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Abstract

Spectral positivity is known to be violated by some forms of lattice gauge fixing. The most notable example is lattice Landau
gauge, where the effective gluon mass is observed to rise rather than fall with increasing distance. We trace this violation to the
use of quenched auxiliary fields in the lattice gauge fixing process, and show that violation of spectral positivity is a general
feature of quenching. We illustrate this with a simple quenched mass-mixing model in continuum field theory, and with a
guenched form of the Ising model. For lattice gauge fixing associated with Abelian projection and lattice Landau gauge, we
show that spectral positivity is violated by processes similar to those found in quenched QCD. For covariant gauges parametrized
by a gauge-fixing parameter, the U (2) gluon propagator is well described by a simple quenched mass-mixing formula. The
gluon mass parameter appears to be independenfarfsufficiently largew.

0 2003 Published by Elsevier B.V. Open access under CC BY license

Although many observables can be determined agators show a violation of spectral positivity. This
in lattice gauge theories without gauge fixing, there is readily seen from the effective mass: for a normal
are several reasons why gauge fixing is desirable operator which connects only states of positive norm
in lattice simulations. Gauge fixing is necessary to to the vacuum, the effective mass monotonically de-
make the connection between continuum and lattice creases with distance to the lightest mass state cou-
gauge fields. Continuum theories of the origin of pling to the operator. Covariant gauge gluon propaga-
confinement often make predictions about the gauge tors have an effective mass increasing with distance.
field propagator. Gauge fixing has also been a key In one sense, this is not surprising. We know from per-
technique in lattice studies of confinement as well [1]. turbation theory that covariant gauges contain states
Important properties of the quark—gluon plasma phase of negative norm. However, that knowledge has nei-
of QCD, such as screening masses, are contained inther explained the form of the lattice gluon propagator
the finite-temperature gluon propagator. nor aided in the interpretation of the mass parameters

Techniques for lattice gauge fixing have been measured fromit. In fact, no similar violation of spec-
known for some time [2]. It has been clear from the tral positivity is observed in th€/ (1) case [3], which
beginning that non-Abelian lattice gauge field prop- has negative-norm states in covariant gauges.

In lattice simulations, gauge fixing has typically
involved choosing a particular configuration on each
E-mail address; mco@wuphys.wustl.edu (M.C. Ogilvie). gauge orbit. A brief review of this approach is given in
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Ref. [4]. In the continuum, on the other hand, gauge
fixing usually includes a parameter that causes the
functional integral to peak around a particular config-
uration on the gauge orbit. As shown below, the exten-
sion of this idea to lattice gauge theories makes clear
that lattice gauge fixing is a form of quenching, with

the gauge transformations acting as quenched fields.

As has been demonstrated in quenched QCD, quench
ing can violate spectral positivity, with significant ef-
fects on many observables [5,6].

We begin with a review of lattice gauge fixing,
including the generalization of lattice Landau gauge
to covariant gauges with a gauge parameter [7-9].
This generalization will be directly interpreted as a
guenched Higgs theory. We then explore the origin of
violations of spectral positivity in some simple lattice
and continuum models of quenching. Simulation re-
sults for the effective mass of &8 (2) lattice gauge
field will show behavior very similar to these models
as the gauge fixing parameter is varied. We will argue
that spectral positivity violations in both lattice covari-
ant gauges and in studies of Abelian projection origi-
nate in the quenching process.

The standard approach to lattice gauge fixing is a
two step process [4]. An ensemble of lattice gauge
field configurations is generated using standard Monte
Carlo methods, corresponding to a functional integral

Zy = f[dU] eSutUl 1)

where Sy is a gauge-invariant action for the gauge
fields, e.g., the Wilson action. The gauge actifn
is invariant under gauge transformations of the form
Uy(x) — g(x)U/L(x)g+(x + ).

In order to measure gauge-variant observables,
each field configuration in th&/-ensemble may be

placed in a particular gauge, i.e., a gauge transforma-

tion is applied to each configuration in theensemble
which moves the configuration along the gauge orbit
to a gauge-equivalent configuration satisfying a lattice
gauge fixing condition. The simplest gauge choice is
defined by maximizing_, , Tr[U,.(x) 4 U, (x)] for
each configuration over the class of all gauge transfor-
mations. Any local extremum of this functional satis-
fies a lattice form of the Landau gauge condition:

D A+ ) — A (0] =0, )
o
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whereA, (x) is a lattice approximation to the contin-
uum gauge field, given by

~ Upx) = U, (x)
N 2i

1 Up(x) = Ut (x)
ﬁTr[—Zi ] 3)

Other gauge-fixing conditions may also be used [10],
and lattice improvement techniques can be applied to
the definition of A, to reduce discretization errors
as well. The global maximization needed is often
implemented as a local iterative maximization. The
issue of Gribov copies arises in lattice gauge fixing
because such a local algorithm tends to find local
maxima of the gauge-fixing functional. There are
variations on the basic algorithm that ensure a unique
choice from among local maxima [10].

For analytical purposes, itis necessary to generalize
this procedure [9], so that a given single configuration
of gauge fields will be associated with an ensemble
of configurations ofg-fields. We will generate this
ensemble using

Ap(x)

SailU. 81 =Y 5 T U ()g* (r + )
1

+ex+ U (0)g* ()] (4)

as a weight function to select an ensemblg-dields.
The sum over is a sum over all links of the lattice. The
normal gauge-fixing procedure is formally regained
in the limit « — oco. Computationally, this can be
implemented as a Monte Carlo simulation inside a
Monte Carlo simulation.

Note that theg-fields must be thought of as
guenched variables, since they do not affect the
ensemble. The expectation value of an observahle
gauge-invariant or not, is given by

—i SylU]
(0) = /[dU]e

1 SgilU.g]
< i f [dg] So1V810, 5)
where
ZgflU] = / [dg] eSolU-5). ®)

Formally, the fieldg is a quenched scalar field with
two independent symmetry groupSgiobal ® Giocal,
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so that it appears to be in the adjoint representation of

the gauge group, but the left and right symmetries are rig. 1. Exact propagator for the quenche field in the simple

distinct. The generating function2ly[U1] is in some

ways a lattice analog of the inverse of the Fadeev—

Popov determinant [11]. However, there are important
differences. Note immediately thag:[U'] depends on
the gauge-fixing parameter. More fundamentally,
the lattice formalism resolves the Gribov ambiguity.
By construction, gauge-invariant observables are eval-
uated by integrating over all configurations. Gauge-
variant quantities receive contributions from Gribov
copies, always with positive weight. Thus the con-
nection between this formalism for lattice gauge fix-
ing and gauge fixing in the continuum is not sim-
ple. Furthermore, alternative lattice gauge fixing pro-

mass mixing model.

propagator is
1 5, 1 5, 1

+ n " .
172—|-m2 p2+m§ p2+m% pz—i—m%
An alternative diagrammatic procedure is to sum
Dyson’s series, as shown in Fig. 1, noting that the
(p2¢p2) propagator is truncated at two terms. The
propagator has a structure similar to tfigoropagator
in quenched QCD [5,6]; the’ has a double pole form
in quenched QCD when singlet self-energy graphs are
approximated by a constant. Theo¢2) propagator

©)

cedures have been proposed, along with new gaugealso may be written as

choices specific to the lattice. A comprehensive review

of gauge fixing technology is available [10].

We begin our analysis of spectral positivity viola-
tion with the simplest model of quenching possible:
two free, real scalar fields with a non-diagonal mass
matrix. The Lagrangian is

1 1
L =3[0 +mief] + S[092)* + m33]

— 1o (7

We treat the quenched approximation of this model
in a manner completely parallel to our discussion
of lattice gauge fixing above. We divide the action
into three partsS = S$; + S2 + S12, where S; and

S» are functionals only ofp; and ¢, respectively,
and S12 contains the mixing term. We quench the
field ¢2. Although there are no loops in this simple
theory, quenching implies that, cannot appear as
an internal line in the complete propagators. The
generating functional in the quenched approximation,
including sourcegi andJ; is

f[dd)z]e*SZ*Slerf Jog2
Jldgzle=S2=512

7 Z/[d¢l]e—51+ffl¢l , (8)

where we have introduced a kind of ghost variaf»je
spacetime variables are implicit.

From the generating functional we can obtain the
(p11) and (¢p2¢2) propagators. In momentum space,
the (p1¢1) propagator is A(p? + m%), since ¢1 is
unaffected byg,. On the other hand, thépogo)

1 n? 1 n? 1

( (m3 — m§)2> p2+m3  (m3—m?)2 p2+m?
u? 1
—m5 (p?+m3)?
This propagator always violates spectral positivity
because of the double pole term, 1?¢pm32)2, which

has a coefficient whose sign dependsmofi — m3.
Another possible violation of spectral positivity occurs
for sufficiently strong mixing: ifu# > (m3 — m?)?,
there is a simple pole agp? = —m% with negative
residue.

The form of the(¢2¢2) propagator in coordinate
space is very interesting, and forms the basis for our
study of other quenched theories. In any number of
dimensions, we can consider propagators using wall
sources, i.e., of codimension 1. This has the effect
of setting the momentum equal to zero in all the
directions of the wall. For wall sources, we have the
propagator

(10)

2
my

4
w 1 _
G(x):(l—i)— mzfx|
(m%—m%)2 2mg
4
IR S
(m3 —m?)2 2my
4
1
+72M s—ze " A+ malx)).  (11)

mf{ —ms5 4m2

The factorma|x|e~™2*| shows an initial rise rather
than a decay with increasing|, violating spectral
positivity.
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Fig. 2. The effective mass associated wjh as a function ofc. The pal

X
(@)

rameters used are: (@) = 0.1, mo = 0.4, u = 0.2; (b) m1 = 0.1,

mp=0.2,u=0.2; (c)my =05,mp=0.4,u=0.4; (d)mq1=0.5,mp=0.1, u =0.4.

G(x)

We define an effective mass associated withghe
—_— G(x)).
Gl +a) (G)

field as
( ) (12)

One can easily check explicitly thabes(x) —
min(m1, m2) asx — oo. For any field theory which
obeys spectral positivityyiesf(x) monotonically de-
creases to its limiting value. Theories violating spec-
tral positivity may display a complicated behavior for
meff(x) before the eventual onset of asymptotic behav-
ior.

We have identified three different possible behav-
iors for meff(x) in this simple quenched model. If the
mixing parameter is sufficiently small anéh < mo,
mefi(x) monotonically decreases to its value at infinity,
as in a normal field theory which obeys spectral posi-
tivity, as shown in Fig. 2(a). Ag is increased relative
to my1 andmg, mesi(x) may develop a minimum, as
displayed in Fig. 2(b). On the other handgip < m1,
the behavior seen in Fig. 2(a) is not possible, and only
the behaviors seen in Figs. 2(c) and (d) are possible.
In Fig. 2(d), the minimum has moved to= 0. For
sufficiently smallu, these effects are difficult to ob-

d
=——1In

(x) = lim 1 In
m X)= — =
eff dx

a—0a

serve, andnef(x) is essentially equal ta for all x.
Regardless of the relative size mfi andm», an ob-
servable violation of spectral positivity associated with
mefi(x) not monotonically decreasing indicates a sig-
nificant mixing parameteu.

Similar behavior can be observed in a very simple
lattice model based on the Ising model, where real-
space arguments can be used to find an approximate
propagator. We consider two coupled one-dimensional
Ising models, with sping;, o; € {—1,+1} and re-
spective nearest-neighbor couplingsand K. Theo
spins are coupled to the spins via an interaction of
the form Y "; Lo; i, and theo's are quenched. This
simple model is a form of spin glass, with the aver-
aging over the ensemble @f spins representing the
“quenching” process.

Theo propagator is given by

1
J i i —_— 000,
b ,,H}ZJM% :

} ; (13)

1
= ex
(o00n) Z, £ p

X exp|:

Y (Koioiy1+ Loiw)

l
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whereZ,, is the partition function fope andZ, ] is
the partition function fow in the presence of a partic-
ular u background. The parametgris a mixing para-
meter. We can approximately evaluate ¢hpropaga-
tor for J, K, and L sufficiently small by considering
the direct contributiorftanhK )" combined with mix-
ing of o with w. This indirect term can be written as
(compare Fig. 1)

n n—p

Z Z(tanhK)”*P(tanhL)z(tath)P.

p=1m=0

(14)

After performing the summations, the propagator is
given approximately as

(000,) ~ (tanhK)" + (tanhL)?(tanhK )"
nx x2(1—x™)
X - )
1-x) (1-x)?2
where x = tanhJ/tanhK. The n(tanhK)" factor

signals a violation of spectral positivity, just as the
m|x| exp(—m|x|) term did in the mixing model. Of

(15)

course, the arguments which led to Egs. (9) and (15)
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Fig. 3. Effective masses fer and . in the 1— d Ising model.

transition asx was varied, but did not determine the
full phase diagram in the—g plane. They also found
that the gluon propagator was dependentpa result
which could be anticipated from the strong-coupling
expansion [9].

Let us consider for the moment the unquenched

are essentially the same, but carried out in momentum version of the gauge fixing model. This is a model

space and real space, respectively. For snialk,
and L, Eq. (15) fits lattice simulations of th@go;,)
propagator well.

In Fig. 3, we show the effective mass determined
from the (ogo,) and (uou,) propagators for the
parameter seff = 0.7, K = 0.9, andL = 0.3 for a

with scalar fields in the fundamental representation
of the gauge group in addition to the gauge fields.
The scalar fields explicitly break th&(N) global
symmetry associated with confinement in the pure
gauge case, and external color charges are screened.
As first shown by Fradkin and Shenker [13], this

one-dimensional lattice of size 26. The propagators leads to a connection between the strong-coupling,

were obtained from 40000 heat bath sweeps ofithe

confining phase and the Higgs phase, so the two

variables; after each such sweep, 100 heat bath sweepghases are not actually distinct. We have verified that

of theo variables were carried out. The paramet&rs
andL were chosen empirically so as to display a clear
violation of spectral positivity. The. mass fits very
well with the analytical solutiom: = — Intanh(J) for

the d = 1 Ising model out to a distance of 8. Note
that theo reaches its asymptotic value efin(tanhk’)
from below, and only at ~ 8. The similarity to the
simple field theoretic model of quenching is clear.

We will now show that theSU(2) lattice gluon
propagator regarded as a functioreaghows behavior
similar to that of the other, simpler quenched models
studied above. Simulations of this type of lattice field
theory, with stochastic quenched gauge fixing fields,
were first performed by Henty et al. [12], who studied
the case ofSU(3) as a function ofx at 8 = 5.7 on

this phase structure is preserved in the quenched form
of the model. FoB sufficiently large, there is a line
of first-order phase transitions in thfe« plane. It is
very reasonable that such a line exists in the quenched
model, since it can be thought of as the continuation
of the critical point of a pure spin model & =
oo. However, this line terminates at a critical end
point; for sufficiently smalke, the nominal confining
phase g small) and Higgs phasg(arge) are directly
connected. This observation forms the starting point
for a detailed analysis of the model [14].

We have performed simulations &J(2) gauge
theory atg = 2.6 with « ranging from 10 to 30 on
a 12 x 16 lattice. At this value of, there is a first-
order phase transition at~ 0.83. We have fit the data

8% lattices. They found evidence for a first-order phase using a simple generalization of the quenched mixing
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Fig. 4. Effective masses for three values of the gauge fixing
parameterg = 1.0, 20 and 30.

model. The coordinate space propagator has the form
(16)

This form for the propagator follows from the replace-
ment of the mixing parameter* in Eq. (9) by the
more general formu2(p? + m3).

In Fig. 4, we show the effective mass as a function
of x for « =1, 2, and 3. The solid lines are obtained
from fits to the propagator using Eq. (16). The simi-
larity to the other quenched models is quite clear. For
smallx there is an initial decrease and then rise of the
effective mass, much like Fig. 2(c); asncreases, this
minimum vanishes. We plotin Fig. 5 the best-fit values
of m1 andmg as a function of. Note that the behav-
ior of m3 is consistent with it being constant in this re-
gion, whilem1 appears to be decreasing to a constant
limit as « increases.

Our results are roughly consistent with the work
of Leinweber et al., who performed high-precision
studies of theSU(3) gluon propagator at = oo [15].
Among a large variety of possible functional forms for
the gluon propagator, they found that their data was
best fit by the functional form

(A + Bmolx|)e ™2 4 Cemilxl,

AM25
(k2+ M2)l+8 + k2 + M2

G k) =z[ L(kZ,M)],

17)
with L(k2, M) an infrared-regulated version of the as-
ymptotic behavior of the renormalized gluon propa-
gator in the continuum. Their best fit was achieved

i 0.140.2
with the parameters = 2.2705705, M = (1020+
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Fig. 5. Values of the two mass parameters in Eq. (16) as a
function of«. The light massmy is approximately constant at the
value of 0283(7), while the heavy mass initially decreases with
increasingyx, reaching a constant value afl51@).

100+ 25) MeV, and A = 9.8753.
tional forms were ruled out.

Our results suggest that the lighter mass parameter
my is independent ofr, at least for largex (in the
Higgs phase). liny is indeed independent of gauge
choice, as least within the class of covariant gauges
considered, it seems natural to identify it as the gluon
mass. As a consequence of the quenched character
of lattice gauge fixing, this state partially mixes with
another, heavier state, with a mass on the order of the
scalar or vector glueball [16].

Note that the value of the lightest mass in the prop-
agator may be difficult to extract from the effective
mass. While it is true that the effective mass tends
asymptotically to the lightest mass, the approach to
the limit can be much slower than in a conventional
field theory obeying spectral positivity. For example,
ata = 3.0, mefs at x = 7 is substantially lighter than
m3. Having a theoretical basis for the form of the prop-
agator is crucial in estimating the mass.

Another application of lattice gauge fixing is Abeli-
an projection, a method for investigating the confining
properties of gauge theories. In lattice gauge theories,
Abelian projection is implemented as an algorithm for
extracting an ensemble of Abelian gauge field config-
urations from an ensemble of non-Abelian configura-
tions. A notable success of lattice studies of Abelian
projection [17,18] has been the correlation of the string
tension of the projected theory with the string tension
of the underlying non-Abelian theory.

Many other func-
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These lattice studies of Abelian projection typically
use gauge fixing in an integral way. Taking for clarity

the case 08U (2), the gauge fixing functional is ) G L
o /
Sar= 25 TV s (x4 s RRRRRRARARRY
x g(x + WU (g (a3, (18) g !

which is conventionally maximized over the gauge
orbit, corresponding to the limix — oo in the
formalism, used here. An ipitial Stl.'ldy of the phase Fig. 6. An example of a problematic diagram when calculating the
structure in theSU(Z) casg f|nd§ evidence for a first expectation value of Eg. (20). The solid line is the Wilson loop, the
order phase transition asis varied atg = 2.4 [19]. dotted lines are propagators, and the wavy lines are gluons.
The aim of this procedure is to transform 8 (2)
configuration into a gauge-equivalent one which lies
mostly in a givenU (1) subgroup. After this gauge- 1
f|X|Irlngirfzecgg;usvlhpgfejeﬁct)lon to/(1) is performed. Trl‘[ 5(1 +o3)g;U; g;rH

gauge fixing is done<{ 0), .
and only projection occurs, Faber et al. [20] and 1
Ogilvie [21] have proved that the asymptotic string = Trl_[ §(1+ o)Uj, (20)
tension measured in the projected and underlying j
theories are the same. Furthermore, Ogilvie [21] has \ynere the product is ordered along a closed path

proven that this result should continue to hold for |5peled by the index. The U(1) projected loop is

small , under the assumption that the gauge fixing represented in the underlying quenched Higgs theory
does not violate spectral positivity. However, the fact 55 5 sum of Wilson loops with all possible insertions

that the string tension evaluated using various forms ¢ ¢ at lattice sites on the path. When four or mgre

of Abelian projection with gauge fixing is consistently  fie|qs are inserted, problematic subdiagrams appear of

slightly different from the actual non-Abelian string e type shown in Fig. 6. Such terms lead to a violation

tension [22,23] suggests that a violation of spectral ¢ gpeciral positivity: there are no intern@l loops

positivity may indeed be occurring. in the quenched approximation, and an infinite set of
We identify the origin of this violation as the  giagrams occurring in the full, unquenched theory is

presence of a quenched scalar field. The case of jqitted. This exactly parallels quenched QCD.
U (2) is particularly clear. Note that the combination

gt (x)o3g(x) occurring in Sgr can be written as a
Hermitian scalar fielg (x), whereg transforms as the Acknowledgement
adjoint representation of the gauge group. The field

obtained from the expectation value of

is traceless, Tg) = 0, and satisfies Tp*) = 2. The This work was partially supported by the US
gauge fixing action is thus equivalent to an adjoint pepartment of Energy under grant number DE-FG02-
scalar action of the form 91ER40628.

Sat=_ 5 M@V @G+ WU ] (19)
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