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Consider a unitary operator U0 acting on a complex separable Hilbert space H. In this
paper we study spectral properties for perturbations of U0 of the type,

Uβ = U0eiKβ,

with K a compact self-adjoint operator acting on H and β a real parameter. We apply
the commutator theory developed for unitary operators in Astaburuaga et al. (2006) [1]
to prove the absence of singular continuous spectrum for Uβ . Moreover, we study the
eigenvalue problem for Uβ when the unperturbed operator U0 does not have any. A typical
example of this situation corresponds to the case when U0 is purely absolutely continuous.
Conditions on the eigenvalues of K are given to produce eigenvalues for Uβ for both cases
finite and infinite rank of K , and we give an example where the results can be applied.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and notation. Abstract setting

Consider a unitary operator U0 acting on a complex separable Hilbert space H with inner product 〈,〉 conjugate linear
in the first component. Let us denote by {E0(·)} the spectral family associated to U0; in other words,〈

φ, Un
0φ

〉 = ∫
T

einθ d
〈
φ, E0(θ)φ

〉

for all φ ∈ H and n ∈ Z, with T = R/2πZ.
In what follows we denote by G∞ the set of compact operators defined on H. For K ∈ G∞ and self-adjoint we define

the perturbed (U0 the unperturbed) unitary operator Uβ as follows

Uβ = U0eiβK (1.1)

where β is a real parameter.
The identity Uβ − U0 = (eiβK − I)U0 implies that Uβ − U0 ∈ G∞ , so by Weyl’s theorem the essential spectrum of U0 and

Uβ coincide, see [9].
In [1] the authors developed a well posed commutator theory for unitary operators (for a general theory about commu-

tators see [3,7]). Precisely, they proved that if U and A satisfy

(a) the first commutator U∗ AU − A is densely defined and it admits a bounded extension satisfying a Mourre’s inequality,
U∗ AU − A � α I + C for some positive constant α, compact operator C and self-adjoint operator A,

(b) the second order commutator [A, U∗ AU ] is densely defined and it admits a bounded extension,
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then the spectrum of U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity
in S1 = {z: |z| = 1}, see Theorem 3.3 in [1]. Moreover, if (a) holds with C = 0 then the spectrum of U is purely absolutely
continuous in S1. We shall apply these results to prove the absence of singular continuous spectrum for Uβ . We mention [2]
for the instability problem of embedded eigenvalues in the self-adjoint case.

The purpose of Section 2 is to find conditions on the parameters {λn} and the orthonormal set {un}, given by the spectral
decomposition of K (Riez–Fisher theorem), which guarantees that Uβ satisfies (a), (b). For simplicity we only consider the
case U∗

0 AU0 − A = I .
In Section 3 we study the eigenvalue problem for Uβ under the assumptions that U0 does not have any eigenvalues.

A typical example of this sort corresponds to the case when U0 is purely absolutely continuous.
We recall that U0 is purely absolutely continuous if its spectral measure d〈φ, E0(θ)φ〉 has a Radon–Nikodym derivative,

with respect to the Lebesgue measure d〈φ,E0(θ)φ〉
dθ

= Fφ(θ) belonging to L1(T), for any φ ∈ H, see [4,8,9] as references.
The eigenvalue problem for Uβ consists of finding a vector ψ ∈ H, ψ �= 0 such that Uβψ = z0ψ , with z0 = eiE , E ∈ R.

Actually the eigenvalue problem U0, eiKβψ = z0ψ is equivalent to

U0
(

I − eiβK )
ψ = (U0 − z0 I)ψ. (1.2)

Notice that (U0 − z0 I)ψ �= 0 if z0 is not an eigenvalue for U0.
On the other hand, K is compact and self-adjoint, and hence by the Riez–Fisher theorem there exist an orthonormal set

{un}n ⊂ H and a collection of real numbers {λn}n such that

K =
∞∑

n=1

λn〈un, ·〉un, (1.3)

with λn → 0 as n tends to infinity, see [8]. Using this representation for K , the eigenvalue problem (1.2) becomes

∞∑
n=1

(
1 − eiβλn

)〈un,ψ〉U0un = (U0 − z0 I)ψ, (1.4)

where the above identity holds in the strong sense in H.
Our main goal is to give conditions on U0, the spectral representation of K , the real parameter β and z0 = eiE that

guarantee the existence of non-trivial solution of (1.4), for rank K finite or infinite. The perturbation of rank one of a purely
absolutely continuous U0 was studied in [6].

1.1. Notations

In this paper U0 represents a unitary operator acting on H, K is a self-adjoint compact operator defined on H with
spectral decomposition (1.3) and Uβ = U0eiβK is called the perturbed operator with β a real parameter. The self-adjoint
operator A is called a conjugate operator for Uo with domain D(A).

We denote by l2 the Hilbert space of complex sequences f = ( f (n))∞n=1 such that
∑∞

n=1 | f (n)|2 < ∞, with inner product
〈 f , g〉 = ∑∞

n=1 f (n)g(n). In some example we will work with l2(Z), the Hilbert space of complex sequences f = ( f (n))∞n=−∞
such that

∑∞
n=−∞ | f (n)|2 < ∞. Also, we denote by C

M the corresponding finite dimensional version and by δi j the Kro-
necker delta.

2. Absence of singular continuous spectrum

We start this section by given a briefly introduction to commutator theory for unitary operators and how the existence
of these commutators has consequences on the spectral properties of Uβ .

For a unitary operator U and a self-adjoint operator A, the commutators C1, C2 are formally defined by

C1 = U∗ AU − A, C2 = [A, C1] := AC1 − C1 A.

C1 is called the commutator of first order and C2 the commutator of second order. Let us called (A), (B), (C) the following
hypotheses:

(A) There exists a self-adjoint operator A on the Hilbert space H such that U ∗
0 AU0 − A = I on the domain D(A).

(B) The range of K is a subset of D(A).
(C) The range of K is a subset of D(A2).

Clearly (B) follows from (C). If U0 and A satisfy (A) then U∗
0

n AUn
0 − A = nI for all n ∈ Z and |〈ψ, Un

0ψ〉|2 � c
n2 ‖Aψ‖2, for

all ψ ∈ D(A). This inequality proves that the Radon–Nikodym derivative Fψ(θ) belongs to L2(T) for ψ on a dense subspace
of H.
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Moreover, condition (A) also shows that such A is not bounded below nor above, since for all positive integers n we
have that〈

Un
0ψ, AUn

0ψ
〉
� n‖ψ‖2 + 〈ψ, Aψ〉, 〈

U∗n
0 ψ, AU∗n

0 ψ
〉
� 〈ψ, Aψ〉 − n‖ψ‖2.

Actually, the sequence {‖Au j‖} j is frequently unbounded.
Using (A) and (B), it is straightforward to check that the commutator of first order C1,β for the perturbed operator Uβ is

formally

C1,β = U∗
β AUβ − A = (

e−iβK AeiβK − A
) + I.

If we denote by K ′ = e−iβK − I , we have that K ′ is compact, normal and

e−iβK AeiβK − A = K ′ A + AK ′ ∗ + K ′ AK ′ ∗.
In the proof of Theorem 4.1 in [1], it is shown that if AK is compact and (B) holds then the operators K ′ A, AK ′ ∗ , K ′ AK ′ ∗
are compact. If in addition we impose (C) together with A2 K bounded then C2,β is also bounded.

Theorem 2.1. Assume that conditions (A), (B) are satisfied for the unperturbed operator U0 . Suppose that

∞∑
j=1

|λ j|2‖Au j‖2 < ∞. (2.1)

Then AK and (e−iβK AeiβK − A) are compact operators on H with norm

∥∥(
e−iβK AeiβK − A

)∥∥ � γ |β|
( ∞∑

j=1

|λ j|2‖Au j‖2

)1/2

,

for some positive constant γ .

Proof. By the spectral representation, K = ∑∞
j=1 λ j〈u j, ·〉u j . We may define KN = ∑N

j=1 λ j〈u j, ·〉u j , K ′
N =∑N

j=1(e−iβλ j − 1)〈u j, ·〉u j . It is easy to see that

‖AKN‖ �
(

N∑
j=1

|λ j|2‖Au j‖2

)1/2

and
∥∥AK ′ ∗

N

∥∥ � |β|
(

N∑
j=1

|λ j|2‖Au j‖2

)1/2

.

Using (2.1) we obtain that AKN and AK ′ ∗
N converge, as N tends to infinity, to the compact operators AK and AK ′ ∗ respec-

tively (in operator norm) and ‖AK ′ ∗‖ � |β|(∑∞
j=1 |λ j|2‖Au j‖2)1/2.

On the other hand, K ′ A can be extended to a compact operator with the same norm as AK ′ ∗ , thus the norm of K ′ AK ′ ∗
is bounded by ‖K‖‖AK ′ ∗‖, concluding the proof. �
Corollary 2.2 (Mourre’s inequality). With the hypotheses of Theorem 2.1 there exists a compact operator K̃ such that C1,β satisfies

(i) C1,β = I + K̃ .
(ii) There are constants α,β0 > 0 such that C1,β � α I for all |β| < β0 .

Next, we study the existence of the commutator of second order, C2,β = [A, C1,β ] = [A, e−iβK AeiβK ].

Theorem 2.3. Assume that conditions (A), (B), (C) are satisfied for the unperturbed operator U0 . Suppose that

∞∑
j=1

|λ j|2
∥∥A2u j

∥∥2
< ∞. (2.2)

Then C2,β is a bounded operator on H.

Proof. In the same way that we proved that AK is compact, using (2.2), we obtain that A2 K is compact. Then C2,β is
bounded since

C2,β = AK ′ A + A2 K ′ ∗ + AK ′ AK ′ ∗ − (
K ′ A2 + AK ′ ∗ A + K ′ AK ′ ∗ A

)
. �

We summarize the above results in the following theorem.
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Theorem 2.4. Assume that K , A and U0 satisfy the hypotheses of Theorem 2.3. Then Uβ = U0eiβK does not have singular continuous
spectrum, and it has at most a finite number of eigenvalues of finite multiplicity. In addition, if |β| is sufficiently small, then Uβ has
purely absolutely continuous spectrum.

This theorem says, for the case that U0 is purely absolutely continuous with spectrum S1, that the possible eigenvalues
of Uβ are embedded in the absolutely continuous spectrum of Uβ .

As an example consider the Shift operator U0 on l2(Z) defined in a complete orthonormal basis of l2(Z) {. . . , e−2, e−1, e0,

e1, e2, . . .} by

U0e j = e j+1, j ∈ Z.

Its adjoint becomes U∗
0e j = e j−1, n ∈ Z. Let us define the conjugate operator A for U0 as follows: Ae j = je j , with domain

D(A) = {u ∈ l2(Z):
∑

k k2|〈ek, u〉|2 < ∞}. It is easy to see that U∗n
0 AUn

0 − A = nI on D(A), for all n ∈ Z.
The corresponding hypotheses of Theorem 2.4 are fulfilled if∑

j,k

k4|λ j|2
∣∣〈ek, u j〉

∣∣2
< ∞.

Equivalently, we may consider L2[0,2π ] with the usual inner product 〈 f , g〉 = 1
2π

∫ 2π
0 f̄ (x)g(x)dx and the unitary oper-

ator (U0 f )(x) = eix f (x) acting there. In this context, A = −i d
dx with domain

D(A) = {
u: absolutely continuous, ux ∈ L2[0,2π ], u(0) = u(2π)

}
.

It is well known that U∗
0 AU0 − A = I and

∑
j |λ j |2‖(u j)xx‖2 < ∞ guarantees that hypotheses of Theorem 2.4 are fulfilled.

Another example is the Floquet operator corresponding to the kicks on the Shift operator. That is, U0 is the unitary
operator U0 : L2(Rm) → L2(Rm) defined as U0 = e−iy·∇ with y ∈ R

m , ‖y‖ = 1. The perturbed operator is given by Uβ =
U0eiβK , where K is a self-adjoint compact operator on L2(Rm). Define the conjugate operator A by (A f )(x) = (x · y) f (x),
where x · y stands for the usual dot product on R

m . It is known that the first commutator for U0 satisfies U∗
0 AU0 − A = I .

U0 is purely absolutely continuous with spectrum S1, see [7]. If we assume (A) and in addition that AK is compact, then
the first commutator C1,β is bounded and it satisfies Mourre’s inequality. On the other hand, (B) and boundness of A2 K
assure that the second commutator C2,β is bounded. Finally, it follows that under the assumptions of Theorem 2.3 that all
conditions mentioned above hold.

3. Eigenvalue problem

In this section we begin to study the eigenvalue problem (1.2). First we mention a result, proven in [6], that says that if
z = eiE is not an eigenvalue of U0 then

lim
r→1±

(
U0 − eiE)(

U0 − reiE)−1 = I (3.1)

strongly.
Also we will use the following result, see [9] for details. If U0 is absolutely continuous, d〈ψ, E0(θ)φ〉 = Fψ,φ(θ)dθ with

Fψ,φ(θ) = d〈ψ,E0(θ)φ〉
dθ

belonging to L1(T) for any ψ,φ ∈ H.
Now we state a lemma that will be used later.

Lemma 3.1. Let U0 be unitary, u, v ∈ H with ‖u‖ = 1 and E ∈ [0,2π). Assume that z = eiE is not an eigenvalue of U0 and

v = lim
r→1−

(
U0 − reiE)−1

u in the strong sense.

Then

(i) (U0 − eiE)v = u.
(ii) For all ψ ∈ H,

d
〈
ψ, E0(θ)u

〉 = (
eiθ − eiE)

d
〈
ψ, E0(θ)v

〉
.

(iii) If in addition U0 is purely absolutely continuous

2π∫
0

cot
(
(E − θ)/2

)
d
〈
ψ, E0(θ)u

〉
exists.



M.A. Astaburuaga, V.H. Cortés / J. Math. Anal. Appl. 380 (2011) 511–519 515
Proof. By (3.1) part (i) follows at once. The second statement is a direct consequence of item (i) and the spectral theorem.
To prove (iii) we apply (ii) and notice that U0 is purely absolutely continuous, so the corresponding Radon–Nikodym

derivative Gψ,v (θ) = d〈ψ,E0(θ)v〉
dθ

is an L1(T) function and (eiθ − eiE) cot((E − θ)/2) is uniformly bounded. �
Let us remind that {u j} j and {λ j} j are the corresponding vectors and real numbers coming from the spectral represen-

tation (1.3) of the compact self-adjoint operator K . Let us enumerate the following hypotheses.

(H1) There is E ∈ [0,2π) such that eiE is not an eigenvalue of U0 and v j := limr→1(U0 − reiE)−1u j exists in the strong
sense for each j.

(H2)
∑∞

j=1 |λ j|2‖v j‖2 < ∞, if rank of K is not finite.

Assume that (H1), (H2) hold for U0 and K . Thus the eigenvalue problem (1.4) can be written as

M∑
j=1

(
1 − eiβλ j

)〈u j,ψ〉U0 v j = ψ, (3.2)

where M is the rank of K .
By taking product with 〈up, ·〉 in the above identity, we may represent Eq. (3.2) in C

M (M = ∞ is allowed; in that case
the Hilbert space is just l2). In this framework Eq. (3.2) becomes

M∑
j=1

(
1 − eiβλ j

)〈up, U0 v j〉 f ( j) = f (p), (3.3)

where v j = limr→1(U0 − reiE)−1u j , and f ∈ C
M with f ( j) = 〈u j,ψ〉.

By Lemma 3.1, we know that U0 v j = u j + eiE v j and since {u j} is an orthonormal set, (3.3) becomes

M∑
j=1

(
1 − eiβλ j

)〈
up, eiE v j

〉
f ( j) = eiβλp f (p). (3.4)

Clearly, if M is finite, (T M f )(p) = ∑M
j=1(1 − eiβλ j )〈up, eiE v j〉 f ( j) is well defined on C

M . If M = ∞ we assume (H2).

Anyway, conditions (H1), (H2) imply that T := T∞ is compact in l2 and ‖T∞‖2 � |β|2 ∑∞
j,p=1 |λ j |2|〈up, v j〉|2 < ∞.

Under these assumptions the corresponding characteristic equation (1.4), in the l2 framework, is

(T f )(p) = eiβλp f (p), for all p � 1. (3.5)

We will see that Eq. (3.5) sometimes admits only the trivial solution in l2, more precisely, for β sufficiently small f = 0
is the only solution.

Proposition 3.2. Assume that conditions (H1) and (H2) are fulfilled and choose β such that ‖T M‖ < 1 (M = ∞ is included). Then in
C

M (or l2 for M = ∞) the only solution of (3.5) is the trivial one.

Proof. Assume that T f = D f , with D the unitary operator defined as (D f )(p) = eiβλp f (p). Thus, ‖T f ‖ = ‖D f ‖ = ‖ f ‖, so if
f �= 0 contradicts the fact that ‖T ‖ < 1. �

We shall see in the next section that if K has finite rank then the eigenvalue problem can be reduced to an eigenvalue
problem for matrices in C

m , where m is the rank of K .

Theorem 3.3. Consider U0 an absolutely continuous operator and E ∈ [0,2π). Let {u j} j be an orthonormal set on H satisfying
hypothesis (H1). Then

〈up, U0 v j〉 = 1

2
δpj + i

2

2π∫
0

cot
(
(E − θ)/2

)
d
〈
up, E0(θ)u j

〉
(3.6)

and 〈up, U0 v j〉 = −〈u j, U0 v p〉.

Proof. By (H1) and the spectral theorem one has that
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〈up, U0 v j〉 =
〈
up, U0

(
lim
r→1

(
U0 − reiE)−1

u j

)〉
= lim

r→1

〈
up, U0

(
U0 − reiE)−1

u j
〉

= lim
r→1

2π∫
0

eiθ

eiθ − reiE
d
〈
up, E0(θ)u j

〉
.

But it is well known that eiθ

eiθ −reiE → 1
2 + i

2 cot((E − θ)/2), for θ �= E . So, it remains to prove that the limit can be carried
inside the integral.

Let us write F p, j(θ) = d〈up ,E0(θ)u j〉
dθ

and G p, j(θ) = d〈up ,E0(θ)v j 〉
dθ

. Note that F p, j, G p, j ∈ L1(T) and by Lemma 3.1, F p, j(θ) =
(eiθ − eiE)G p, j(θ). Thus,∣∣∣∣ eiθ

eiθ − reiE

∣∣∣∣|F p, j(θ)| =
∣∣∣∣ eiθ − eiE

eiθ − reiE

∣∣∣∣∣∣G p, j(θ)
∣∣ � 2

∣∣G p, j(θ)
∣∣.

Thus, using the Lebesgue’s dominated convergence theorem we get (3.6).
The conjugate property follows easily from the facts that cot((E − θ)/2) is real and d〈u j, E0(θ)up〉 = d〈up, E0(θ)u j〉.

Actually, weaker conditions can be imposed to get the identity (3.6), see [5]. �
3.1. K of finite rank

In this section we shall study the eigenvalue problem (1.2) for the perturbed operator eiβK , K a finite rank operator. We
will see, as expected, that the eigenvalue problem (1.2) is essentially an eigenvalue problem for finite matrices.

Assuming that K has rank m, as we mentioned, the eigenvalue problem to solve is

m∑
j=1

(
1 − eiβλ j

)〈up, U0 v j〉 f ( j) = f (p), for all p = 1, . . . ,m.

Let us represents the above identities by

Ax̂ = x̂, (3.7)

where x̂ ∈ C
m is the column vector x̂ = [〈u1,ψ〉 . . . 〈um,ψ〉]t , and A = (apj) is an m×m matrix with coefficients in C defined

by

apj = (
1 − eiβλ j

)〈up, U0 v j〉.
The matrix A can be decomposed as A = B D , so the eigenvalue problem (3.7) becomes

(B D − I)x̂ = 0̂, (3.8)

where D is an m × m diagonal matrix with entries d j = 1 − eiλ jβ and B is the m × m matrix given by

B = (bpj), with bpj = 〈up, U0 v j〉. (3.9)

Note that D depends on the parameters β and λ j , the corresponding eigenvalues of K . In addition, if the matrix D is
invertible then Null(A − I) �= {0} if and only if Null(B − D−1) �= {0}.

In the case that D is not invertible, some columns of A are zero, so the rank of K is less than m or λ jβ is a multiple of
2π for some j. From now on we assume that D is invertible.

The next proposition summarizes some properties of the matrix A = B D . We assume that U0 is purely absolutely con-
tinuous, so Theorem 3.3 is valid.

Proposition 3.4. Assume that the m × m diagonal matrix D with entries d j = 1 − eiβλ j is invertible and define C = B − D−1 with B
defined in (3.9). Then C = iR with R hermitian. Moreover, the eigenvalues of B lie on the line { 1

2 + it: t ∈ R}.

Proof. The first part follows using Theorem 3.3 and the identity d−1
j = 1/2 + i/2 cot(λ jβ/2).

Consider α an eigenvalue for B with B w = αw , w = [w1 . . . wm]t . Using that B = D−1 + iR ,〈
w, D−1 w

〉 + i〈w, R w〉 = 〈w, B w〉 = α‖w‖2.

But, 〈w, D−1 w〉 = 1
2 ‖w‖2 + i

2

∑m
j=1 |w j |2 cot(λ jβ/2) and 〈w, R w〉 is real. By taking the real part in the above identities we

obtain that α = 1/2. �
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Thus, we have proved that Ax̂ = x̂ has a non-trivial solution if and only if 0 is an eigenvalue for the hermitian matrix R .
Now to go further one needs to look at the entries of R . Let us denote as G(x) the kernel G(x) = 1

2 cot(x/2) for
0 < x < 2π . By hypothesis (H1) and since U0 is purely absolutely continuous we know that

c j(E) =
2π∫
0

G(E − θ)d
〈
u j, E0(θ)u j

〉
(3.10)

is well defined.
The principal diagonal of R has real entries given by

r j j =
2π∫
0

G(E − θ)d
〈
u j, E0(θ)u j

〉 − G(λ jβ/2) = c j(E) − G(λ jβ/2). (3.11)

On the other hand, the off diagonal entries of R do not depend on the real parameter β .

Example. Let K be a real finite linear combination of rank one orthogonal projectors, that is, K = ∑m
j=1 λ〈u j, ·〉u j . Us-

ing (3.8), the equation B Dx̂ = x̂ becomes

Bx̂ = 1

1 − eiλβ
x̂ =

(
1

2
+ i

2
cot(λβ/2)

)
x̂.

By Proposition 3.4, if B ŵ = α0 ŵ then α0 = 1
2 + it0, for some real t0. The image of cotangent is the whole real line, thus

for every eigenvalue α of B we can choose a unique β , depending on α, with 0 < β < 2π/λ such that α = 1
2 + it =

1
2 + i

2 cot(λβ/2).
In this way we have proved that for such K and E there exists β restricted to the open interval ]0,2π/λ[ such that

Uβψ = eiEψ has a non-trivial solution.

Consider the eigenvalue problem Uβψ = zψ with z = eiE and K = ∑m
j=1 λ j〈u j, ·〉u j . We associate to this problem the

following Hermitian m × m matrix

R =

⎡
⎢⎢⎢⎣

r11 r12 . . . r1n

r12 r22 . . . r2n

...
...

. . .

r1n r2n . . . rmm

⎤
⎥⎥⎥⎦ (3.12)

where rpj = −ibpj are given by (3.9) for p �= j and by (3.11) for p = j. Note that for p �= j, rpj depend on E but not on β

or λ j . So far, we have proved the following result.

Proposition 3.5. Assume that the entries of the matrix R are well defined for a given real number E. Then z = eiE is an eigenvalue of
Uβ if and only if det(R) = 0.

Our next result shows that the rank two case is solvable in a rather general context.

Theorem 3.6. Let K be a rank two operator defined by K = λ1〈u1, ·〉u1 + λ2〈u2, ·〉u2 with u1, u2 orthogonal and satisfying (H1) for
a real number E, 0 � E � 2π . Assume that λ1, λ2 have the same sign. Then there exists β0 such that has eiE is an eigenvalue for the
perturbed operator Uβ0 = U0eiβ0 K .

Proof. Let us write D := D(β). It is enough to consider λ1 � λ2 > 0. It is more convenient to work with the matrix equation
(B − D−1(β))x̂ = 0̂, which has a non-trivial solution if and only if there exists β such that det(B − D−1(β)) = 0.

By Proposition 3.4 we have that det(B − D−1(β)) = 0 if and only if det(R) = 0, R hermitian. That is, r11r22 − |r12|2 = 0.
Note that r12 does not depend on β . Also, det(R) = 0 if and only if(

c1(E) − 1

2
cot(λ1β/2)

)
·
(

c2(E) − 1

2
cot(λ2β/2)

)
= |r12|2, (3.13)

where c1(E), c2(E) do not depend on β . So, we need to prove that for a given positive number |r12|2 there exists a solution
β for Eq. (3.13).

The period of g j(β) = 1 cot(λ jβ/2) is T j = 2π for each j = 1,2, and the condition λ1 � λ2 > 0 implies that T1 � T2.
2 λ j
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Let h j(x) denote the periodic functions h j(x) = c j(E)− g j(x) for j = 1,2. Since λ1, λ2 have the same signs both functions
go to −∞ as β → 0+ . On the other hand, g1(]0, T1[) = R, which assures that the range of h1(x) as x runs over the interval
]0, T1[ is the whole real line. Since h1 is continuous in the branch ]0, T1[ there exists x1 ∈ ]0, T1[ with h1(x1) = 0.

Thus, H(x) = h1(x)h2(x) approaches +∞ as t → 0+ and H(x1) = 0. Also, since T2 � T1, H is continuous in ]0, T1[.
Therefore, the product function H(x) = (c1(E) − g1(β)) · (c2(E) − g2(β)) attains any nonnegative number when x runs
over ]0, T1]. �

Next, we settle a sort of converse result.

Theorem 3.7. Let U0 be a unitary operator without eigenvalues, and m be a positive integer. Consider E a real number and {u1, . . . , um}
an orthonormal set satisfying condition (H1). Then for any real t there exists a compact self-adjoint operator K of rank m, K =∑m

j=1 λ j〈u j, ·〉u j , such that eiE is an eigenvalue of Ut = U0eit K .

Proof. Let us define the function � : R
m → R by �(x1, x2, . . . , xm) = det(M), where

M =

⎡
⎢⎢⎢⎣

c1(E) − x1 r12 . . . r1n

r12 c2(E) − x2 . . . r2n

...
...

. . .

r1n r2n . . . cm(E) − xm

⎤
⎥⎥⎥⎦ .

Let us write N = {(x1, x2, . . . , xm) ∈ R
m: �(x1, x2, . . . , xm) = 0}. Taking x1 = x2 = · · · = xm = x one gets M = Q − xI , with

Q hermitian. So, �(x1, . . . , xm) = p Q (x) is the characteristic polynomial associated to Q . Since Q is hermitian the roots of
p Q (x) must be real, so N is not empty.

Consider (x1, . . . , xm) a solution of �(x1, . . . , xm) = 0. Let us recall that cot(x/2) is a bijection between ]0,2π [ and R =
]−∞,∞[. Then for a given real number t it is possible to choose a vector (λ1, . . . , λm) with 0 < λ j

t
2 < π , for j = 1, . . . ,m,

and such that x j = 1
2 cot(λ jt/2). With these choices R = M and det(R) = 0, which completes the proof. �

3.2. Eigenvalues for K of infinite rank

We now study the eigenvalue problem Uβψ = zψ , where Uβ = U0eiβK with K of infinite rank.
Suppose that conditions (H1), (H2) hold for K and z = eiE . Define the linear operator S K by S K ψ = ∑

j λ j〈u j,ψ〉v j .

By conditions (H1), (H2) S K is a bounded linear operator in H with norm ‖S K ‖ �
∑

j |λ j|2‖v j‖2.
Following the same directions as we developed for the finite rank case, the eigenvalue problem for Uβψ = zψ may be

represented in the Hilbert space l2 by

∞∑
j=1

(
1 − eiβλ j

)〈u j,ψ〉〈up, U0 v j〉 = 〈up,ψ〉, (3.14)

with λ j → 0 and v j = S K u j . Recall that U0 v j = u j + zv j for all j.
Let us define the operator T z as follows

(T z f )(p) =
∞∑
j=1

(
1 − eiβλ j

)〈up, zv j〉 f ( j).

Under conditions (H1), (H2), T z is compact on l2 and the eigenvalue problem Uβϕ = zϕ may be written as the following
problem in l2,

(T z f )(p) = eiβλp f (p). (3.15)

Notice that v j depend on z.

Theorem 3.8. Assume that conditions (H1), (H2) are fulfilled. Then f ∈ l2 is a solution of (3.15) if and only if ψ =∑
j(1 − eiβλ j ) f ( j)U0 v j is a solution of the eigenvalue problem Uβψ = zψ with f ( j) = 〈u j,ψ〉 for all j.

Proof. It only remains to prove that if f ∈ l2 then ψ = ∑
j(1 − eiβλ j ) f ( j)U0 v j is a vector belonging to H, but this is a

consequence of condition (H2) since

∑
j

|λ j|
∣∣ f ( j)

∣∣‖U0 v j‖ � ‖ f ‖l2

( ∑
j

|λ j|2‖v j‖2
l2

)1/2

. �
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3.3. The shift operator

Now we shall apply the general framework developed above to the shift operator.
Let us take fn ∈ l2 with fn(k) = δnk (Kronecker delta) and consider g ∈ l2 a finite linear combination of fn ’s. After

reordering we may assume that g = ∑N
n=1 an fn . First, we find conditions on K , β, E in such a way that g is a solution

of (3.15).
Clearly, (T fn)(p) = (1 − eiβλn )〈up, zvn〉 and

(
1 − eiβλn

)〈up, zvn〉 =
{

0 if p �= n,

eiβλn if p = n.

Then g is a solution of (3.15) if

N∑
n=1

an
(
1 − eiβλn

)〈up, zvn〉 =
{

apeiβλp if 1 � p � N,

0 if p > N.
(3.16)

If 〈up, vn〉 = 0 for all p > N and 1 � n � N , we obtain that

N∑
n=1

an
(
1 − eiβλn

)〈up, zvn〉 = apeiβλp ,

which is just the equation given in (3.4) for the finite dimensional case.
Let U0 be the shift operator on l2(Z). The operator U0 is unitary, has purely absolutely continuous spectrum, and

σ(U0) = T. Our goal is to define a compact operator K having infinite rank such that the perturbed operator Uβ = U0eiβK

has an eigenvalue z = eiE .
Let us construct an orthonormal set {u j} j and their corresponding {v j} j , v j = (U0 − eiE)−1u j , such that conditions (H1),

(H2) are fulfilled.
Define the vector u j ∈ l2 as follows

u j = ae3 j+2 − zae3 j+1, (3.17)

with a ∈ C. Clearly B = {u j: j ∈ Z} is an orthogonal set in l2(Z) and since |z| = 1, ‖u j‖2 = 2|a|2. Choosing a such that
|a|2 = 1

2 , the set B is orthonormal.
It is easy to see that v j = ae3 j+1 satisfies (U0 − z)v j = u j for all j ∈ Z, so (H1) holds. A direct computing shows that

〈u j, v p〉 = 0 for all j �= p and 〈u j, zv j〉 = − 1
2 and then its imaginary part is zero, so cot(λβ/2) = 0.

Applying Theorem 3.8, z will be an eigenvalue if |a|2 = 1
2 , and β,λ must satisfy βλ = π .

Proposition 3.9. Consider the orthonormal set B = {u j: j ∈ Z} where the vectors u j are given by (3.17) with |a|2 = 1
2 . Define the

compact self-adjoint operator K = ∑
j∈Z

λ j〈u j, ·〉u j and Uβ = U0eiβK , with U0 the shift operator acting on l2(Z). Assume that β and

λn satisfy βλn = π . Then ψ = (1 − eiβλn )U0 vn satisfies Uβψ = eiEψ .
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