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PERSPECTIVES IN BASIC SCIENCE

Transcription factor-kB (NF-kB) and renal disease
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Transcription factor-kB (NF-kB) and renal disease. Nuclear Nuclear factor-kB promotes the expression of a num-
factor-kB (NF-kB) comprises a family of dimeric transcription ber of genes involved in inflammation, such as cytokines
factors that regulate the expression of numerous genes involved and adhesion molecules. Not surprisingly, clinical andin inflammation and cell proliferation. Although NF-kB was

experimental data are confirming the presence of acti-initially identified in lymphocytes, it has been found to be a
vated NF-kB in a variety of chronic, inflammatory disor-transcription factor present in virtually all cell types. In resting

cells, NF-kB dimers remain in the cytoplasm in an inactive ders [6].
form bound to the inhibitory subunit IkB. Upon stimulation, Nuclear factor-kB has also been found in an inactive
IkB is phosphorylated, ubiquitinylated, and ultimately de- form in renal cells and activated upon stimulation, bothgraded by proteolytic cleavage by the proteasome system. As

in vivo and in vitro. Although the evidence linkinga result, NF-kB dimers are translocated into the nucleus and
NF-kB activation to human renal disease is limited, in-activate the transcription of target genes. Increasing data sug-

gest a pivotal role for NF-kB in a variety of pathophysiological creasing data suggest that NF-kB plays a pivotal role in
conditions in which either inflammation or cell number control many nephropathies [7, 8].
are critical events. NF-kB has been found to be activated in

In recent years, a large number of publications haveexperimental renal disease. Importantly, both in vivo and in
increased our understanding on the structure, ways ofvitro, NF-kB activation can be modulated by pharmacological

maneuvers. Indeed, it is now widely acknowledged that the anti- activation, regulation, and transcriptional activation of
inflammatory action of steroids is basically obtained through the NF-kB [2–6, 9]. Although a variety of different stimuli
inhibition of the transactivation of NF-kB–dependent genes. may elicit NF-kB activation, all major activation path-
In addition, some of the beneficial effects of angiotensin-con-

ways present several common features. A detailed de-verting enzyme inhibitors and statins may, at least in part,
scription of the molecular mechanisms involved inbe mediated by an inhibition of NF-kB activation. A better

understanding of the mechanisms involved in NF-kB regulation NF-kB activation and its regulatory properties is beyond
and its modulation may provide new tools to improve the the scope of the present review. However, a succinct
treatment of renal diseases with a better sound pathophysiolog- description of the structure of NF-kB and an overviewical approach.

of the consensus NF-kB activation pathway are pre-
sented. In addition, we summarize the experimental and
clinical evidence linking NF-kB and renal disease.Nuclear factor-kB (NF-kB) was initially identified as

a nuclear factor bound to the enhancer of the immuno-
globulin (Ig) k light chain gene of B lymphocytes [1]. It STRUCTURE, FUNCTION, AND REGULATION
soon became clear that NF-kB is present in virtually Structure and function
every cell type, although sequestered in an inactive form

NF-jB proteins. In mammals, active NF-kB is presentin the cytoplasm [2–5]. Upon stimulation, NF-kB is re-
as a homodimer or heterodimer of the five identifiedleased from an inhibitory subunit (IkB) and translocates
members of the NF-kB/Rel family (Fig. 1) [2–5, 9]. Ininto the nucleus, where it promotes the transcriptional
spite of an intensive search, no new members of theactivation of target genes. The signal is eventually termi-
family have been found in recent years, suggesting thatnated by the new synthesis of IkB. A variety of extracel-
no more genes of the NF-kB/Rel family exist in thelular stimuli is able to induce the activation of IkB.
mammalian genoma. By far the most abundant dimer in
most cell types, and the most widely studied, it is com-
posed of subunits p50 and p65. Hence, although “NF-kB”Key words: nuclear factor-kB, inflammation, cell proliferation, dimeric

transcription factors, transactivation of NF-kB, kidney disease. applies to all of the members of the family, it is often
used to refer to the p50-p65 dimer. All of these proteinsReceived for publication February 2, 2000
share a highly conserved Rel homology region (RHR) ofand in revised form August 24, 2000

Accepted for publication August 25, 2000 about 300 amino acids, composed of two Ig-like domains.
This region is responsible for interaction with other mem- 2001 by the International Society of Nephrology
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Fig. 1. Schematic representation of the nuclear factor-kB (NF-kB) and inhibitory subunit (IkB) family of proteins (modified from Rothwarf and
Karin [9], with permission).

Table 1. Nuclear factor-kB (NF-kB) target genesbers of the family (dimerization), DNA (DNA binding
and transactivation), and the inhibitory proteins (IkB). NF-kB target genes
In addition, the RHR also contains a nuclear localization IgG k light chain

Cytokinessequence (NLS). NF-kB dimerize by extensive hydro-
Interleukins IL-1, IL-2, IL-6, and receptors (IL-2R)phobic interactions in the carboxy-terminal domain RHR,
Chemokines IL-8, GRO, IP-10, MCP-1, RANTES,

whereas the amino-terminal domain is responsible for MIP-1, eotaxin
Colony-stimulating factors M-CSFm GM-CSF, G-CSFDNA sequence recognition. NF-kB dimers bind to the
TNF-a, TNF-b, interferon-bDNA consensus sequence (kB site) GGGRNNYYCC,

Surface molecules involved in immune function
where R is purine, Y is pyrimidine, and N is any base. T-cell receptor b chain

b2-microglobulinVarious NF-kB dimers present different affinities to kB
Adhesion molecules (selectin, ICAM, VCAM, ELAM)sites and also vary in their ability to activate the transcrip-
Major histocompatibility complex antigens (class I, class II)

tion of target genes (Table 1). For instance, p50 and p52 Inflammatory enzymes
Inducible nitric oxide synthaselack the transactivation domain, are unable to promote
Inducible cyclooxygenase 2transcriptional activity, and are considered to mediate
5-Lipooxygenase

transcriptional repression. Conversely, p65/RelA and Cytosolic phospholipase A
Acute phase response genesc-Rel are potent transcriptional activators. Finally, RelB

Serum amyloid Aproduces transcriptional activation in certain cell types.
Angiotensinogen

Knockout mice for all of the NF-kB genes have been Complement (B,C4)
Ferritinobtained, indicating specific roles for each NF-kB pro-
Tissue factortein. Interestingly, only the p65 knockout is lethal, sug-
Metalloproteinases

gesting some functional redundancy among other mem- Oncogene, transcription factors and related genes
c-relbers of the family.
c-mycUnprocessed, full-length p105 and p100 form stable
IFR

dimers with other members of the NF-kB family hinder- IkBa

ing their NLS and sequestering the dimers within the
cytoplasm. By poorly understood mechanisms, NF-kB
activating stimuli promote the processing of p105 and p100, but their contribution to the global regulation of
p100 by the proteasome. This process resembles the deg- NF-kB activity is unclear.
radation of IkB because it requires ubiquitinylation, al- IjB proteins. Seven members of the IkB family have
though it is relatively slow and partial, yielding the p50 been identified in mammals: IkBa, IkBb, IkBg, IkBε,
and p52 subunits. NF-kB dimers containing p52 or p50 Bcl-3, and the precursors of NF-kB1 (p105) and NF-kB2
are then transferred to the nucleus, where they bind (p100; Fig. 1). All of them contain six or seven ankyrin
to the specific recognition sequences. Proinflammatory repeats by which they bind to the RHR of NF-kB mask-

ing the NLS, thereby sequestering NF-kB in the cyto-cytokines modestly promote the processing of p105 and
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Fig. 2. Schematic representation of the main pathway of NF-kB activation. Proinflammatory cytokines such as TNF-a or IL-1b activate IkB kinase
kinase (IKK) by phosphorylation, possibly through the action of TRAF (TNF-a receptor associated factor) and one mitogen-activated kinase
kinase kinase (MAPKKK). Active IKK phosphorylates (P) IK, leading to its polyubiquitinylation (U) and degradation by the proteasome. As a
result, free NF-kB is translocated into the nucleus where it binds and regulates the expression of target genes. Some of these genes code for
inflammatory cytokines such as IL-1b and TNF-a, closing the circle of a self-sustained pro-inflammatory loop. On the other hand, NF-kB promotes
the expression of IkB. Newly synthesized IkB binds to NF-kB in the nucleus and the NF-kB:IkB complex is exported to the cytoplasm, ending
NF-kB action. Other stimuli [bacterial lipopolysaccharide (LPS), double-stranded RNA (dsRNA), ultraviolet (UV) light] result in NF-kB activation
by poorly understood mechanisms. Salicylates inhibit the degradation of IkB by the proteasome. The physical association of the glucocorticoid
receptor and NF-kB prevents the binding of NF-kB to DNA and the expression of inflammatory genes.

plasm and rendering it inactive. IkBa, IkBb, and IkBε Activation of NF-kB
present amino-terminal regulatory regions required for NF-jB activation pathways. NF-kB can be activated
stimulus-induced degradation. By far, IkBa is the best by a number of physiological and nonphysiological stim-
characterized member of the group, and most of the uli, including cytokines, mitogens, viruses, mechanical,
literature refers to IkBa when IkB is mentioned. The and oxidative stress, and a variety of chemical agents
regulation and potential roles for the rest of IkB mem- (Table 2). At present, it is unclear how various intracellu-
bers of the family are poorly understood. IkBa knockout lar and extracellular stimuli converge to trigger NF-kB
mice are born normally, but usually die a few days after activation. However, several common features have been
birth because of extensive skin inflammation consistent identified for the major activation pathways [9]. First,
with persistent NF-kB activation [10]. Interestingly, the after a potent stimulus, such as the one provided by
IkBa gene expression is under the control of NF-kB. interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a),
By inducing IkBa expression, active NF-kB promotes a or lipopolysaccharide (LPS), IkBa is rapidly degraded
negative regulatory loop able to terminate its own activ- within minutes [2–5]. The degradation of IkB is achieved
ity (Fig. 2). In fact, newly synthesized IkBa binds to by a series of consecutive steps: (1) IkB phosphorylation
active DNA-bound NF-kB, and the trimer is exported at serine residues 32 and 36 by a specific kinase, (2) recog-
to the cytoplasm, ending the NF-kB–dependent trans- nition of phosphorylated IkB by the type 3 ubiquitin-

protein ligase complex, (3) polyubiquitinylation of IkBactivation [11].
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Table 2. NF-kB stimuli through interaction with some adapter proteins, can bind
different molecules of the TNF receptor-associated fac-NF-kB stimuli
tors (TRAF) family (TRAF 2 for TNF-a and TRAF6Bacterial lipopolysaccharide (LPS)

Virus: herpes, Cytomegalovirus, adenovirus, hepatitis B, human for IL-1b) [17, 19]. TRAF proteins can interact with
immunodeficiency virus MAPKK kinases likely involved in IKK phosphorylation

Chemical stress: oxidative, osmotic (glucose, albumin)
[20, 21]. However, a full understanding of this pathwayMitogens: phorbol esters (PKC stimuli), serum, PHA

dsRNA has not been achieved. For instance, it seems clear that
UV light the NF-kB activation by TNF-a or IL-1b involves the
Cytokines: IL-1, IL-2, TNF-a, IFN-g

formation of reactive oxygen species and that this stepMembrane protein activation: adhesion molecules, fibronectin, CD2,
CD3, CD28, abTCR can be inhibited by substances such as pyrrolidine dithio-

Vasoactive agents: angiotensin II, thrombin, endothelin carbamate (PDTC) [21–25]. The precise step in the acti-
Lipoproteins (LDL, VLDL)

vation cascade that requires the formation of reactive
oxygen species has not been defined [26].

IkB kinase appears to be rate limiting for NF-kB acti-
at lysines 21 and 22, and (4) degradation by the 26S vation. Most stimuli cause a peak of IKK activation lim-
proteasome. All four steps are required to unmask the ited in time [16]. More intense stimuli produce more
nuclear recognition sequences of NF-kB, resulting in the transient responses. This regulation may have important
translocation of active NF-kB into the nucleus, through physiological reasons: Intense and persistent NF-kB acti-
the interaction with karyopherins (Fig. 2). In addition vation may result in deleterious effects. The termination
to this pathway, two other less well defined (atypical) of IKK activation is mediated by (auto) phosphorylation
pathways have been identified [9]. In both cases, NF-kB in the carboxy-terminal region, which takes place once
activation is much slower and weaker as compared with the natural competitors for the phosphorylation (IkBs)
the typical one mentioned previously in this article. In are exhausted.
one of the atypical pathways, hypoxia-induced NF-kB Nuclear localization and transcriptional activity. Once
activation is achieved through IkBa tyrosine phosphory- NF-kB is released from the inhibitory unit IkB, the dimer
lation and removal by interaction with phosphoinositide is translocated into the nucleus, probably by the interac-
3-kinase (in the absence of degradation by the protea- tion of the newly exposed NLSs with the karyopherins
some) [12]. In the second, ultraviolet light exposure pro- (responsible for nucleocytoplasmic transport). Different
motes IkBa degradation by the proteasome in the ab- NF-kB dimers bind with diverse affinity to the variety
sence of phosphorylation [13]. Additional mechanisms of kB sites in DNA, resulting in subtle cell and gene-
involved in the regulation of NF-kB have been described specific modulations of gene expression. NF-kB dimers
such as calpain-dependent IkBa proteolysis [14] and the do not promote gene transcription by themselves, but
direct phosphorylation of p65 [15], but their description as a part of a complex of several coactivators such as
is beyond the scope of the present article. Furthermore, the cAMP response element binding protein (CREB)-
many other stimuli (Table 2) promote the activation of binding protein (CBP) [27]. Moreover, NF-kB interacts
NF-kB. However, the molecular mechanisms involved with a variety of other transcription factors in a positive
in the activation are poorly understood and will not be or negative manner. One of the factors most commonly
addressed in this review. involved in the activation of NF-kB target genes is activa-

IjB phosphorylation. In the typical pathway, IkB ki- tor protein-1 (AP-1). Both NF-kB and AP-1 are activated
nase (IKK) seems to be the most likely responsible for in response to some proinflammatory stimuli, but they
IkB phosphorylation [16], although several additional differ in their response to oxidative stress [28]. In addi-
candidates have been proposed. IKK is composed of tion, NF-kB can physically interact with other transcrip-
one regulatory and two functional subunits. A detailed tion factors. In some cases, such as with nuclear factor
description of the characteristics of this kinase is beyond IL-6 (NF-IL6), the interaction results in a synergistic
the scope of this article, and the readers are referred to stimulation of the transcription of inflammatory genes
a recent extensive review on the topic [9]. IKK is again (cytokines, inducible nitric oxide synthase) [29–35]. Inter-
activated through phosphorylation probably by a kinase estingly, the physical association of NF-kB and the gluco-
belonging to the mitogen activated protein kinase kinase corticoid receptor (another transcription factor) inhibits
kinase family (MAPKKK). IKK appears to be the most the binding of NF-kB to DNA and prevents NF-kB–
likely point of convergence of many NF-kB activators. dependent transactivation [36].

At present, we have a reasonable, albeit incomplete, Thus far, all of the previous discussion has referred
understanding of the pathway of activation of IKK by to NF-kB as if it were a single molecule. It is clear that
inflammatory cytokines. TNF-a and IL-1b activate NF-kB several dozens of NF-kB:IkB complexes may exist within
primarily through interaction with their respective type 1 the cells, providing an enormous diversity of options and

allowing for subtle regulations in the NF-kB system.receptors (TNFR1, IL-1R1) [17, 18]. Both receptors,
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Fig. 3. In vivo detection of NF-kB activation. (A) EMSA. Incubation of renal cortex extracts from rats with tubulointerstitial nephritis demonstrates
the presence of NF-kB activation by its ability to bind to radiolabeled consensus sequences and “retard” their electrophoretic mobility. Arrowheads
indicate different activated NF-kB complexes. Lanes 1 and 2, control rats; lanes 3 and 4, rats with protein-overload proteinuria; lane 5, negative
control of the assay, where no protein extract is added. Adapted from Morrissey and Klahr [7], with permission. (B) Southwestern histochemistry.
Tissular active NF-kB is demonstrated by its ability to bind to a digoxigenin-labeled probe in rats with tubulointerstitial nephritis. Digoxigenin is
developed by incubation with antidigoxigenin alkaline phosphatase conjugated antibodies. This technique allows the study of NF-kB activation,
its structural distribution, and the identification of the specific cell types involved. Adapted from Hernández-Presa, Gómez-Guerrero, and Egido
[38], with permission from the International Society of Nephrology.

NF-kB AND DISEASE tissue sections has been demonstrated by incubation with
labeled probes containing kB sites (Southwestern analy-Detection of NF-kB activity
sis; Fig. 3B) [38]. In addition to the detection of NF-kBAs mentioned previously in this article, NF-kB regu-
activity, the last two methods are compatible with con-lates the transcription of a large array of genes, in particu-
ventional histologic exams providing simultaneous struc-lar many of those that are involved in immune and in-
tural information. In addition, the specific cell typesflammatory responses (Table 1). Until very recently, the
showing increased NF-kB activation can be detected byevidence of the role of NF-kB in human disease was
simultaneous immunostaining.indirect and based on the altered expression of many of

these genes in a variety of disorders and the crucial role NF-kB and inflammatory diseases
of NF-kB in their regulation obtained basically from in

The role of NF-kB in a variety of nonrenal chronicvitro studies. The most common way of studying NF-kB
inflammatory diseases, such as rheumatoid arthritis,activation relates to the ability of active NF-kB to bind
asthma, or inflammatory bowel disease, has been recentlyto specific DNA sequences [37]. This can be assessed by
reviewed [6] and will not be addressed in the presentchanges in the electrophoretic mobility of DNA probes
article. It must be stressed that in addition to these obviouscontaining kB sites when incubated with cell extracts
inflammatory diseases, a lower degree of inflammation iscontaining active NF-kB (Fig. 3A). This technique [elec-
increasingly considered important in other disorders suchtrophoretic mobility shift assay (EMSA)], although rela-
as atherosclerosis [39]. Indeed, markers of ongoing in-tively straightforward for in vitro studies, has some diffi-
flammation are extremely powerful predictors of theculties that have precluded its wide use with tissue
long-term presence of cardiovascular events [40–44]. Insamples. Recently, two new techniques have begun to
agreement with this, active NF-kB has been found inbe used to assess the presence of active NF-kB in vivo.
human and experimental atherosclerotic lesions [38,The first one is based on immunohistochemistry with spe-
45–48]. Intriguingly, most of the benefits of aspirin andcific antibodies that can recognize only the active form of

NF-kB. More recently, the presence of active NF-kB in pravastatin in the prevention of cardiovascular events
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were restricted to patients with markers of inflammation mechanism unrelated to vascular tone regulation. In ad-
dition to ACE inhibitors, another family of widely used[40, 42]. Indeed, long-term pravastatin treatment was asso-

ciated with decreased C-reactive protein levels [49]. In drugs, the HMG-CoA reductase inhibitors or statins,
have been found to inhibit mesangial cell NF-kB activa-addition, experimental evidence lends further support

for an anti-inflammatory action of angiotensin-converting tion and the expression of pro-inflammatory genes [63,
76, 77].enzyme (ACE) inhibitors and statins through NF-kB

modulation in models of atherosclerosis [48, 50, 51]. Besides the pro-inflammatory actions of NF-kB activa-
tion, recent data also support a role for NF-kB in the

NF-kB and apoptosis control of mesangial cell proliferation and apoptosis di-
rectly or by analogy with the closely related vascularIn recent years, NF-kB has been found to play an

important role in the control of cell proliferation and smooth muscle cells [34, 63, 77–83]. First, as mentioned,
many mesangial cell mitogens such as angiotensin II acti-death, more specifically in protecting from programmed

cell death [17, 52–54]. It is very likely that the anti- vate NF-kB. Second, several agents that inhibit mesan-
gial cell proliferation such as ACE inhibitors or statinsapoptotic effects of NF-kB have been minimized by the

fact that many studies have used TNF-a as the main also inhibit NF-kB activation. Finally, interference with
NF-kB activation by different mechanisms results in inhi-stimulus for NF-kB activation. When the investigators

have been able to dissect the different pathways acti- bition of cell proliferation and apoptosis.
The NF-kB system has been less extensively studiedvated by TNF-a, it has become evident that TNF-a may

promote both cell death and survival. The anti-apoptotic in renal tubular epithelial cells, although it is clear that
these cells may express a number of NF-kB–dependenteffect of TNF-a is mediated by NF-kB, although the

genes involved in this action are not well characterized genes. Recent studies have also demonstrated active
NF-kB in renal tubular epithelial cells, as well as urothe-[55–57]. In fact, p65 knockout mice die because of mas-

sive hepatic apoptosis [58]. Since apoptosis is increas- lial cells, after a variety of stimuli and, when assessed,
in association with increased expression of inflammatoryingly recognized as a mechanism of disease and healing

[59], disregulation of NF-kB–mediated cell survival sig- genes [84–87]. Recent reports indicate that high albumin
concentrations may induce NF-kB activation, suggestingnals may contribute to renal disease [60, 61].
a mechanism for tubular injury in proteinuric states
[88, 89]. In addition to classic stimuli, we have found

NF-kB AND THE KIDNEY
that the vasoactive substances angiotensin II and endo-

NF-kB and kidney cells thelin also induce NF-kB activation in tubular epithelial
cells (Gómez Garre, unpublished data).Several studies have demonstrated that, in addition to

infiltrating leukocytes, a variety of stimuli may induce The kidney presents other cell types common to other
organs such as epithelial cells, vascular smooth muscleNF-kB also in renal resident cells. Most of the studies

have been conducted in mesangial cells [8, 21, 62–72]. cells, fibroblasts, and leukocytes in which NF-kB activa-
tion may also play an important role. However, the regu-Although a variety of NF-kB–like activities have been

described by EMSA, most of the studies have identified lation of NF-kB in these cells does not differ essentially
from other organs and will not be specifically addressedp50 and p65 subunits as the predominant NF-kB compo-

nents in mesangial cells. Bacterial LPS, IL-1b, and TNF-a in this review.
are among the traditional stimuli that are consistently

NF-kB and renal diseaseassociated with increased mesangial NF-kB activation.
Importantly, the increased NF-kB activation correlates In recent years, increased interest on NF-kB and im-

proved detection techniques are providing direct evidencewith increased expression of a variety of inflammatory
genes such as IL-1b, IL-6, IL-8, TNF-a, monocyte che- of the in vivo involvement of NF-kB in experimental

and human renal diseases. In the following sections, wemoattractant protein-1 (MCP-1), interferon invasive
protein-10 (IP-10), and inducible nitric oxide synthase. have arbitrarily classified the evidence according to the

initial and/or major mechanism leading to renal damage.Recently, angiotensin II and angiotensin II degradation
products such as angiotensin III have been added to the Models of systemic inflammation. In rabbits, chronic

inflammation by means of repeated injections of AgNO3list of physiologically important molecules that activate
NF-kB [70, 73–75]. Angiotensin II seems to stimulate is associated with renal NF-kB activation and increased

serum levels of amyloid A [90]. In a murine model ofNF-kB activation by both angiotensin II type 1 and 2
(AT1 and AT2) receptors, as suggested by the inhibitory endotoxemia, renal NF-kB activation correlated with in-

creased expression of tissue factor and fibrin depositioneffect of specific antagonists. These new findings provide
the basis for a new “anti-inflammatory” action of angio- [91]. In the same model, after somatic gene transfer with

the NF-kB inhibitor IkBa, there was a reduction in tissuetensin converting enzyme (ACE) inhibitors and angio-
tensin II that may contribute to renal protection by a factor expression, fibrin deposition, and mortality, strongly
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supporting a critical role for NF-kB in experimental en- biopsies from proteinuric patients with minimal change
disease or membranous nephropathy.dotoxemia. Interestingly, preliminary reports in a few

Tubulointerstitial disorders. Hydronephrosis is fol-patients with sepsis suggest that progressive NF-kB acti-
lowed by interstitial inflammation and eventually fibro-vation in circulating mononuclear cells is associated with
sis. In models of unilateral ureteral obstruction, increasedincreased mortality [91]. In a similar model, Khachigian,
NF-kB and AP-1 activation has been detected by EMSACollins, and Fries have described that LPS injection is
in cortical samples shortly after the intervention, but notassociated with NF-kB activation and increased expres-
in the contralateral kidney or in sham-operated animalssion of vascular cell adhesion molecule-1 (VCAM-1) by
[7, 73, 95, 96]. Again, the activation of transcription fac-mesangial cells [92]. In addition, treatment of mice with
tors correlated with increased expression of target genesN-acetyl cysteine prevented NF-kB activation as well
such as tissue factor, TNF-a and MCP-1 [97, 98]. Interest-as VCAM-1 expression. These results demonstrate that
ingly, pharmacological blockade of angiotensin actionssome inhibitors of NF-kB activation in vitro may also
(also as therapeutic agents once renal damage is alreadywork in vivo.
present) attenuated the activation of NF-kB and mark-Nephritis. Coming down from models of systemic in-
edly improved tubulointerstitial damage.flammation, NF-kB activation has also been described

Proteinuria. Proteinuric states are a clear demonstra-in a variety of models of nephritis. Sakurai et al have
tion of the interaction between primarily glomerular andreported increased NF-kB activation, as well as AP-1
interstitial disorders. In this regard, glomerular damage(by EMSA), in rat glomeruli shortly after nephrotoxic
may result in proteinuria. Proteinuria by itself may resultserum administration. The effect peaked at days 3 to 5,
in interstitial damage (involving NF-kB activation). Fi-lasted for about two weeks, and was associated with
nally, interstitial damage results in the loss of glomerularincreased expression of IL-1b, MCP-1, intercellular ad-
function. In adriamycin-induced nephrosis, activation ofhesion molecule-1, and inducible NOS, and the develop-
NF-kB in renal cortex has been demonstrated by EMSAment of proteinuria. Treatment with PDTC or steroids
[99]. In this model, when rats with established proteinuriaprevented the previously described alterations [25, 93].
were treated with PDTC for two weeks, NF-kB activa-In antithymocyte glomerulonephritis, increased activa-
tion was reduced in parallel with an improvement in thetion of NF-kB and AP-1 has been reported [94]. Finally,
score of interstitial damage.increased AP-1 but not NF-kB activity, as assessed by

Interestingly, in adriamycin-induced nephrosis, lova-Southwestern immunohistochemistry, has been reported
statin treatment is associated with an attenuation ofin immune complex nephritis [38, 72]. Whether this re-
glomerular MCP-1 mRNA expression and monocyte in-flects a different pattern of transcription factor activation
filtration [100]. In overload proteinuria, we have demon-in this model or merely reflects a somewhat lower sensi-
strated both NF-kB and AP-1 activation by EMSA astivity of the Southwestern analysis is at present unclear.
well as by Southwestern histochemistry (Gómez Garre,In any event, in this model treatment with ACE inhibi-
unpublished data). Preliminary data from our laboratorytors resulted in the attenuation of NF-kB activation as
show that the degree of proteinuria rather than the histo-assessed by EMSA [70]. Preliminary data from our labo-
logic picture (membranous nephropathy vs. minimalratory further support a role of angiotensin II in vivo by
change disease) is a major determinant of NF-kB activa-the demonstration of increased glomerular activation of
tion in patients with proteinuria (Mezzano and Egido,

NF-kB and AP-1, as well as TNF-a, IL-1b, and IL-6
personal communication).

expression, after systemic administration of angiotensin
II. Both angiotensin II receptors (AT1 and AT2) seem to

NF-kB AS A THERAPEUTIC TARGETbe involved in these effects since they could be partially
prevented by both AT1 and AT2 specific antagonists. Since NF-kB plays such a pivotal role in the patho-
Finally, preliminary data from patients with IgA ne- physiology of a variety of disorders, it is conceivable that
phropathy indicate that, as expected, active NF-kB is exogenous modulation of NF-kB activation may help to
also found in human glomerulonephritis as assessed by devise new therapeutic approaches. In this regard, the
Southwestern histochemistry (abstract; Ashizawa et al, first target of actions is the prevention of the initial insult
J Am Soc Nephrol 10:95A, 1999). NF-kB staining was or stimuli leading to NF-kB activation. Most often the
particularly prominent in areas with increased mesangial therapeutic action must take place once the initial injury
cellularity, suggesting again a role for NF-kB in control- has already taken place. However, we may still modulate
ling mesangial cell proliferation. Moreover, preliminary some additional stimuli contributing to NF-kB activation.
data from our laboratory (Mezzano and Egido, personal Rather surprisingly, some apparently NF-kB–unrelated
communication) have also confirmed the presence of agents are now emerging as potential modulators of the
activated NF-kB (Southwestern histochemistry) and in- NF-kB pathway. For instance, ACE inhibitors, angioten-

sin II antagonists, and HMG-CoA reductase inhibitorscreased expression of proinflammatory genes in renal



Guijarro and Egido: NF-jB and renal disease422

cación y Ciencia (MEC; PM 97/85), EU Concerted Action Grant, BMH4-also may exhibit salutary effects in conditions in which
CT98-3631 (DG 12-SSMI), and Fundación Iñigo Álvarez de Toledo.
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