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Abstract

Spectral positivity is known to be violated by some forms of lattice gauge fixing. The most notable example is lattice
gauge, where the effective gluon mass is observed to rise rather than fall with increasing distance. We trace this violat
use of quenched auxiliary fields in the lattice gauge fixing process, and show that violation of spectral positivity is a
feature of quenching. We illustrate this with a simple quenched mass-mixing model in continuum field theory, and
quenched form of the Ising model. For lattice gauge fixing associated with Abelian projection and lattice Landau ga
show that spectral positivity is violated by processes similar to those found in quenched QCD. For covariant gauges par
by a gauge-fixing parameterα, theSU(2) gluon propagator is well described by a simple quenched mass-mixing formula
gluon mass parameter appears to be independent ofα for sufficiently largeα.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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Although many observables can be determin
in lattice gauge theories without gauge fixing, th
are several reasons why gauge fixing is desira
in lattice simulations. Gauge fixing is necessary
make the connection between continuum and lat
gauge fields. Continuum theories of the origin
confinement often make predictions about the ga
field propagator. Gauge fixing has also been a
technique in lattice studies of confinement as well [
Important properties of the quark–gluon plasma ph
of QCD, such as screening masses, are containe
the finite-temperature gluon propagator.

Techniques for lattice gauge fixing have be
known for some time [2]. It has been clear from t
beginning that non-Abelian lattice gauge field pro
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agators show a violation of spectral positivity. Th
is readily seen from the effective mass: for a norm
operator which connects only states of positive no
to the vacuum, the effective mass monotonically
creases with distance to the lightest mass state
pling to the operator. Covariant gauge gluon propa
tors have an effective mass increasing with distan
In one sense, this is not surprising. We know from p
turbation theory that covariant gauges contain st
of negative norm. However, that knowledge has n
ther explained the form of the lattice gluon propaga
nor aided in the interpretation of the mass parame
measured from it. In fact, no similar violation of spe
tral positivity is observed in theU(1) case [3], which
has negative-norm states in covariant gauges.

In lattice simulations, gauge fixing has typica
involved choosing a particular configuration on ea
gauge orbit. A brief review of this approach is given
nse.
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Ref. [4]. In the continuum, on the other hand, gau
fixing usually includes a parameter that causes
functional integral to peak around a particular confi
uration on the gauge orbit. As shown below, the ext
sion of this idea to lattice gauge theories makes c
that lattice gauge fixing is a form of quenching, w
the gauge transformations acting as quenched fie
As has been demonstrated in quenched QCD, que
ing can violate spectral positivity, with significant e
fects on many observables [5,6].

We begin with a review of lattice gauge fixin
including the generalization of lattice Landau gau
to covariant gauges with a gauge parameter [7
This generalization will be directly interpreted as
quenched Higgs theory. We then explore the origin
violations of spectral positivity in some simple latti
and continuum models of quenching. Simulation
sults for the effective mass of anSU(2) lattice gauge
field will show behavior very similar to these mode
as the gauge fixing parameter is varied. We will arg
that spectral positivity violations in both lattice cova
ant gauges and in studies of Abelian projection or
nate in the quenching process.

The standard approach to lattice gauge fixing
two step process [4]. An ensemble of lattice gau
field configurations is generated using standard Mo
Carlo methods, corresponding to a functional integ

(1)ZU =
∫

[dU ] eSU [U ],

whereSU is a gauge-invariant action for the gau
fields, e.g., the Wilson action. The gauge actionSU
is invariant under gauge transformations of the fo
Uµ(x)→ g(x)Uµ(x)g

+(x +µ).
In order to measure gauge-variant observab

each field configuration in theU -ensemble may b
placed in a particular gauge, i.e., a gauge transfor
tion is applied to each configuration in theU -ensemble
which moves the configuration along the gauge o
to a gauge-equivalent configuration satisfying a lat
gauge fixing condition. The simplest gauge choice
defined by maximizing

∑
x,µTr[Uµ(x)+U+

µ (x)] for
each configuration over the class of all gauge trans
mations. Any local extremum of this functional sat
fies a lattice form of the Landau gauge condition:

(2)
∑
µ

[Aµ(x +µ)−Aµ(x)] = 0,
-

whereAµ(x) is a lattice approximation to the contin
uum gauge field, given by

Aµ(x)=
Uµ(x)−U+

µ (x)

2i

(3)− 1

N
Tr

[
Uµ(x)−U+

µ (x)

2i

]
.

Other gauge-fixing conditions may also be used [1
and lattice improvement techniques can be applie
the definition ofAµ to reduce discretization erro
as well. The global maximization needed is oft
implemented as a local iterative maximization. T
issue of Gribov copies arises in lattice gauge fix
because such a local algorithm tends to find lo
maxima of the gauge-fixing functional. There a
variations on the basic algorithm that ensure a uni
choice from among local maxima [10].

For analytical purposes, it is necessary to genera
this procedure [9], so that a given single configurat
of gauge fields will be associated with an ensem
of configurations ofg-fields. We will generate this
ensemble using

Sgf[U,g] =
∑
l

α

2N
Tr

[
g(x)Uµ(x)g

+(x +µ)

(4)+ g(x +µ)U+
µ (x)g

+(x)
]

as a weight function to select an ensemble ofg-fields.
The sum overl is a sum over all links of the lattice. Th
normal gauge-fixing procedure is formally regain
in the limit α → ∞. Computationally, this can b
implemented as a Monte Carlo simulation inside
Monte Carlo simulation.

Note that theg-fields must be thought of a
quenched variables, since they do not affect theU -
ensemble. The expectation value of an observableO ,
gauge-invariant or not, is given by

〈O〉 = 1

ZU

∫
[dU ] eSU [U ]

(5)× 1

Zgf[U ]
∫

[dg] eSgf[U,g]O,

where

(6)Zgf[U ] =
∫

[dg] eSgf[U,g].

Formally, the fieldg is a quenched scalar field wit
two independent symmetry groups,Gglobal ⊗ Glocal,
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so that it appears to be in the adjoint representatio
the gauge group, but the left and right symmetries
distinct. The generating functionalZgf[U ] is in some
ways a lattice analog of the inverse of the Fade
Popov determinant [11]. However, there are import
differences. Note immediately thatZgf[U ] depends on
the gauge-fixing parameterα. More fundamentally
the lattice formalism resolves the Gribov ambigu
By construction, gauge-invariant observables are e
uated by integrating over all configurations. Gau
variant quantities receive contributions from Grib
copies, always with positive weight. Thus the co
nection between this formalism for lattice gauge fi
ing and gauge fixing in the continuum is not sim
ple. Furthermore, alternative lattice gauge fixing p
cedures have been proposed, along with new ga
choices specific to the lattice. A comprehensive rev
of gauge fixing technology is available [10].

We begin our analysis of spectral positivity viol
tion with the simplest model of quenching possib
two free, real scalar fields with a non-diagonal m
matrix. The Lagrangian is

L= 1

2

[
(∂φ1)

2 +m2
1φ

2
1

] + 1

2

[
(∂φ2)

2 +m2
2φ

2
2

]
(7)−µ2φ1φ2.

We treat the quenched approximation of this mo
in a manner completely parallel to our discuss
of lattice gauge fixing above. We divide the acti
into three partsS = S1 + S2 + S12, where S1 and
S2 are functionals only ofφ1 and φ2, respectively,
and S12 contains the mixing term. We quench t
field φ2. Although there are no loops in this simp
theory, quenching implies thatφ2 cannot appear a
an internal line in the complete propagators. T
generating functional in the quenched approximat
including sourcesJ1 andJ2 is

(8)Z =
∫

[dφ1]e−S1+
∫
J1φ1

∫ [dφ2]e−S2−S12+
∫
J2φ2∫ [dφ̃2]e−S2−S12

,

where we have introduced a kind of ghost variableφ̃2;
spacetime variables are implicit.

From the generating functional we can obtain
〈φ1φ1〉 and〈φ2φ2〉 propagators. In momentum spac
the 〈φ1φ1〉 propagator is 1/(p2 + m2

1), sinceφ1 is
unaffected byφ2. On the other hand, the〈φ2φ2〉
Fig. 1. Exact propagator for the quenchedφ2 field in the simple
mass mixing model.

propagator is

(9)
1

p2 +m2
2

+ 1

p2 +m2
2

µ2 1

p2 +m2
1

µ2 1

p2 +m2
2

.

An alternative diagrammatic procedure is to s
Dyson’s series, as shown in Fig. 1, noting that
〈φ2φ2〉 propagator is truncated at two terms. T
propagator has a structure similar to theη′ propagator
in quenched QCD [5,6]; theη′ has a double pole form
in quenched QCD when singlet self-energy graphs
approximated by a constant. The〈φ2φ2〉 propagator
also may be written as(

1− µ4

(m2
2 −m2

1)
2

)
1

p2 +m2
2

+ µ4

(m2
2 −m2

1)
2

1

p2 +m2
1

(10)+ µ4

m2
1 −m2

2

1

(p2 +m2
2)

2
.

This propagator always violates spectral positiv
because of the double pole term, 1/(p2 +m2

2)
2, which

has a coefficient whose sign depends onm2
1 − m2

2.
Another possible violation of spectral positivity occu
for sufficiently strong mixing: ifµ4 > (m2

2 − m2
1)

2,
there is a simple pole atp2 = −m2

2 with negative
residue.

The form of the〈φ2φ2〉 propagator in coordinat
space is very interesting, and forms the basis for
study of other quenched theories. In any numbe
dimensions, we can consider propagators using
sources, i.e., of codimension 1. This has the ef
of setting the momentum equal to zero in all t
directions of the wall. For wall sources, we have
propagator

G(x)=
(

1− µ4

(m2
2 −m2

1)
2

)
1

2m2
e−m2|x|

+ µ4

(m2
2 −m2

1)
2

1

2m1
e−m1|x|

(11)+ µ4

m2
1 −m2

2

1

4m3
2

e−m2|x|(1+m2|x|).

The factorm2|x|e−m2|x| shows an initial rise rathe
than a decay with increasing|x|, violating spectral
positivity.
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Fig. 2. The effective mass associated withφ2 as a function ofx. The parameters used are: (a)m1 = 0.1, m2 = 0.4, µ = 0.2; (b)m1 = 0.1,
m2 = 0.2,µ= 0.2; (c)m1 = 0.5,m2 = 0.4,µ= 0.4; (d)m1 = 0.5,m2 = 0.1,µ= 0.4.
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We define an effective mass associated with theφ2
field as

(12)

meff(x)= lim
a→0

1

a
ln

( G(x)

G(x + a)
)

= − d

dx
ln

(
G(x)

)
.

One can easily check explicitly thatmeff(x) →
min(m1,m2) asx → ∞. For any field theory which
obeys spectral positivity,meff(x) monotonically de-
creases to its limiting value. Theories violating sp
tral positivity may display a complicated behavior f
meff(x) before the eventual onset of asymptotic beh
ior.

We have identified three different possible beh
iors formeff(x) in this simple quenched model. If th
mixing parameterµ is sufficiently small andm1<m2,
meff(x)monotonically decreases to its value at infin
as in a normal field theory which obeys spectral po
tivity, as shown in Fig. 2(a). Asµ is increased relative
to m1 andm2, meff(x) may develop a minimum, a
displayed in Fig. 2(b). On the other hand, ifm2<m1,
the behavior seen in Fig. 2(a) is not possible, and o
the behaviors seen in Figs. 2(c) and (d) are poss
In Fig. 2(d), the minimum has moved tox = 0. For
sufficiently smallµ, these effects are difficult to ob
serve, andmeff(x) is essentially equal tom2 for all x.
Regardless of the relative size ofm1 andm2, an ob-
servable violation of spectral positivity associated w
meff(x) not monotonically decreasing indicates a s
nificant mixing parameterµ.

Similar behavior can be observed in a very sim
lattice model based on the Ising model, where re
space arguments can be used to find an approxim
propagator. We consider two coupled one-dimensio
Ising models, with spinsµi , σi ∈ {−1,+1} and re-
spective nearest-neighbor couplingsJ andK. Theσ
spins are coupled to theµ spins via an interaction o
the form

∑
i Lσiµi , and theσ ’s are quenched. Thi

simple model is a form of spin glass, with the av
aging over the ensemble ofµ spins representing th
“quenching” process.

Theσ propagator is given by

〈σ0σn〉 = 1

Zµ

∑
{µ}

exp

[∑
i

Jµiµi+1

]
1

Zσ [µ]
∑
{σ }
σ0σn

(13)× exp

[∑
i

(Kσiσi+1 +Lσiµi)
]
,
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whereZµ is the partition function forµ andZσ [µ] is
the partition function forσ in the presence of a partic
ularµ background. The parameterL is a mixing para-
meter. We can approximately evaluate theσ propaga-
tor for J , K, andL sufficiently small by considering
the direct contribution(tanhK)n combined with mix-
ing of σ with µ. This indirect term can be written a
(compare Fig. 1)

(14)
n∑
p=1

n−p∑
m=0

(tanhK)n−p(tanhL)2(tanhJ )p.

After performing the summations, the propagato
given approximately as

〈σ0σn〉 ≈ (tanhK)n + (tanhL)2(tanhK)n

(15)×
[

nx

(1− x) − x2(1− xn)
(1− x)2

]
,

where x = tanhJ/ tanhK. The n(tanhK)n factor
signals a violation of spectral positivity, just as t
m|x|exp(−m|x|) term did in the mixing model. O
course, the arguments which led to Eqs. (9) and (
are essentially the same, but carried out in momen
space and real space, respectively. For smallJ , K,
andL, Eq. (15) fits lattice simulations of the〈σ0σn〉
propagator well.

In Fig. 3, we show the effective mass determin
from the 〈σ0σn〉 and 〈µ0µn〉 propagators for the
parameter setJ = 0.7, K = 0.9, andL = 0.3 for a
one-dimensional lattice of size 26. The propaga
were obtained from 40000 heat bath sweeps of thµ
variables; after each such sweep, 100 heat bath sw
of theσ variables were carried out. The parametersK

andL were chosen empirically so as to display a cl
violation of spectral positivity. Theµ mass fits very
well with the analytical solutionm= − ln tanh(J ) for
the d = 1 Ising model out to a distance of 8. No
that theσ reaches its asymptotic value of− ln(tanhK)
from below, and only atn � 8. The similarity to the
simple field theoretic model of quenching is clear.

We will now show that theSU(2) lattice gluon
propagator regarded as a function ofα shows behavio
similar to that of the other, simpler quenched mod
studied above. Simulations of this type of lattice fie
theory, with stochastic quenched gauge fixing fie
were first performed by Henty et al. [12], who studi
the case ofSU(3) as a function ofα at β = 5.7 on
84 lattices. They found evidence for a first-order pha
s

Fig. 3. Effective masses forσ andµ in the 1− d Ising model.

transition asα was varied, but did not determine th
full phase diagram in theα–β plane. They also foun
that the gluon propagator was dependent onα, a result
which could be anticipated from the strong-coupli
expansion [9].

Let us consider for the moment the unquench
version of the gauge fixing model. This is a mod
with scalar fields in the fundamental representat
of the gauge group in addition to the gauge fiel
The scalar fields explicitly break theZ(N) global
symmetry associated with confinement in the p
gauge case, and external color charges are scre
As first shown by Fradkin and Shenker [13], th
leads to a connection between the strong-coupl
confining phase and the Higgs phase, so the
phases are not actually distinct. We have verified
this phase structure is preserved in the quenched
of the model. Forβ sufficiently large, there is a lin
of first-order phase transitions in theβ–α plane. It is
very reasonable that such a line exists in the quenc
model, since it can be thought of as the continua
of the critical point of a pure spin model atβ =
∞. However, this line terminates at a critical e
point; for sufficiently smallα, the nominal confining
phase (β small) and Higgs phase (β large) are directly
connected. This observation forms the starting p
for a detailed analysis of the model [14].

We have performed simulations ofSU(2) gauge
theory atβ = 2.6 with α ranging from 1.0 to 3.0 on
a 123 × 16 lattice. At this value ofβ , there is a first-
order phase transition atα ≈ 0.83. We have fit the dat
using a simple generalization of the quenched mix
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Fig. 4. Effective masses for three values of the gauge fix
parameter,α = 1.0, 2.0 and 3.0.

model. The coordinate space propagator has the fo

(16)(A+Bm2|x|)e−m2|x| +Ce−m1|x|.
This form for the propagator follows from the replac
ment of the mixing parameterµ4 in Eq. (9) by the
more general formµ2(p2 +m2

3).
In Fig. 4, we show the effective mass as a funct

of x for α = 1, 2, and 3. The solid lines are obtain
from fits to the propagator using Eq. (16). The sim
larity to the other quenched models is quite clear.
smallα there is an initial decrease and then rise of
effective mass, much like Fig. 2(c); asα increases, this
minimum vanishes. We plot in Fig. 5 the best-fit valu
of m1 andm2 as a function ofα. Note that the behav
ior ofm2 is consistent with it being constant in this r
gion, whilem1 appears to be decreasing to a cons
limit asα increases.

Our results are roughly consistent with the wo
of Leinweber et al., who performed high-precisi
studies of theSU(3) gluon propagator atα = ∞ [15].
Among a large variety of possible functional forms f
the gluon propagator, they found that their data w
best fit by the functional form

(17)

G(k)=Z
[

AM2δ

(k2 +M2)1+δ + 1

k2 +M2
L(k2,M)

]
,

with L(k2,M) an infrared-regulated version of the a
ymptotic behavior of the renormalized gluon prop
gator in the continuum. Their best fit was achiev
with the parametersδ = 2.2+0.1+0.2

−0.2−0.3, M = (1020±
Fig. 5. Values of the two mass parameters in Eq. (16) a
function ofα. The light mass,m2 is approximately constant at th
value of 0.283(7), while the heavy mass initially decreases w
increasingα, reaching a constant value of 1.151(8).

100± 25)MeV, andA = 9.8+0.1
−0.9. Many other func-

tional forms were ruled out.
Our results suggest that the lighter mass param

m2 is independent ofα, at least for largeα (in the
Higgs phase). Ifm2 is indeed independent of gaug
choice, as least within the class of covariant gau
considered, it seems natural to identify it as the glu
mass. As a consequence of the quenched char
of lattice gauge fixing, this state partially mixes wi
another, heavier state, with a mass on the order o
scalar or vector glueball [16].

Note that the value of the lightest mass in the pr
agator may be difficult to extract from the effecti
mass. While it is true that the effective mass ten
asymptotically to the lightest mass, the approach
the limit can be much slower than in a conventio
field theory obeying spectral positivity. For examp
at α = 3.0, meff at x = 7 is substantially lighter tha
m2. Having a theoretical basis for the form of the pro
agator is crucial in estimating the mass.

Another application of lattice gauge fixing is Abe
an projection, a method for investigating the confin
properties of gauge theories. In lattice gauge theo
Abelian projection is implemented as an algorithm
extracting an ensemble of Abelian gauge field con
urations from an ensemble of non-Abelian configu
tions. A notable success of lattice studies of Abel
projection [17,18] has been the correlation of the str
tension of the projected theory with the string tens
of the underlying non-Abelian theory.
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These lattice studies of Abelian projection typica
use gauge fixing in an integral way. Taking for clar
the case ofSU(2), the gauge fixing functional is

Sgf =
∑
x,µ

α

2
Tr

[
g(x)Uµ(x)g

+(x +µ)σ3

(18)× g(x +µ)U+
µ (x)g

+(x)σ3
]
,

which is conventionally maximized over the gau
orbit, corresponding to the limitα → ∞ in the
formalism used here. An initial study of the pha
structure in theSU(2) case finds evidence for a fir
order phase transition asα is varied atβ = 2.4 [19].
The aim of this procedure is to transform anSU(2)
configuration into a gauge-equivalent one which l
mostly in a givenU(1) subgroup. After this gauge
fixing, the actual projection toU(1) is performed.

In the case where no gauge fixing is done (α = 0),
and only projection occurs, Faber et al. [20] a
Ogilvie [21] have proved that the asymptotic stri
tension measured in the projected and underly
theories are the same. Furthermore, Ogilvie [21]
proven that this result should continue to hold
small α, under the assumption that the gauge fix
does not violate spectral positivity. However, the f
that the string tension evaluated using various fo
of Abelian projection with gauge fixing is consisten
slightly different from the actual non-Abelian strin
tension [22,23] suggests that a violation of spec
positivity may indeed be occurring.

We identify the origin of this violation as th
presence of a quenched scalar field. The case
SU(2) is particularly clear. Note that the combinati
g+(x)σ3g(x) occurring in Sgf can be written as a
Hermitian scalar fieldφ(x), whereφ transforms as the
adjoint representation of the gauge group. The fielφ
is traceless, Tr(φ) = 0, and satisfies Tr(φ2) = 2. The
gauge fixing action is thus equivalent to an adjo
scalar action of the form

(19)Sgf =
∑
x,µ

α

2
Tr

[
φ(x)Uµ(x)φ(x +µ)U+

µ (x)
]
.

As we have seen, such quenched fields naturally
to violations of spectral positivity. Suppose we wish
measure aU(1) projected Wilson loop. This may b
Fig. 6. An example of a problematic diagram when calculating
expectation value of Eq. (20). The solid line is the Wilson loop,
dotted lines areφ propagators, and the wavy lines are gluons.

obtained from the expectation value of

Tr
∏
j

1

2
(1+ σ3)gjUjg

+
j+1

(20)= Tr
∏
j

1

2
(1+ φj )Uj ,

where the product is ordered along a closed p
labeled by the indexj . TheU(1) projected loop is
represented in the underlying quenched Higgs the
as a sum of Wilson loops with all possible insertio
of φ at lattice sites on the path. When four or moreφ
fields are inserted, problematic subdiagrams appe
the type shown in Fig. 6. Such terms lead to a violat
of spectral positivity: there are no internalφ loops
in the quenched approximation, and an infinite se
diagrams occurring in the full, unquenched theory
omitted. This exactly parallels quenched QCD.
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