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I. INTRODUCTION 

In this paper a simple combinatorial method is given for the determination 
of the n-step transition probabilities of homogeneous Markov chains with 
transition probability matrices 

and 

1 --0 40 0 0 a** 

1 - - 40 Ql 41 40 0 *** 

1 - - Qo 41 - 42 q2 41 40 *** 

l-f7o-q1-q2-!?3 q3 Qz 41 .** 
. . . 
. . . 
. . . 

!70 91 42 93 .** 

Qo 41 !72 43 ... 

0 40 41 42 ..* 

7r = 0 0 - qo q1 ... 
. . . . 
. . . . . . . 
. . . . 

(1) 

(2) 

Particular cases of these Markov chains play an important role in the theory 
of queues, storage, dams and elsewhere. In finding the higher transition 
probabilities we are making use of an elementary combinatorial theorem 
which is a generalization of the classical ballot theorem. It is very surprising 
that the classical ballot theorem which was discovered in 1887 by 
J. Bertrand [l], D. Andre [2] and 8. Barbier [3] has also some importance 
in the theory of Markov chains. The difficulties usually involved in finding 
the powers of complicated transition probability matrices are well known. 
Earlier, when I considered particular cases of both (1) and (2), I was able to 
express only the double generating function of the higher transition proba- 
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bilities with the aid of a root of a transcendental equation. (Cf. [4, pp. 70, 
1051.) Now the more general problem will be solved explicitly in an element- 
ary way. 

II. AN AUXILIARY THEOREM 

The following theorem is a generalization of the classical ballot theorem. 

THEOREM I. If v1 , vz, ‘.., V, are interchangeable random variables that 
assume nonnegative integer values, then 

(0 otherwise, 

whenever the left hand side is defined. 
For the proof of (3) we refer to [5] and [6]. In [6] the connection between 

Theorem 1 and the classical ballot theorem is also discussed. 

III. THE HIGHER TRANSITION PROBABILITIES 

Let (vn} be a sequence of mutually independent random variables with 
distribution 

P{v, = j} = qj (j = 0, 1, **.). 

Define two sequences of random variables {&} and (4,) as follows: 

(4) 

5, = L1 + 1 - %I+ (n = 1,2, **.) (5) 

where &, is a random variable that assumes nonnegative integer values and 
independent of {vn}; 

5, = ELI - 11+ + vn (n = 1,2, *-.) (6) 

where &, is a random variable that assumes nonnegative integer values and 
independent of (v~}. [a]+ = a if a > 0 and [a]+ = 0 if a < 0. It can easily 
be seen that {&} and (5,) are homogeneous Markov chains with transition 
probability matrices (1) and (2) respectively. The n-step transition proba- 
bilities of {&} and (5,) are given by Theorem 2 and Theorem 3. 
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‘I‘HEOREM 2. For the Markov chain (5,) we have 

P{(,z k/&,=i)=P{v,+*..+v,<n+i-kj 

if k = 1, 2, “‘; i = 0, 1, ‘*. . In particular, 

if k = 1, 2, ... . 

PROOF. From (5) it follows by induction, that 

6, = max (0, 1 - v, , 2 - v+r - v, , .“, n - v1 - ... - v,, + 5,). 
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(7) 

(9) 

If in (9) we replace vr , va , ..., vn by v, , vndl , ..., vr respectively, then we 
obtain a new random variable 

& =max(O,l -v1,2-vvl-va;~~, n--1- . . . - v, + (00) (10) 

which has exactly the same distribution as (9). Thus 

P{ 5, 3 k 1 & = i} = P{& > k / &, = i}. 

Let [a = i 3 0. The event {& > k} can occur in the following mutually 
exclusive ways: either 

Vl + ... + v, < n + i - k, 

or 
Vl + ... + v, > n + i - k and vr+ ... +v,<r -k 

for some r = 1, ..a, n - 1. If r = j is the smallest index for which 

Vl + --- + vt < r - k 

then necessarily 

VI + . . . + vi =j - k and v1 + ... + v, > r - k 

for r = 1, ..., j - 1. Accordingly, 

P{(V>k~),,=i}=P{v,+**~+v,<n+i-k} 

n-1 
+ z: WJl + a** + v, > 12 + i - k, v1 + *a* + vi = j - k and 

j=k 

Vl + e-f + vT > T - k for r = 1, a**, j - 1}, (11) 
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whence 

+ ywj+1 + *** + vn > n + i -,i>. (12) 
j=k 

Wb,l +...+vi<j-rforr=l;..,j--I andv,+...i-vj=j-k} 
because vi , v2 , ..., vn are mutually independent random variables. By 
Theorem 1 

wT+l + .a. + vj <j - Y for r = 1, *.a, j - 1 1 vr + *** + vj = j - k) 

= k/j 
I 

for O<k<j. 
0 otherwise, (13) 

and thus (12) and (13) yield (7). 
Now let &, = 0. By (10) the event {& > k} occurs if and only if there is an 

index t such that vi + ..*+v~=Y-k.Ifr=j(j=k;.*,n) isthesmallest 
index with this property, then vi + ... + vr > r - k (Y = 1, ..e, j - 1) 
must hold. Accordingly, 

=~P{vl+~~~+vl=j-kandv,+~*~+v,>r--kforr=I;**,j- l} 

=~P{v,+...+v~=j-kandv,,+...+vj<j--forr=l;..,j-l1). 
h-k 

(14) 
By Theorem 1 

Wl.,l + m-e + vi <j - r for r = 1, *a*, j - 1 1 vi + *** + vj = j - k} 

= klj 
I 

if O<k<j, 
0 otherwise. (15) 

Equation (14) and (15) prove (8). 

THEOREM 3. For the Markov chain (5,) we have 

P{l,~k150=i)=P{v,+...+v,~n+k--} 

-ggl -+k+ -se + vj = Z)P(vi+, + *** + v, = 11 + k -j} 

(16) 
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ifk == 0, 1, ‘1.) and, in particular, 

WL = 0 I llo = i} = 2 (1 - 41 P+t + . . . . + v, =,j). (17) 
j=0 

PROOF. By (6) 

5, = max {v, + . ..+v.---((n-r)forr=l;..,nand 
v1 + *‘. +v,-n+50). 

If 5, = i, then the event (6, < k} occurs if and only if 

Vl + .*s+v,<n+k-i 

and 

VT + --a + vn < n + k - r for 7 = i, ..., fz. (18) 

Thus 

P{~,~k~~O=i}=P{vl+**~+v,~n+k-i} 

-P{v,+***+v,<:+k-iandv,++.*+v,>n+k-rfor 

some T = i, . . . , n}. 09) 

The event that (18) is violated for some I can occur in several mutually 
exclusive ways: the smallest r for which (18) does not hold is r = j + 1 
(j = i, .--, n - 1). In this case 

vi+1 + *-- + v, = n + k - j 

must hold and obviously 

v+ + 9.. + v, < n + k - I for I = i, *.+, j. 

Accordingly, 

P& < k I to = i} 

n-1 

= P{Vl + **.+v,,<n+k-ii) - 2 WV, + -a- + v,, < n + k - r 
5=i 

forr=i;..,j;v,+., + *a* + v, = n + k -,j and vi + *.. + v, $ n + k - i}, 

(20) 



158 TAKhCS 

whence 

I’{<, < k I 50 = 9 

n-1 

=P{v,+..*+v,<n+k-_}-_P{v,+*.*+~~<j-r 
j-1 

for r = i, **a, j; vr + **. + vi <j - i and vj+r + *** + vn = n + k -j} 

=P{v~+-..+v~~n+k--if-~p(v~+,+... + v, = n + k -j}. 
j-i (21) 

wl. + . ..+vi~j-rforr=i...,jandv,+...+v,~j--i), 

because v1 , ..*, V, are mutually independent random variables. By Theorem 1 

P{v, + *** + Vj <j - Y for r = i, .+., j 1 VI + ‘*. + Vj = 1) 

I 

1 

t1-+ 
if f?<l<j, 

= (22) 

0 otherwise, 

whence 

P{vr + *** +vj<j-rfor~=i;*~,jandv~+~**+vj<j-ii) 

(23) 

Formulas (21) and (23) prove (16). If, in particular, k = 0, then 

PG = 0 I 50 = i> 

= P{Vl + ~~~+v,<n--iandv,+ ***+v,,<n-rforr=i;**,n} 

n-i 

=ZP{vl+*.. + vn =j)P{vr + a.* +v, <n --rfor 
i=O 

By Theorem 1 

Y = i, a--, n 1 v1 + a-* + vfi =j}. (24) 

P{vr + a** + vn < n - r for r = i, .a., n 1 v1 + e.0 + vn =i} 

(1 -;j if O<j<n, 

(25) 

0 otherwise. 

Putting (25) into (24) we get (17). 
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IV. THE LIMITING DISTRIBUTIONS 

If we suppose that 4s > 0, and q,, + q1 < 1, then both (5,) and {&J are 
irreducible and aperiodic Markov chains. Consequently the limits 

liiP{ t,, == k ( .$s = i) = P, and LIl Pi<,, = 12 j lo = if = Q,; 

exist irrespective of i. There are two possibilities: either {Pk} ({Qk}) is a 
probability distribution with positive elements and the Markov chain 
I.$,} ({<,>) has a unique stationary distribution which agrees with the limiting 
distribution, or every Pk = 0 (Qk = 0) and the Markov chain (4,) ({<,>) has 
no stationary distribution. 

We can easily guess that if (5,) h as a stationary distribution, then it is a 
geometric distribution. However, we shall provide a constructive proof based 
on Rouche’s theorem and the following theorem of complex variables: If 
f(z) is regular for all finite values of z and lim,,,,f(z)/~ z 1 = 0, then f(z) 
is a constant. The stationary distribution of (5,) can easily be obtained by 
using generating functions. 

In what follows we suppose that q,, > 0, and q0 + q1 < 1. Let us introduce 
the generating function 

m 

which is convergent if 1 z 1 < 1, and let p = g’( 1 - 0). 

THEOREM 4. If p > I, then the limiting distribution 

lim P{& = k 1 5s = i} = P, 
?I+@2 

(k = 0, 1, a**) 

exists and we have 
P& = (1 - w) Wk‘ (27) 

where z = w is the only root of g(z) = xintheunitcircle Iz/ < l.lfp<l, 
then 

!i+i P{t, = K ( to = i} = 0 

for every k = 0, 1, ... _ 

PROOF. First we prove that the equation g(z) = x has only one root in 
theunitcirclejz~<lifp>1,andhasnorootifp~l.Ifp>1,thenit 
follows from RouchC’s theorem that g(z) = z has one and only one root in 
the circle 1 z / < 1 - E where E > 0 is small enough. For, 

I g(4 I < g(l - 4 < 1 - e 
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if ( .a / = 1 - E and E is a sufficiently small positive number. If p < 1, then 
/g’(z) 1 < 1 for 1 z 1 < 1, whence 

I 1 - g(4 I = j ,1 g’(t;) 4 j < I 1 - z I 

forIzj<l.Thusg(z)=zisimpossibleif/zI<l. 
Now if we suppose that (4,) has a stationary distribution {P%} and introduce 

the generating function 

P(2) = j$ P&, (28) 
k=O 

then by (5) we obtain that for j z I = 1 

P(,) = P(x) zg (+) + 2 cj (1 - JJ) 
i=o 

where 

cjao (j=O,l,-) and co + Cl + I** + cj + *.* < 1. 

Hencefor Ial= andafl 

p@> = zo a1 - w91 
1 -&l/z) l 

(29) 

(30) 

Now let us define P(z) also for 1 z 1 > 1 by (30). By definition P(z) has no 
singularities for 1 I 1 < 1. Thus P(z) has singularities only at the zeros of 
the denominator of (30) outside the unit circle, These zeros evidently agree 
with the reciprocal values of the roots of g(x) = s inside the unit circle. If 
p > 1, then there is one root z = w. If p < 1, then there is no such root. 

If we suppose that p > 1, then P(z) (a - l/w) will be a regular function 
of z on the whole complex plane. Since obviously, 

therefore P(z) [z - (l/w)] is a constant. Since P(1) = 1, we get finally 

(31) 

whence (27) follows. 
If p < 1, then P(z) is a regular function of I on the whole complex plane. 

. 
Since limlel- P(z) = 0, therefore P(z) = 0. Thus in this case a stationary 
distribution does not exist. This completes the proof of the theorem. 
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THEOREM 5. If p < I, then the limiting distribution 

!A$ W, = k 1 Co = i> = Qlc (k = 0, 1, .**) 

exists and we have 

Q(z) = s Qkzk = (1 -P)(l -4&d 

k=O &) - 27 - 
(32) 

If p 2 1, then 

lim P{la = K j (a = i} = 0 
PI- 

for every k = 0, 1, ... . 

PROOF. Suppose that a stationary distribution {Qk} exists. If Q(z) denotes 
the generating function of the stationary distribution, then by (6) 

QC4 = (Qo + ‘@) z- “) g(4, 
whence 

Q@) = Q. (’ - ‘) g(‘) 
id4 - z - 

Since Q( 1) = 1, we get from (33) that Q. = 1 - p. If p < 1, then there is a 
stationary distribution and its generating function is given by (32). If p > 1, 
then the assumption that a stationary distribution exists leads to a contra- 
diction. Thus a stationary distribution cannot exist if p 3 1. This completes 
the proof of the theorem. 
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