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ABSTRACT 

In this note we establish results of  high accuracy for the two-point boundary  value problem 

y "  = n sinh ny (la) 

with the boundary  conditions 

y(0)  = 0 ,  y ( 1 ) =  1, ( lb)  

where n is real and positive. At the same time a derivation of  the approximation for large n 

y ' ( 0 ) -  8 e - n ( 1 - 2 e - n / 2 +  2 e - n ) ,  (2) 

which is deduced in [ 1] from numerical results, is obtained in the course o f  the development. 

I. INTRODUCTION 

The boundary value problem stated in (1) has been 
investigated by many authors (see [2] and the refer- 
ences given there). The difficulty of the numerical 
solution increases rapidly for, let us say, n > 5, and a 
number of methods have been proposed. The authors 
usually assess the accuracy by comparing their results, 
in particular the missing initial condition y'(0), and 
y'(1), with the results of other authors. It seems 
therefore worthwhile to make the "exact" values of 
y'(0) for the continuous solutions of (1) available for 
comparison purposes. By "exact" values we mean 
values accurate to at least 14 significant digits. The 
method can furnish easily more digits if desired. 
It has been known for some time that the solution to 
the problem can be expressed in terms of elliptic func- 
tions [3, 4]. Here we will however present the solution 
in terms of an expansion directly from the equation. 
This approach also enables us to prove the result in 
(2). Our lowest order approximation includes even 
one more term in the expansion of y "(0) (see eq. 
(10) below). 

2. THE IMPLICIT REPRESENTATION OF y'(0) 

The differential equation can be reduced in the well- 
known manner to the first order equation 

y.2(x ) = y,2 (0) + 4 sinh 2 (ny/2), (3) 

and therefore 

y'2(1) = y'2(0) + 4 sinh2(n/2). (4) 

The integration of (3) and the boundary condition at 
x = i lead to 

fl [y .2(0 ) + 4 sinh2 (ny/2)]-l/2dy = 1. 
0 

By using the simplifying notation y'(0) = 2a, u = ny/2 
and by introducing 

o o  

J (s) = f (a 2 + sinh2u) -1/2du 
s 

we obtain 
n/2 

n= L (a2+ sinh2u)-l/2du= J(0)-J(n/2).  (5) 

The idea is to expand the integrand and integrate term 
by term. 
For n suf~ciently large, where a 2 is small, this can be 
carried out directly for J (n/2). In J (0), on the other 
hand, a 2 is always dominant near the lower limit of 
integration, so that J (0) must be transformed to make 
an expansion in a 2 possible. We therefore write 

u 0 
J(0) = J(u0) + f (a 2 + sinh2u)-l/2du 

0 
where u 0 is defined by 

sinh2u 0 = a. (6) 

By introducing the new variable v 

sinh u = a/sinh v, 
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the second integral transforms toJ  (u0) also, so that 

J(0)  = 2J(u0) (7) 

and 

n = 2J(u0) - J  (n/2).  (8) 

This "folding" of  J (0) around u 0 to obtain 2J(u0) is 

the crucial step, since we can now take full advantage 
of  the fact that a 2 is small. 

3. THE LEADING TERM 

It is remarkable that the lowest order approximation 
o f  (5) already gives a very good approximation to 
y" (0). In 

oo oo 

n = 2 f (a 2 + sinh2 u)-l/2du- f (a 2 + sinh2u) -1/2du 

u 0 n/2 

we neglect the a 2 to obtain 
oo  o o  

n = 2 f du/sinh u - f du/sinh u = 2 log coth (u0/2) 
u0 n/2 

+ tanh (n/4). 

But coth (u0/2) = (1 + cosh u0) /s inh u 0 - 2/x/a  if 

we approximate cosh u 0 = (1 + a) 1/2 - I by its lead- 
ing term, so that 

- n - log [a14 tanh (n/4)], 

a - 4e -n  tanh (n/4). 

Hence, the lowest order approximation o f  y ' ( 0 )  is 

yd (0) = 8e -n tanh  (n/4). (9) 

As we will show below, this result is accurate to (in- 

cluding) terms o f  order e - 5 n / 2 ,  i.e., in an expansion in 

powers of  e - n / 2  

y ' (0 )  = 8 e -n  ( 1 - 2 e  - n / 2  + 2e - n - 2 e  - 3 n / 2  + .. .) 

(10) 
is actually correct : the next term in (8) furnishes a 

contribution of  0 (ne-3n) .  This confirms the results 
(2), obtained numerically in [1]. 

4. THE EXPANSION IN a 

There is no basic difficulty in expanding the integrands 

in (8) in terms o f  a 2, provided that, in J (n/2), 

a < sinh(n/2). In J (u0) we always have a 2 < sinh2u0=a. 

Therefore, an estimate shows that the expansion is 
certainly valid for n ;~ 1. Although the expansion can 
be carried out quite generally, we wiUjust show this by 
including one more term and then simply state the 
general result. 
We write 

J(s) = fs (1 + a21sinh2u)-l/2 du/s inh u 

= fs du/s inh u - (g2/2) du/sinh3u 

oo 

+ (3a4/8) fs du/sinh5u - ' " "  

o r  

a 2 a 2 cosh s 
J (s) = (1 + - -  + ...) log coth (s/2) 

4 4 sinh 2 s 

For J (n/2) we need to retain only 

a 2 
J(n/2)  = -  (1 + ~- - )  log tanh (n/4) - 

3a4cosh s 
- - +  

32 sinh4 s 

(11) 

a 2 cosh (n/2) 

4 sinh 2 (n/2) 

whereas for J (u0) more terms are required 

J(u0) = (1 + 1/4a 2) log [(1 + x/~++ a)2 /a ]  - ax/1  + a / 2  

+ 3a2 /16 .  

From (8) it follows that 

{(1 + vq-f+ 2 
n = ( l +  ~---) log a tanh (n/4) } 

a a 2 a 2 cosh (n/2) 

2 16 4 sinh 2 (n/2) 

If we s e t a  I = a0(1  + e) with 

a 0 = 4e -n tanh (n/4) 

we obtain, after a simple expansion, 

e = - -  a2 [ n - l +  cosh(n[2)  ] ,  
4 sinh 2 (n / 2) 

or as the next approximation (cf. (9)) 

,2 
Y0 (0) cosh (n/2) 

y'(O) = y~) (0) {1 + ~ [n-1  + 
16 sinh2(n/2) 

(12) 
The term y~(0) is therefore indeed correct to 0 (ne-3n) .  

The general expansion can now proceed along the same 
line. 
All integrals are of the form 

d u / s i n h 2 k + l u ,  k=  0, 1, 2 .. . .  
S 

and are expressible as a finite sum in terms of  log coth(s/2) 

andcosh s/sinh2j s, j = 1, 2 . . . . .  For s = n/2 all these 
terms are therefore known functions, and for s = u 0 
the terms are functions o f a .  
If we introduce 

~= a(l+ 1N/~+a) -2 

and hence 

]} + 0(e -4n) 

a =  4 f l / ( 1 - f l ) 2 ,  
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furthermore o = 1/sinh 2 (n/2) 
7=  cosh(n/2)/2 

a 0= 1, a k = - ( 1 - 1 / 2 k )  ak_ 1 for k = 1, 2 . . . .  

and the functions 
OO 

I (a 7 = k~ 0 (ak ak)2 

O 0  

S(n, aT=k~ l q a  k ~1( 1V/~+a ak-q-,oqak)/qaq 
q 

then, continuing the expansion as in (11), we obtain 

n = I(a) log [tanh(n/4)/3]+S (n, a). (13) 

It is quite feasible to obtain, by a systematic expan- 
sion of a in terms of n, more terms in a (as outlined 
above for the next higher term e). However, it is more 
convenient to solve (13) by iteration. We start with 
the approximation a 0 or a I (see (9) and (127) and 

compute by consecutive substitution 

fl = tanh (n/47 exp [{S (n,a) - n}/I ((z)]. (14) 

The lowest approximation above corresponds to 
S(n, 07 = 0, I (0) = 1, 3 = a14, leading to (9). 
The value of the slope at x = 1 is found by (4) 

y ' (1)  = 2x/a  2 + l /a .  

The iterative solution of (14) is quite suitable for ma- 
chine computation even down to n = 1, and it has also 
been implemented on a Hewlett-Packard 67, where the 

relative error of + 5.10 -9 can be achieved. 
No reference has been made to elliptic functions. But 
instead of evaluating I(a) by the series as written, we 
can use the known transformation for the complete 
elliptic integral K = (¢r/2) I(a) [5, eq. 773.2], applied 
repeatedly, for faster convergence. 

Table 1 

Although the numerical solution of the problem 
presents no difficulty for n < 1, for completeness' 
sake an expansion for small n can be easily carried 
out with the result 

. 2  n 4 
y ' (0 )=  1--~---+ 9--0- "'" 

which joins y '(0) for n = 1 with an error of 0.1 7.. 

5. NUMERICAL RESULTS FOR y "(0) AND y "(17 

In table I the results for y '(0), accurate to all digits 
given, the relative errors E 1 = [y "(07 - y t ( 0 ) ] / y  "(0) 

from (9) and E 2 from (127, and y '(17 are listed. There 

is no need to include values for n > 20, since y t (0)  is 

correct to 16 digits. For y "(1), the approximation 
y '(1) = 2 sinh (n/2) furnishes 16 digits for n ~ 14. 
There are fewer than 20 iterations required to solve 
(14) for n = 1, six iterations for n = 5, and even fewer 
for larger n. 

6. THE APPROXIMATION TO THE FULL SOLUTION 

The basic idea to derive the good approximation for 
y'(07 can also be used to obtain an approximation to 
the full solution y(x 7. 

From (37 it follows that 

x = f0Y[y'2(0) + 4 shah 2 (n~ /2 ) ] - l / 2d~  

or ny/2 

nx= f0 (a2 + s inh2u) - l / 2du=J (0 )  - J ( n y / 2 )  

n y'(0) E 1 E 2 y '(I)  

1 8.45202 68530 9951.10 -1 1.5-10 -1 3.2.10 -2 1.43183 78623 6849 

2 5.18621 21926 9340.10 -1 3.5.10 -2 3.3.10 -3 2.40693 98312 4707 

3 2.55604 21556 2933.10 -1 1.0.10 -2 3.0.10 -4 4.26622 28618 0282 

4 1.11880 16477 0749.10 -1 2.6.10 -3 1.9.10 -5 7.25458 35747 6858 

5 4.57504 61406 3187-10 -2 5.5.10-4 8.3-10 -7 1.21004 95450 7778.10 

6 1.79509 49489 5458.10 -2 1.0.10-4 2.9.10 -8 2.00357 57896 3586-10 

7 6.86750 96950 5692.10 -3 1.8.10 -5 8.6.10 -10 3.30852 55288 0148.10 

8 2.58716 94189 6258.10 -3 2.9.10 -6 2.3-10 -11 5.45798 34455 5734.10 

9 9.65584 54107 6174.10-4 4.7.10 -7 5.8.10 -13 9.00060 22309 1603-10 

10 3.58337 78463 0814.10 -4 7.2.10 -8 1.4.10 -14 1.48406 42115 6010.102 

12 4.89106 21759 1979.10 -5 1.6-10 -9 7.1.10 -18 4.03426 31474 0561.102 

15 2.44451 30237 4325.10 -6 5.2.10 -12 - 1.80804 18613 7169.103 

20 1.64877 31827 8040.10-8 3.2-10 -16 2.20264 65749 4068-104 
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and hence (cf. eq. (8)) 

nx = 2J(u0) - J (ny/2) .  

If y is sufficiently large, i.e., ¢ < sinh (ny/2), then we drop 

all a's, except in coth(u0/2 ) = 2 /~a .  As in section 3, it 
follows that 

nx = log (4/ct) + log tanh (ny/4). 

By using the approximation for a from (9) or directly 
from the condition 

y(1) = 4 tanh-1 (aen/4) = 1 
n 

we obtain the result 

4 tanh-1 [e-n tanh(n/4) enX]. (15) yo(x)  = -ff 

This approximation is n o t  valid for small y, but for large 
n the error: even at x = 0, is still only 

Y0(0) - y~(0)/2n 

It is noteworthy that such a drastic simplification leads 
to rather accurate results for n = 10 and x > 0.5 (see 
table II). 
Table II 

n = 1 0  

x y(x) x y(x) 

0.00 0.0 1) 0.60 7.22893 1229E-3 
0 0  
0 1 .  

-0.118 E-11 4) 7.22893 1213E-3 

0.05 1.86728 1378E-5 0.70 1.96640 6314E-2 
1374   

 %640 

0.10 4.21118 9937E-5 0 80 5.37303 2947E-2 
4.21118 9922E-5 "5.341 E-2 
4.870 E-5 5.37303 346 E-2 
4.21118 9889E-5 5.37303 2935E-2 

0.20 1.29964 1161E-4 0.90 1.52114 0768E-1 
1.29964 1124E-4 1.452 E-1 
1.324 E-4 1.52114 0775E-1 
1.29964 1157E-4 1.52114 0764E-1 

0.30 3.58978 4022E-4 0.95 2.76267 7347E-1 
3.58978 31 E-4 2.39 E-1 
3.5987 E-4 2.76267 7341E-1 
3.58978 4014E-4 2.76267 7338E-1 

0.40 9.77902 7739E-4 0.98 4.48233 0406E-1 
9.77900 8 E--4 3.23 E-1 
9.7823 E-4 4.48233 0387E-1 
9.77902 7718E-4 4.48233 0387E-1 

0.50 2.65902 0496E-3 1.00 1.0 
2.65898 1 E-3 0.395 
2.65914 E-3 1.0 
2.65902 0490E-3 1.0 

1) y(x) in [6], 2) y£(x) eq.(16), 3) 
4) y(x) eq. (17). 

Yo(X) eq. (15), 

Table HI 

y(x) 

n = 5  

X y(x) 

0.00 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

o o 
(-1.99 E-6) 

0.0023114 
0.0023100) 

0.00476807 
0.0047670) 

0.0107532) 
0.0107529 

0.0194831) 
0.0194850 

0.03318 ) 
0.0320037 

0.05536 ) 
0.05543735 

0.09166 ) 
0.09204435 

0.70 (0.1514 ) 
0.1531614 

0.75 (0.1944 ) 
0.1983240 

0.80 (0.2497 ) 
0.2582165 

0.90 (0.412 ) 
0.4550600 

0.94 (0.503 ) 
0.5910385 

0.98 (0.614 ) 
0.8114850 

1.00 (0.679 ) 
1.0000000 

1) y£(x) eq. (16), 2) Yl(X) eq. (17), the less accu- 

rate approximation is in parentheses. 

x yCx) in [7] 

0.00 0.0 
0.50 0.005543 
0.75 0.1983 
0.94 0.5910 
0.98 0.8114 
1.00 1.0 

For small y we can approximate y(x) by the solution 

yg(x) = y~(0) sinh nx (16) 

of the linearized equation (1) 

y~ = n2y£. 

Whereas Y0(X) furnishes an upper bound for the solu- 
tion, y£(x) gives a lower bound. In order to decide 
which of the two solutions should be adopted, we 
simply find the x m in table II for which the difference 
Y0(X) - y£(x) is a minimum and use y~(x) below it, 

y0(x) above it. Actually, the next approximation to 
y(x) is quite easy to obtain, as outlined in the next 
section, and gives considerably better results. 
It is not surprising that Y0(X) is independent of the 
unknown initial condition y'(0). If we integrate (3) 
for y "(0) = 0, and impose the end condition y(0) = 1 
we obtain 

fl d~/sinh (nr//2) = 2(1 -x) 
Y 

and the result (15) follows immediately. 
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7. HIGHER ORDER EXPANSION R E F E R E N C E S  

1. 
Since the lowest order solution Y0(X) is so simple, we 

compute the next term 

y (x) = Y0(X) + a2y l (x ) .  2. 

I f  we use (3) then the a 2 terms lead to 

2y~ Yi = 4 + 4 n y  I sinh(nY0/2) cosh (nY0/2) 3. 

o r  

y~ - n cosh (nY0/2) Yl = cosech (nY0/2). 4. 

By using identities for the hyperbolic functions, this 
equation is integrated by the standard formula [5,891.1]. 5. 
AU integrations can be carried out in dosed form and 
the result is 6. 

= z ~z 2 T 2 1 1 4n (1 -x )}  
Yl (x) 4 n ( l _ z 2 )  L - - ~ - + - - + T 2  

(17) 7. 

where T = tanh (n/4) and z = e -n tanh (n/4) e nx. This 
permits a simple evaluation o f  the approximation 

yl(x). 
For n = 10, this result furnishes in general eight signifi- 
cant figures. Even for n = 5 we agree with the (appar- 
ently truncated) four figures in [7], but the values y(x) 
based on (17) can be expected to be accurate to five 
places or more, depending on x. 
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