−h. Safety
is guaranteed from the intersection property. The minimality is exactly the same as
that for the 1-coterie.

3. (h; k)-Arbiter

3.1. De@nition of (h; k)-arbiter

We assume that each process uses a di6erent arbiter for each h (16h6k). An
(h; k)-arbiter, Qh; k , is a set of arbiters {Qh; k | 16h6k}. If a process p wants to use
h units of the shared resource, p selects a quorum qh; k ∈Qh; k and executes the same
procedure as that for using a k-arbiter. The algorithm to send a permission is exactly
the same as that for a k-arbiter. The intersection property of the (h; k)-arbiter di6ers
from that for a k-arbiter, as shown in the following.

A set has no repeated elements, while a bag may have repeated elements: {1; 2; 2; 3}
is a bag of four elements.

De�nition 3. A request pattern of h-out-of-k mutual exclusion, rk , is a bag of positive
integers up to k.

The h-out-of-k mutual exclusion is omitted if it is obvious.

De�nition 4. A request pattern rk is conNicting i6
∑

h∈rk h¿k+1. A conNicting request
pattern rk is critical i6 ∀h∈ rk , rk − {h} is not conNicting.

For example, r14 = {2; 2; 3} and r2
4 = {1; 1; 1; 2} are conNicting request patterns for

k = 4; r14 is not critical because {2; 3} is also a conNicting request pattern, while r2
4 is

critical.

De�nition 5. For a request pattern rk , a bag {q∈Qh; k | h∈ rk} is called a quorum
assignment for rk . Let QA(rk) be the set of all quorum assignments for rk .

A quorum assignment means a case where each process selects a quorum in Qh; k
and sends a request. Because |Qh; k |¿1, there can be multiple quorum assignments for
a given request pattern.

Theorem 1 (Intersection property). The safety property is guaranteed iA

∀� ∈ QA(crk);
⋂
q∈�

q �= ∅ (1)

is satis@ed for any critical conBicting request pattern crk .
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Note that the minimality property is exactly the same as that for the 1-coterie.

Proof of Theorem 1. First, assume that ∃�∈QA(crk),
⋂
q∈� q= ∅ is satis8ed for a

conNicting request pattern crk . Since
⋂
q∈� q= ∅, no process receives every request

in crk . Since crk is critical, for any h∈ crk , crk − {h} is not conNicting. Thus, since∑
h′∈crk−{h} h

′6k, every process sends a permission to every request. Therefore, every
request in crk receives enough permissions to use the shared resource at the same time.
Therefore, safety is not guaranteed.

Next, assume that ∀�∈QA(crk),
⋂
q∈� q �= ∅ is satis8ed for any critical conNict-

ing request pattern crk . We show that the processes cannot use the shared resource
at the same time for any conNicting request pattern rk . For any conNicting request
pattern rk , there is a critical conNicting request pattern crk satisfying crk ⊆ rk . Such
a crk can be obtained as follows. If rk is critical, set crk := rk and terminate the
procedure. If not, there exists h∈ rk satisfying rk − {h} is conNicting. Remove h
from rk . New rk is also a conNicting request pattern and returns to the top of the
procedure.

The above procedure terminates for every rk since rk is a 8nite bag. Thus, there is
a critical conNicting request pattern crk satisfying crk ⊆ rk . From the assumption, there
is a process p that receives every request in crk . Since p can send permissions for up
to k requested units at the same time, p does not send a permission to every request
in crk . Thus, the requests in crk cannot all use the shared resource at the same time,
meaning that the requests in rk(⊇ crk) do not use the shared resource at the same time,
which guarantees the safety property.

Note that the condition in Theorem 1 becomes the intersection property for k-coterie
when crk = {1; 1; : : : ; 1}. Thus, the intersection property for (h; k)-arbiter includes that
for k-arbiter.

The following property is satis8ed for critical conNicting request patterns.

Theorem 2. Critical conBicting request pattern crk satis@es
∑

h∈crk h6k + �, where
�= minh∈crk h.

Proof. If a critical conNicting requesting pattern crk satis8es
∑

h∈crk h¿k + 1 + �,
crk − {�} satis8es

∑
h∈crk−{�} h¿k + 1 and crk − {�} is conNicting. This implies that

crk is not critical.

3.2. Uniform (h; k)-arbiter

The uniform (h; k)-arbiter is de8ned as follows:

Qh;k =
{
q ⊂ U | |q| =

⌊
k · n
k + h

⌋
+ 1

}
:

Theorem 3. The uniform (h; k)-arbiter satis@es the conditions of the (h; k)-
arbiter.
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Proof. In order to prove that the condition of Theorem 1 is satis8ed, we show that
there is a process that receives every request. If a process requesting h units selects
qh ∈Qh; k , n − |qh| processes do not receive the request from the process. Thus, we
must show that ∀�∈QA(crk),

∑
q∈� (n − |q|)¡n for any critical conNicting request

pattern crk . From the de8nition of Qh; k , this inequality can be written as

∑
h∈crk

(
n−

⌊
k · n
k + h

⌋
− 1

)
¡ n:

Since �k · n=(k + h)¿k · n=(k + h) − (k + h− 1)=(k + h),

∑
h∈crk

(
n−

⌊
k · n
k + h

⌋
− 1

)
6

∑
h∈crk

h · n− 1
k + h

:

When minh∈crk h= �,
∑

h∈crk h6k + � (from Theorem 2). Thus,

∑
h∈crk

h · n− 1
k + h

6
∑
h∈crk

h · n− 1
k + �

6
(k + �)n− |crk |

k + �
¡ n:

Therefore, Eq. (1) holds. Minimality holds since |q|= |q′| for any two q; q′ ∈Qh; k .

The quorums in the uniform (h; k)-arbiter are no larger than those in the uniform
k-arbiter. Thus, the uniform (h; k)-arbiter is superior to the uniform k-arbiter.

Assume that the number of units h in every request satis8es h= k. In this case,
h-out-of-k mutual exclusion becomes 1-mutual exclusion, meaning that every process
tries to access a unique imaginary resource consisting of k units. Thus, the quorums
in Qk; k cannot be smaller than these in a 1-coterie. Since the uniform (h; k)-arbiter is
de8ned so that the requesting process can use the shared resource if the number of
permissions exceeds a certain threshold, i.e., its de8nition is exactly the same as the
majority coterie for 1-mutual exclusion, the quorums in Qk; k cannot be smaller than
those in the majority coterie. The size of the quorums in Qk; k is �n=2 + 1, which is
exactly the same as that of those in the majority coterie. Thus the uniform (h; k)-arbiter
is a generalization of the majority coterie for 1-mutual exclusion.

3.3. (k + 1)-Cube (h; k)-arbiter

The (k + 1)-cube (h; k)-arbiter is de8ned as follows. First, assume that n= ak+1 for
integer a. Each process corresponds to a node on a (k + 1)-dimensional hypercube,
which can be represented by {(x1; x2; : : : ; xk+1) | 06xi6a− 1; 16i6k + 1}.

Let

zh =
⌊

1 + k
1 + k=h

⌋
:

Qh;k = {qb1 ;:::;bk+1
h;k | 0 6 bi 6 a− 1; 1 6 i 6 k + 1};



Y. Manabe, N. Tajima / Theoretical Computer Science 310 (2004) 379–392 387

where

qb1 ;:::;bk+1
h;k =

⋃
06j6k+1−zh

{(x1; x2; : : : ; xk+1) | xi+j = bi+j; 1 6 i 6 zh}:

qb1 ; :::; bk+1
h; k consists of (k+2−zh) subcubes whose dimensions are (k+1−zh). Therefore,

the size of each quorum in Qh; k , |qb1 ; :::; bk+1
h; k |, is no larger than (k + 2 − zh)ak+1−zh .

Theorem 4. The (k+1)-cube (h; k)-arbiter satis@es the conditions of the (h; k)-arbiter.

Proof. In order to prove that the condition of Theorem 1 is satis8ed, we show that there

is a process that receives every request. Let {qb
1
1 ; b

1
2 ; :::; b

1
k+1

h1 ; k ; q
b2

1 ; b
2
2 ; :::; b

2
k+1

h2 ; k ; : : : ; q
b‘1 ; b

‘
2 ; :::; b

‘
k+1

h‘; k
}

be a quorum assignment for a critical conNicting request pattern. From Theorem 2,∑‘
i=1 hi6k + �, where �= min16i6‘ hi. Let y0 = 0 and yi =

∑i
j=1 zhj (16i6‘). From

the de8nition of zh, y‘ =
∑‘

j=1�(1 + k)=(1 + k=hj)6
∑‘

j=1 (1 + k)=(1 + k=hj) = (1 +

k)
∑‘

j=1 hj=(hj + k)6(1 + k)
∑‘

j=1 hj=(�+ k)6(1 + k)(k + �)=(�+ k) = (1 + k).
Now consider a process v= (b1

1; b
1
2; : : : ; b

1
y1
; b2
y1+1; b

2
y1+2; : : : ; b

2
y2
; : : : ; biyi−1+1; b

i
yi−1+2; : : : ;

biyi ; : : : ; b
‘
y‘−1+1; b

‘
y‘−1+2; : : : ; b

‘
y‘ ; cy‘+1 ; cy‘+2 ; : : : ; ck+1), where cj(y‘ + 16j6k + 1) is an

arbitrary number. If y‘ = k + 1, cj does not exist.

v∈ qb
i
1 ; b

i
2 ; :::; b

i
k+1

hi ; k is satis8ed for every i (16i6‘), since subcube {(x1; x2; : : : ; xk+1) |
xyi−1+j = biyi−1+j; 16j6zh} is contained in q

bi1 ; b
i
2 ; :::; b

i
k+1

hi ; k .
Therefore, Eq. (1) holds. Minimality holds since |q|= |q′| for any two q; q′ ∈Qh; k .

If n �= ak+1, we can modify the above quorum de8nition as follows. Assume that
(a−1)k+1¡n¡ak+1. The (k+1)-tuple (b1; b2; : : : ; bi; : : : ; bk+1) (06bi6a−1; 16i6k+
1) represents process

∑k+1
i=1 bi · ai−1 (mod n). Construct the (k + 1)-cube (h; k)-arbiter

for these ak+1 tuples. Based on this relation between (k+1)-tuples and processes, it is
obvious that the above quorum de8nition satis8es the intersection property. Minimality
is satis8ed by removing q′ if q⊂ q′ for some q; q′ ∈Qh; k .

The quorums in the (k+1)-cube (h; k)-arbiter are not larger than those in the (k+1)-
cube k-arbiter. Thus, the (k + 1)-cube (h; k)-arbiter is superior to the (k + 1)-cube
k-arbiter.

Assume that h= k and consider 1-mutual exclusion. The size of the quorums in
Qk; k is (�(k + 1)=2� + 1)a�(k+1)=2�, which is close to the minimum value O(

√
n) of

the square grid coterie. In addition, if k = 1, Q1;1 is exactly the same as the square
grid coterie. Thus, the (k + 1)-cube (h; k)-arbiter is a generalization of the square grid
coterie for 1-mutual exclusion.

4. Distributed mutual exclusion algorithm

4.1. Algorithm description

In this section we present a distributed algorithm for h-out-of-k mutual exclusion
that uses an (h; k)-arbiter. The intersection property guarantees safety. The distributed
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algorithm used to achieve liveness is the same as that for the k-arbiter. Its outline is
as follows.

Each process maintains a Lamport’s logical clock [11]. Let the value of process p’s
current clock be cp. When p sends message m, the current value of cp is piggybacked
on m. Let cm be the value of the clock piggybacked on m when p receives message
m. p updates cp := max(cp; cm) + 1. This clock update mechanism is omitted in the
algorithm shown in Fig. 1.

Each request is a tuple (h; p; c), where h is the number of units, p is the requesting
process, and c is the value of the logical clock when p initiated the request. A priority
is assigned to every request. The priority of request (h; p; c) is higher than that of
(h′; p′; c′) if c¡c′ or (c= c′ and p¡p′). A total order is thus given to the requests.

When p initiates request (h; p; c), it selects a quorum q∈Qh; k and sends a “request
(h; p; c)” message to every process in q. If p receives an “OK” response from every
process in q, it can use h units of the shared resource. When p 8nishes using the units,
it sends a “release” message to every process in q. Note that a “cancel” message might
be received during the wait for “OK”s. The procedure for this case is shown below.

Each process initially has k permissions. Let xp be the permissions p currently has.
Each process also maintains a priority queue of requests. It tracks the status of each
request: “wait”, “ok”, or “cancel”. The priority of requests is de8ned as described
above. Initially, the queue is empty. When p receives “request (h′; p′; c′)”, it inserts
the request in its priority queue and sets the status to “wait”.

If the request (h′; p′; c′) satis8es the condition that the total number of units
requested from the higher-priority requests in the queue is no more than k − h′, and
xp¿h′, p sends an “OK” message to p′, changes the request’s status to “ok”, and
executes xp := xp − h′.

There may be a request (h′′; p′′; c′′) in the priority queue whose status is “ok” and the
total number of units requested from higher-priority requests is now more than k−h′′ as
a result of insertion of a new request in the priority queue. Note that multiple requests
might satisfy this condition as a result of inserting one request. The “OK” to these re-
quests must be cancelled, otherwise a deadlock might occur. Thus, p sends a “cancel”
message to p′′ to cancel the “OK” and changes the status of the request to “cancel”.

When p′′ receives the “cancel” message from p, it sends a “cancelled” message
back to p if it has not yet received “OK” from every process in q. It then waits for
another “OK” message from p.

When p receives a “cancelled” message from p′′, it changes the status of the request
(h′′; p′′; c′′) to wait. p executes xp := xp+h′′ and tries to send an “OK” message to the
higher-priority requests based on the above condition for sending an “OK” message.

When p receives a “release” message from p′′, it removes the request (h′′; p′′; c′′)
from its priority queue, executes xp := xp + h′′, and tries to send an “OK” message to
the other requests based on the above condition for sending an “OK” message. The
algorithm is shown in detail in Fig. 1.

4.2. Correctness of algorithm

The proof of the correctness of this algorithm is shown.
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Fig. 1. Distributed h-out-of-k mutual exclusion algorithm.
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Theorem 5. No deadlock occurs in the above h-out-of-k mutual exclusion
algorithm.

Proof. Let us consider the wait-for graph G. Each node in G represents a process.
A directed edge (p;p′) exists in G i6 both the following conditions hold for a pro-
cess r:
• p has sent “request” to r and is waiting for “OK” from r;
• r has sent “OK” to p′ and it is not cancelled by “cancel”.
First, we show that when a deadlock occurs, there is a permanent directed cycle in G.
Without loss of generality, we assume that after a deadlock occurs, all processes that
can enter the critical section have exited from the critical section and no new request
occurs. In this case, no node without an edge in G is involved in the deadlock. Thus
G has at least one edge. If there is no directed cycle in G, then there is a process p
with an incoming edge and no outgoing edge. Since p has no outgoing edge, every
process that receives “request” from p has not sent “OK” to any other process. Thus
p receives “OK” and p can enter the critical section. This contradicts the assumption
that a deadlock occurs.

Next, we show that there is no permanent directed cycle in wait-for graph G during
the execution of the algorithm. Let us assume that there is a permanent directed cycle
p0; p1; : : : ; pm−1; p0 in G, that is, there are directed edges (pi; pi+1 (mod m)) (06i6m−
1). Let ri (06i6m− 1) be the process that has sent “OK” to pi+1 (mod m) and received
“request” from pi.

The sum of the units of the requests whose priority is higher than or equal to that
of pi is more than k at ri. Otherwise, ri would have sent “cancel” to lower priority
requests, waited until enough tokens were available, and sent “OK” to pi. Since the
“OK” to pi+1 (mod m) is not cancelled by ri, the sum of the units of the requests whose
priority is higher than or equal to that of pi+1 (mod m) is no more than k at ri. Thus,
the priority of pi is lower than that of pi+1 (mod m). Since there is a directed cycle,
p0’s priority would have to be lower than p0’s priority. This contradicts the de8nition
of the priority. Therefore, there is no permanent directed cycle in G and no deadlock
occurs.

Theorem 6. No starvation occurs in the above h-out-of-k mutual exclusion
algorithm.

Proof. Assume that there is a requesting process p that can never enter the critical
section. The request has a pair (p; cp) as its priority. Let q be the (h; k)-arbiter selected
by p. Since p can never enter the critical section, at least one process r ∈ q receives an
in8nite number of requests whose priority is higher than p, after receipt of p’s request.
Note that after receiving the request from p, the value of r’s logical clock cr satis8es
cr¿cp. Thus, when some requesting process u receives “OK” from r, u’s logical clock
value is greater than cp and u cannot send any more requests whose priority is higher
than (p; cp). Thus, there cannot be an in8nite number of requests with a priority higher
than (p; cp). Therefore, p can enter the critical section.
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4.3. Message complexity

Let us enumerate the number of messages sent per request. The best case is that
there is no conNict.
(1) p sends “request” to every process in some q∈Qh; k .
(2) Every process in q sends “OK” to p.
(3) p enters and exits the critical section. p sends “release” to every process in q.
Thus, the message complexity is 3|qh; k | per request, where |qh; k | is the size of the
largest quorum in Qh; k .

Next consider the worst case. The worst case is that there is conNict and lower
priority requests must be cancelled.
(1) p sends “request” to every process in some q∈Qh; k .
(2) Each process u∈ q has sent k “OK”s to other requests whose requesting units

are 1. The request from p has a priority higher than these requests. Thus, u sends
“cancel” to h requesting processes to cancel the “OK”s.

(3) Each process replies “cancelled” to u. Thus, u sends “OK” to p.
(4) p enters and exits the critical section. p sends “release” to every process in q.
(5) u receives “release” and sends “OK” again to the cancelled processes.
Note that after p receives “OK”, it may be cancelled by another process r’s request.
Messages for this procedure are counted in the procedure for r. Thus, the message
complexity of this case is (3h+ 3)|qh; k | per request.

5. Concluding remarks

We have de8ned two (h; k)-arbiters for h-out-of-k mutual exclusion: a uniform (h; k)-
arbiter and a (k + 1)-cube (h; k)-arbiter. The quorums in each (h; k)-arbiter are not
larger than those in the corresponding k-arbiters; consequently using the (h; k)-arbiters
is better than using the k-arbiters.

An outstanding problem involves obtaining an (h; k)-arbiter with minimum size quo-
rums, since the (h; k)-arbiters we have developed are not optimal. Another problem
is obtaining a non-dominated (h; k)-arbiter, where the non-domination of (h; k)-arbiter
can be de8ned in exactly the same way as for the k-arbiter [14].
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