CORE

Contents lists available at SciVerse ScienceDirect

www.elsevier.com/locate/topol

\mathbb{R} -factorizability and ω -uniform continuity in topological groups $\overset{\circ}{\sim}$

Li-Hong Xie^{a,*}, Shou Lin^{b,c}

^a School of Mathematics, Sichuan University, Chengdu 610065, PR China

^b Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, PR China

^c Institute of Mathematics, Ningde Normal University, Ningde 352100, PR China

ARTICLE INFO

Article history: Received 24 September 2011 Received in revised form 8 March 2012 Accepted 20 March 2012

MSC: 54H10 22A05 22A30 54A10 54A25 54D45

Keywords: Topological group \mathbb{R} -factorizable ω -Uniformly continuous Property U Property ω -U M-factorizable *m*-Factorizable

1. Introduction

A topological group G is a group G with a topology such that the product mapping of $G \times G$ onto G associating xy with arbitrary $x, y \in G$ is jointly continuous and the inverse mapping of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous. All topological groups considered here are assumed to be Hausdorff.

Let *G* be a topological group. Recall that a real-valued function *f* on *G* is *left uniformly continuous*, if $f : (G, \mathcal{V}_G^l) \to (\mathbb{R}, \mathscr{U})$ is a uniformly continuous function, where \mathscr{V}_G^l is the left uniform structure on G and \mathscr{U} is the uniform structure on \mathbb{R} . This means that for every $\varepsilon > 0$, there exists $0 \in \mathcal{V}_G^l$ such that $|f(x) - f(y)| < \varepsilon$ whenever $(x, y) \in 0$. Similarly, f is called *right uniformly continuous*, if $f : (G, \mathcal{V}_G^r) \to (\mathbb{R}, \mathscr{U})$ is a uniformly continuous function, where \mathcal{V}_G^r is the right uniform structure on G. A real-valued function f on G is uniformly continuous, if f is both left and right uniformly continuous. J.M. Kister [6] called that a topological group G has property U provided that each continuous real-valued function f on G is uniformly continuous. It is well known that every compact topological group has property U and clearly every discrete

Corresponding author.

ABSTRACT

In this paper the concept of property ω -U is introduced in topological groups. The main results are that (1) every Lindelöf topological group and every totally bounded topological group have property ω -U; (2) a topological group is \mathbb{R} -factorizable if and only if it is an ω -narrow group with property ω -U; (3) \mathcal{M} -factorizable groups are preserved by open continuous homomorphisms, which gives a positive answer to a problem posed by A.V. Arhangel'skiĭ and M. Tkachenko.

© 2012 Elsevier B.V. All rights reserved.

The project is supported by the NSFC (Nos. 10971185, 11171162).

E-mail addresses: xielihong2011@yahoo.cn (L-H. Xie), shoulin60@163.com (S. Lin).

^{0166-8641/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2012.03.013

group has property U. Kister [6, Corollary 2] had shown that a locally compact group with property U is either discrete or compact.

A topological group *G* is said to be *totally bounded* [12] if, for each neighborhood *V* of the identity in *G*, a finite number of translates of *V* covers *G*. W.W. Comfort and K.A. Ross [2, Theorems 1.5 and 2.7] have shown that every pseudocompact topological group has property *U*, but a totally bounded topological group need not have property *U*. Therefore, the above analysis naturally leads us to consider what properties the continuous real-valued functions defined on totally bounded groups have.

In this paper, we introduce the concept of property ω -U in Definition 4.1, which is weaker than property U, in topological groups. It is shown that every totally bounded group and every Lindelöf group have property ω -U.

Some decomposition theorems of topological groups are obtained by property ω -*U*. A topological group *G* is \mathbb{R} -factorizable [8,9] if, for every continuous real-valued function *f* on *G*, there exist a continuous homomorphism $p: G \to K$ onto a second-countable topological group *K* and a continuous function $h: K \to \mathbb{R}$ such that $f = h \circ p$. Some characterizations of \mathbb{R} -factorizable and related *m*-factorizable and *M*-factorizable groups are gave in terms of property ω -*U* (Theorems 4.9, 5.8 and 5.11). It is showed that an open continuous homomorphic image of an *M*-factorizable group is *M*-factorizable, which affirmatively answers a problem posed by A.V. Arhangel'skiĭ and M. Tkachenko in [1, Open Problem 8.4.4].

2. ω -Uniform continuity in uniform spaces

Let (X, \mathcal{U}) and (Y, \mathcal{V}) be uniform spaces [3,12]. A mapping $f : (X, \mathcal{U}) \to (Y, \mathcal{V})$ is called *uniform continuous* if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $(f(x), f(x')) \in V$ whenever $(x, x') \in U$.

Let (X, \mathcal{U}) be a uniform space. Put $U[x] = \{y \in X \mid (x, y) \in U\}$ for each $U \in \mathcal{U}$. Recall that a continuous real-valued function $f : X \to \mathbb{R}$ is *uniformly continuous* if, for every $\varepsilon > 0$, there exists $U \in \mathcal{U}$ such that $f(U[x]) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon)$ for all $x \in X$. It is well known that every continuous real-valued function on a compact uniform space is uniformly continuous. We introduce the concept of ω -uniform continuity as a generalization of the uniform continuity in uniform spaces.

Definition 2.1. Let (X, \mathcal{U}) be a uniform space. A function $f : X \to \mathbb{R}$ is called ω -uniformly continuous if, for every $\varepsilon > 0$, there is a countable family $\mathcal{V} \subseteq \mathcal{U}$ satisfying that for each $x \in X$ there exists $V_x \in \mathcal{V}$ such that

 $f(V_x[x]) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon).$

Remark 2.2. It is easy to see that uniformly continuous $\Rightarrow \omega$ -uniformly continuous \Rightarrow continuous. However, the converses are not true, see Remark 2.7 and Theorem 4.9.

Consider a uniform space (X, \mathcal{U}) and a pseudometric ρ on the set X. The pseudometric ρ is called *uniform with respect* to \mathcal{U} if for every $\varepsilon > 0$ there exists $V \in \mathcal{U}$ such that $\rho(x, y) < \varepsilon$ whenever $(x, y) \in V$.

Lemma 2.3. ([3, Corollary 8.1.11]) For every uniformity \mathscr{U} on a set X and every $V \in \mathscr{U}$ there exists a pseudometric ρ on X which is uniform with respect to \mathscr{U} and satisfies the condition $\{(x, y) | \rho(x, y) < 1\} \subseteq V$.

Remark 2.4. Let (X, \mathscr{U}) be a uniform space. For every $V \in \mathscr{U}$, take a pseudometric ρ_V satisfying the conditions in Lemma 2.3. By letting $xE_V y$ whenever $\rho_V(x, y) = 0$ an equivalent relation E_V on the set X is defined. Let X_V be the quotient set of E_V . By letting $\overline{\rho}_V([x], [y]) = \rho_V(x, y)$ for all $[x], [y] \in X_V$ a metric $\overline{\rho}_V$ on the set X_V is defined. Let \mathscr{U}_V be the uniformity on the set X_V induced by the metric $\overline{\rho}_V$. It follows from Lemma 2.3, that letting $f_V(x) = [x]$, we define a uniformly continuous mapping $f_V : (X, \mathscr{U}) \to (X_V, \mathscr{U}_V)$.

A uniform space (X, \mathscr{U}) is metrizable if there exists a metric ρ on the set X such that the uniformity induced by ρ coincides with the original uniformity \mathscr{U} . It is well known that a uniformity \mathscr{U} on a set X is induced by a metric ρ if and only if the uniformity \mathscr{U} has a countable base [3].

Theorem 2.5. Let (X, \mathscr{U}) be a uniform space and $f : X \to \mathbb{R}$ be a function. The following are equivalent.

- (1) f is ω -uniformly continuous;
- (2) there exist a uniformly continuous function $g : (X, \mathcal{U}) \to (Y, \mathcal{V})$ onto a metrizable uniform space (Y, \mathcal{V}) and a continuous function $p : Y \to \mathbb{R}$ such that $f = p \circ g$.

Proof. (1) \Rightarrow (2). Let $f : X \to \mathbb{R}$ be ω -uniformly continuous. By Definition 2.1, for each $n \in \mathbb{N}$ there exists a countable family $\zeta_n \subseteq \mathscr{U}$ satisfying that for every $x \in X$ there exists $V_x \in \zeta_n$ such that $f(V_x[x]) \subseteq (f(x) - \frac{1}{n}, f(x) + \frac{1}{n})$. Put $\zeta = \bigcup_{n \in \mathbb{N}} \zeta_n$. Then $|\zeta| \leq \omega$. According to Lemma 2.3, for each $V \in \zeta$ there exists a pseudometric ρ_V on the set X which is uniform with respect to \mathscr{U} and satisfies the condition $\{(x, y) | \rho_V(x, y) < 1\} \subseteq V$. Therefore, there exists a uniformly continuous function $g_V : (X, \mathscr{U}) \to (X_V, \mathscr{U}_V)$, where g_V and (X_V, \mathscr{U}_V) are defined according to Remark 2.4. Define

$$g = \Delta_{V \in \zeta} g_V : (X, \mathscr{U}) \to \left(\prod_{V \in \zeta} X_V, \prod_{V \in \zeta} \mathscr{U}_V\right),$$

where $\Delta_{V \in \zeta} g_V$ is the diagonal product of the family $\{g_V \mid V \in \zeta\}$. Since g_V is uniformly continuous for each $V \in \zeta$ and the Cartesian product $(\prod_{V \in \zeta} X_V, \prod_{V \in \zeta} \mathscr{U}_V)$ is a metrizable uniform space, $g = \Delta_{V \in \zeta} g_V$ is uniformly continuous.

Claim. $f(x_1) = f(x_2)$ for all $x_1, x_2 \in X$ satisfying $g(x_1) = g(x_2)$.

Indeed, assume to the contrary, and choose $x_1, x_2 \in X$ and $n \in \mathbb{N}$ such that

$$g(x_1) = g(x_2)$$
 and $f(x_1) \notin \left(f(x_2) - \frac{1}{n}, f(x_2) + \frac{1}{n}\right)$.

By the property of ζ_n , for x_2 there exists $V \in \zeta_n$ such that

$$f\left(V[x_2]\right) \subseteq \left(f(x_2) - \frac{1}{n}, f(x_2) + \frac{1}{n}\right).$$

From $g(x_1) = g(x_2)$ it follows that $g_V(x_1) = g_V(x_2)$, hence $\rho_V(x_1, x_2) = 0$, thus

$$(x_2, x_1) \in \left\{ (x, y) \in X \times X \mid \rho_V(x, y) < 1 \right\} \subseteq V$$

by Lemma 2.3 and Remark 2.4. Therefore, $x_1 \in V[x_2]$, which implies that

$$f(x_1) \in f(V[x_2]) \subseteq \left(f(x_2) - \frac{1}{n}, f(x_2) + \frac{1}{n}\right).$$

This contradiction completes the proof of the claim.

From the claim it follows that there is a function $p : g(X) \to \mathbb{R}$ such that $f = p \circ g$. It remains to prove that the function p is continuous.

Let $y \in g(X)$ and $\varepsilon > 0$. Take an $n \in \mathbb{N}$ with $\frac{1}{n} < \varepsilon$. Choose a point $x \in X$ with g(x) = y. For x there exists $V \in \zeta_n$ such that

$$f(V[x]) \subseteq \left(f(x) - \frac{1}{n}, f(x) + \frac{1}{n}\right) = \left(p(y) - \frac{1}{n}, p(y) + \frac{1}{n}\right) \subseteq \left(p(y) - \varepsilon, p(y) + \varepsilon\right).$$

Put

$$B = \left\{ z \in X_V \mid \overline{\rho}_V(\pi_V(y), z) < 1 \right\}$$

where $\overline{\rho}_V$ is defined according to Remark 2.4 and $\pi_V : \prod_{V' \in \mathcal{C}} X_{V'} \to X_V$ is the projection. And set

$$W = g(X) \cap \bigg(\prod_{V' \in \zeta \setminus \{V\}} X_{V'} \times B\bigg).$$

Clearly, *W* is a neighborhood of *y*. Now we shall prove that $p(W) \subseteq (p(y) - \varepsilon, p(y) + \varepsilon)$, which implies that *p* is continuous. Indeed, from Lemma 2.3 and Remark 2.4 it follows that

$$g^{-1}(W) = g_V^{-1}(B) = \{z \in X \mid \rho_V(x, z) < 1\} \subseteq V[x].$$

Thus,

$$p(W) = f(g^{-1}(W)) \subseteq f(V[x]) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon) = (p(y) - \varepsilon, p(y) + \varepsilon).$$

(2) \Rightarrow (1). There exist a uniformly continuous function $g: (X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ onto a metrizable uniform space (Y, \mathcal{V}) and a continuous function $p: Y \rightarrow \mathbb{R}$ such that $f = p \circ g$. Since (Y, \mathcal{V}) is metrizable, there exists a countable base μ of the uniformity \mathcal{V} . Put $\gamma = \{\psi^{-1}(V) \mid V \in \mu\}$, where $\psi = (g, g): X \times X \rightarrow Y \times Y$. Then $|\gamma| \leq \omega$ and $\gamma \subseteq \mathcal{U}$ by the uniform continuity of g. Take any $\varepsilon > 0$. Since p is continuous, there exists $V \in \mu$ such that $p(V[g(x)]) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon)$. From $\psi^{-1}(V) \in \gamma$ and

$$f(\psi^{-1}(V)[x]) \subseteq p(V[g(x)]) \subseteq (f(x) - \varepsilon, f(x) + \varepsilon)$$

it follows that f is ω -uniformly continuous. \Box

From Theorem 2.5 it easily follows the following result.

Corollary 2.6. Every continuous real-valued function f on a metrizable uniform space is ω -uniformly continuous.

Remark 2.7. " ω -Uniformly continuous" cannot be replaced by "uniformly continuous" in Corollary 2.6. For instance, \mathbb{R} with usual uniformity is metrizable, but not all continuous real-valued functions on \mathbb{R} are uniformly continuous. It implies that ω -uniformly continuous \Rightarrow uniformly continuous.

3. ω -Uniform continuity in topological groups

Let *G* be a topological group. Denote by $\mathcal{N}_{S}(G, e)$ the family of all open symmetric neighborhoods at the identity *e* of *G* in this paper. We introduce the concept of ω -uniform continuity as a generalization of the uniform continuity on topological groups.

Definition 3.1. A real-valued function f on a topological group G is *left* (resp. *right*) ω -*uniformly continuous* if, for every $\varepsilon > 0$, there exists a countable family $\mathcal{U} \subseteq \mathscr{N}_{\mathcal{S}}(G, e)$ such that for every $x \in G$, there exists $U \in \mathcal{U}$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x^{-1}y \in U$ (resp. whenever $yx^{-1} \in U$).

Definition 3.2. A real-valued function f on a topological group G is ω -uniformly continuous if f is both left and right ω -uniformly continuous.

Remark 3.3. (1) If we consider a topological group *G* as a uniform space (G, \mathcal{V}_G^l) or (G, \mathcal{V}_G^r) , where \mathcal{V}_G^l and \mathcal{V}_G^r are left and right uniformities, respectively, then Definition 3.1 is equivalent to Definition 2.1.

(2) ω -Uniformly continuous \Rightarrow uniformly continuous by Remark 2.7.

According to the definitions, one can easily obtain the following results.

Theorem 3.4. Let *f* be a real-valued function defined on a topological group. Then

- (1) if f is left (resp. right) uniformly continuous, then f is left (resp. right) ω -uniformly continuous;
- (2) if f is uniformly continuous, then f is ω -uniformly continuous.

Recall that a topological space X is a *P*-space if every G_{δ} -set in X is open. Similarly, a *P*-group is a topological group whose underlying space is a *P*-space.

Theorem 3.5. Let *f* be a real-valued function defined on a P-group G. Then

- (1) f is left (resp. right) uniformly continuous if and only if f is left (resp. right) ω -uniformly continuous;
- (2) *f* is uniformly continuous if and only if *f* is ω -uniformly continuous.

The following theorem gives a characterization of left or right ω -uniformly continuous functions on a topological group.

Theorem 3.6. Let *f* be a real-valued function defined on a topological group *G*. The following are equivalent.

- (1) *f* is left (resp. right) ω -uniformly continuous;
- (2) there exists a countable family $\mathcal{U}_f \subseteq \mathcal{N}_s(G, e)$ satisfying that for every point $x \in G$ and $\varepsilon > 0$, there exists $U \in \mathcal{U}_f$ such that $|f(x) f(y)| < \varepsilon$ whenever $x^{-1}y \in U$ (resp. $yx^{-1} \in U$).

Theorem 3.7. Let *G* be a topological group. Every (resp. bounded) continuous real-valued function on *G* is left ω -uniformly continuous if and only if every (resp. bounded) continuous real-valued function on *G* is right ω -uniformly continuous.

4. ω -Uniform continuity and \mathbb{R} -factorizable topological groups

In this section, we apply the concept of ω -uniform continuity into studying the class of \mathbb{R} -factorizable topological groups. Kister's property U is defined in Section 1. Comfort and Ross [2] called that a topological group G has property BU if each bounded continuous real-valued function on G is uniformly continuous.

Definition 4.1. A topological group *G* has property ω -*U* (resp. property $B\omega$ -*U*) if each (resp. bounded) continuous real-valued function on *G* is ω -uniformly continuous.

Remark 4.2. (1) The uniform structure on *G* should be taken to be either the left or right uniform structure. It often happens that these structures do not coincide. Nevertheless, according to Theorem 3.7, the definitions of properties ω -*U* and $B\omega$ -*U* are unambiguous.

(2) According to the definitions of properties ω -U and $B\omega$ -U and Theorem 3.5, every topological group with property U (resp. BU) has property ω -U (resp. $B\omega$ -U).

It is well known that a topological group has property BU if and only if it has property U [2, Theorem 2.8].

Theorem 4.3. A topological group has property $B\omega$ -U if and only if it has property ω -U.

Proof. It is obvious that property ω -U implies property $B\omega$ -U. Suppose that a topological group G has property $B\omega$ -U and let f be a continuous real-valued function on G. Thus, the bounded continuous function $(-n) \lor f \land n$ must be ω -uniformly continuous for all $n \in \mathbb{N}$. Using this fact and Theorem 3.6, one can easily obtain that f is ω -uniformly continuous, thus G has property ω -U. \Box

Theorem 4.4. Every Lindelöf topological group has property ω -U.

Proof. Let *G* be a Lindelöf topological group. According to Theorem 3.7 and Definition 4.1, it suffices to show that every continuous real-valued function *f* on *G* is left ω -uniformly continuous. Since *G* is Lindelöf, for each $n \in \mathbb{N}$ one can easily find a family $\mathscr{U}_{f,n} = \{V_j \mid j \in \omega\} \subseteq \mathcal{N}_s(G, e)$ and a subset $A_{f,n} = \{h_j \mid j \in \omega\} \subseteq G$ satisfying that:

(i) $G = \bigcup_{j \in \omega} h_j V_j$; (ii) $f(h_j V_j^2) \subseteq (f(h_j) - \frac{1}{n}, f(h_j) + \frac{1}{n})$ for each $j \in \omega$.

Put $\mathscr{U}_f = \bigcup_{n \in \mathbb{N}} \mathscr{U}_{f,n}$. We shall show that \mathscr{U}_f satisfies the condition (2) in Theorem 3.6, which implies that f is left ω -uniformly continuous. It is obvious that $|\mathscr{U}_f| \leq \omega$ and $\mathscr{U}_f \subseteq \mathcal{N}_s(G, e)$. Let $h \in G$ and $\varepsilon > 0$. There is $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\varepsilon}{2}$. According to (i) there exists $j_0 \in \omega$ such that $h \in h_{j_0} V_{j_0}$, where $h_{j_0} \in A_{f,n_0}$ and $V_{j_0} \in \mathscr{U}_{f,n_0} \subseteq \mathscr{U}_f$. From (ii) it follows that

$$f(hV_{j_0}) \subseteq f(h_{j_0}V_{j_0}^2) \subseteq \left(f(h_{j_0}) - \frac{1}{n_0}, f(h_{j_0}) + \frac{1}{n_0}\right) \subseteq \left(f(h_{j_0}) - \frac{\varepsilon}{2}, f(h_{j_0}) + \frac{\varepsilon}{2}\right),$$

that is,

$$\left|f(h)-f(y)\right| \leq \left|f(h)-f(h_{j_0})\right| + \left|f(h_{j_0})-f(y)\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

whenever $h^{-1}y \in V_{j_0}$. \Box

Corollary 4.5. Every subgroup of a topological group with a countable network has property ω -U, in particular, so does every subgroup of a second-countable topological group.

Remark 4.6. "Property ω -U" in Theorem 4.4 and Corollary 4.5 cannot be replaced by "property U". For instance, the group $(\mathbb{R}, +)$ with the usual topology is second-countable, but it is well known that not all continuous real-valued functions on $(\mathbb{R}, +)$ are uniformly continuous.

A topological group *G* is said to be ω -narrow (i.e., \aleph_0 -bounded [4]) if for each neighborhood *V* of the identity in *G*, there exists a countable subset $M \subseteq G$ such that G = MV.

Lemma 4.7. ([1, Corollary 3.4.19]) Let H be an ω -narrow topological group. Then for every open neighborhood U of the identity in H, there exists a continuous homomorphism π of H onto a second-countable topological group G such that $\pi^{-1}(V) \subseteq U$, for some open neighborhood V of the identity in G.

Lemma 4.8. Let H be an ω -narrow topological group and $f : H \to \mathbb{R}$ be either left or right ω -uniformly continuous. Then there exist a continuous homomorphism $\pi : H \to K$ onto a second-countable topological group K and a continuous function $p : K \to \mathbb{R}$ such that $f = p \circ \pi$.

Proof. Suppose that *f* is left ω -uniformly continuous on *H*. According to Theorem 3.6, there exists a countable family $\mathscr{U}_f \subseteq \mathscr{N}_s(H, e)$ satisfying that for every point $x \in H$ and $\varepsilon > 0$, there exists $V \in \mathcal{U}_f$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x^{-1}y \in V$.

Since *H* is ω -narrow, according to Lemma 4.7, for each $V \in \mathscr{U}_f$ there exists a continuous homomorphism π_V of *H* onto a second-countable topological group G_V such that $\pi_V^{-1}(U) \subseteq V$, for some open neighborhood *U* of the identity in G_V . Let $\pi = \Delta_{V \in \mathscr{U}_f} \pi_V$ be the diagonal product of the family $\{\pi_V \mid V \in \mathscr{U}_f\}$.

It is obvious that $\pi(H)$ is a second-countable topological group, since $\prod_{V \in \mathscr{U}_f} G_V$ is second-countable.

Claim. $f(h_1) = f(h_2)$ for all $h_1, h_2 \in H$ satisfying $\pi(h_1) = \pi(h_2)$.

Indeed, assume to the contrary, and choose $h_1, h_2 \in H$ and $\varepsilon > 0$ such that

$$\pi(h_1) = \pi(h_2)$$
 and $f(h_2) \notin (f(h_1) - \varepsilon, f(h_1) + \varepsilon)$.

By the property of \mathscr{U}_f , for h_1 and ε there exists $V_{h_1,\varepsilon} \in \mathscr{U}_f$ such that $|f(h_1) - f(y)| < \varepsilon$ whenever $h_1^{-1}y \in V_{h_1,\varepsilon}$, which is equivalent to $f(h_1V_{h_1,\varepsilon}) \subseteq (f(h_1) - \varepsilon, f(h_1) + \varepsilon)$. Therefore, there exists an open neighborhood U of the identity in $G_{V_{h_1,\varepsilon}}$ such that $\pi_{V_{h_1,\varepsilon}}^{-1}(U) \subseteq V_{h_1,\varepsilon}$ by the property of $\pi_{V_{h_1,\varepsilon}}$. Take an open neighborhood W of the identity in $G_{V_{h_1,\varepsilon}}$ such that $W^2 \subseteq U$. Put $g = \pi_{V_{h_1,\varepsilon}}(h_1)$, then $g = \pi_{V_{h_1,\varepsilon}}(h_2)$ by $\pi(h_1) = \pi(h_2)$, and

$$h_{2} \in \pi_{V_{h_{1},\varepsilon}}^{-1}(gW) = \pi_{V_{h_{1},\varepsilon}}^{-1}(g)\pi_{V_{h_{1},\varepsilon}}^{-1}(W)$$

= $h_{1}\pi_{V^{h_{1},\varepsilon}}^{-1}(e)\pi_{V_{h_{1},\varepsilon}}^{-1}(W) \subseteq h_{1}\pi_{V_{h_{1},\varepsilon}}^{-1}(W)\pi_{V_{h_{1},\varepsilon}}^{-1}(W)$
= $h_{1}\pi_{V_{h_{1},\varepsilon}}^{-1}(W^{2}) \subseteq h_{1}\pi_{V_{h_{1},\varepsilon}}^{-1}(U) \subseteq h_{1}V_{h_{1},\varepsilon},$

which implies that

$$f(h_2) \in f(h_1 V_{h_1,\varepsilon}) \subseteq (f(h_1) - \varepsilon, f(h_1) + \varepsilon).$$

This contradiction completes the proof of the claim.

From the claim it follows that there is a function $p: \pi(H) \to \mathbb{R}$ such that $f = p \circ \pi$. It remains to prove that p is continuous.

Take any $\varepsilon > 0$, $g \in \pi(H)$ and choose a point $h \in H$ such that $g = \pi(h)$. According to $f = p \circ \pi$ and the property of \mathscr{U}_f there exists $V_{h,\varepsilon} \in \mathscr{U}_f$ such that

$$f(hV_{h,\varepsilon}) \subseteq (f(h) - \varepsilon, f(h) + \varepsilon) = (p(g) - \varepsilon, p(g) + \varepsilon).$$

By the property of $\pi_{V_{h,\varepsilon}}$ above, there is an open neighborhood U containing the identity in $G_{V_{h,\varepsilon}}$ such that $\pi_{V_{h,\varepsilon}}^{-1}(U) \subseteq V_{h,\varepsilon}$. Choose an open neighborhood W of the identity in $G_{V_{h,\varepsilon}}$ such that $W^2 \subseteq U$. Put

$$0 = \pi(H) \cap \left(W \times \prod_{V \in \mathscr{U}_f \setminus \{V_{h,\varepsilon}\}} G_V \right).$$

We claim that $p(g0) \subseteq (p(g) - \varepsilon, p(g) + \varepsilon)$, which implies that *p* is continuous.

In fact, since $g_{V_{h,\varepsilon}} = \pi_{V_{h,\varepsilon}}(h)$,

$$p(gO) \subseteq f(\pi^{-1}(gO))$$

= $f\left(\pi^{-1}\left(\pi(H) \cap \left(g_{V_{h,\varepsilon}}W \times \prod_{V \in \mathscr{U}_f \setminus \{V_{h,\varepsilon}\}} G_V\right)\right)\right)$
= $f\left(\pi_{V_{h,\varepsilon}}^{-1}(g_{V_{h,\varepsilon}}W)\right) \subseteq f\left(h\pi_{V_{h,\varepsilon}}^{-1}(U)\right) \subseteq f(hV_{h,\varepsilon})$
 $\subseteq (f(h) - \varepsilon, f(h) + \varepsilon) = (p(g) - \varepsilon, p(g) + \varepsilon).$

This completes the proof when f is left ω -uniformly continuous.

Similarly, one can easily prove the result when f is right ω -uniformly continuous. \Box

The following is a main result in this section.

Theorem 4.9. A topological group H is \mathbb{R} -factorizable if and only if it is an ω -narrow group with property ω -U.

Proof. The sufficiency is obtained by Lemma 4.8. Conversely, suppose that *H* is an \mathbb{R} -factorizable topological group. Then *H* is ω -narrow [8, Lemma 2.2], so that it remains to show that *H* has property ω -*U*. Take any continuous real-valued *f* on *H*. Since *H* is \mathbb{R} -factorizable, there exist a continuous homomorphism $\pi : H \to K$ onto a second-countable topological group *K* and a continuous function $p : K \to \mathbb{R}$ such that $f = p \circ \pi$. Let \mathscr{B} be a countable local base of the identity in *K*. Put $\mathscr{U}_f = \{\pi^{-1}(U) \mid U \in \mathscr{B}\}$. One can easily verify that \mathscr{U}_f is a countable family of open neighborhoods of the identity in *H* and satisfies that for every point $x \in H$ and $\varepsilon > 0$, there exists $U_{x,\varepsilon} \in \mathcal{U}_f$ such that $|f(x) - f(y)| < \varepsilon$ whenever $x^{-1}y \in U_{x,\varepsilon}$, which implies that the function *f* is left ω -uniformly continuous by Theorem 3.6. From Theorem 3.7 it follows that *H* has property ω -*U*. \Box

Since there is a topological group *G* which is ω -narrow but not \mathbb{R} -factorizable [1, Example 8.2.1], from Theorem 4.9 it follows that there exists a continuous function on *G*, which is not ω -uniformly continuous.

Corollary 4.10. ([1, 8.1.b]) If H is an ω -narrow topological group with property U, then H is \mathbb{R} -factorizable.

It is well known that every Lindelöf topological group is ω -narrow [1, Proposition 3.4.6]. According to Theorems 4.3 and 4.9, the following result is obvious.

Corollary 4.11. ([10, Theorem 5.5]) Every Lindelöf topological group is \mathbb{R} -factorizable.

Since every totally bounded topological group is \mathbb{R} -factorizable [8, Corollary 1.14], the following result is obtained by Theorem 4.9.

Corollary 4.12. Every totally bounded topological group has property ω -U.

Remark 4.13. "Property ω -U" in Corollary 4.12 cannot be replaced by "property U", since every totally bounded topological group with property U is pseudocompact [2, Theorem 2.7].

Recall that a space X is said to be *pseudo-\omega_1-compact* if every locally finite (equivalently, discrete) family of open sets in X is countable.

Corollary 4.14. Let G be a topological group with property U. Then

(1) *G* is pseudo- ω_1 -compact if and only if it is \mathbb{R} -factorizable;

(2) the continuous homomorphic image of *G* is \mathbb{R} -factorizable if *G* is ω -narrow.

Proof. (1) It was proved that *G* is pseudo- ω_1 -compact if and only if it is \mathbb{R} -factorizable when *G* is a *P*-group [11, Theorem 4.16]. Thus, we can assume that *G* is not a *P*-group and has property *U*.

Sufficiency. In [2, Theorem 2.2], it was proved that if a topological group has property U, then it is either totally bounded or a P-group. Thus G is totally bounded. According to the fact that a totally bounded topological group with property U is pseudocompact [2, Theorem 2.7], G is pseudo- ω_1 -compact.

Necessity. Suppose that *G* is pseudo- ω_1 -compact and has property *U*. According to [1, Proposition 3.4.31] and Remark 4.2, *G* is ω -narrow and has property ω -*U*. Thus *G* is \mathbb{R} -factorizable by Theorem 4.9.

(2) Suppose that *G* is an ω -narrow topological group with property *U*. It follows that *G* is \mathbb{R} -factorizable by Theorem 4.9. Since it is well known that a continuous homomorphic image of every \mathbb{R} -factorizable *P*-group is \mathbb{R} -factorizable [11, Corollary 5.9], it is enough to prove that the continuous homomorphic image of *G* is \mathbb{R} -factorizable when *G* is not a *P*-group.

In fact, in the sufficiency of the proof of (1), we have shown that *G* is pseudocompact when *G* is not a *P*-group with property *U*. Since a continuous homomorphic image of a pseudocompact (resp. an ω -narrow) topological group is pseudocompact (resp. ω -narrow [1, Proposition 3.4.2]) and every pseudocompact topological group has property *U* [2, Theorem 1.5], from Remark 4.2 and Theorem 4.9 it follows that the continuous homomorphic image of *G* is \mathbb{R} -factorizable. \Box

Corollary 4.15. ([9, Theorem 3.8]) Every locally finite family of open subsets of a locally connected \mathbb{R} -factorizable topological group *G* is countable.

Proof. Suppose that there exists an uncountable locally finite family of open subsets of *G*. Then there exists an uncountable discrete family $\{O_{\alpha} \mid \alpha < \omega_1\}$ of non-void open subsets of *G* [7, Lemma 1]. Since *G* is Hausdorff, it is completely regular. For every $\alpha < \omega_1$ pick a point $x_{\alpha} \in O_{\alpha}$ and define a continuous function $f_{\alpha} : G \to [0, 1]$ such that $f_{\alpha}(x_{\alpha}) = 1$

and $f_{\alpha}(G \setminus O_{\alpha}) = \{0\}$. Then $f = \sum_{\alpha < \omega_1} f_{\alpha}$ is continuous. Since *G* is \mathbb{R} -factorizable, *f* is ω -uniformly continuous by Theorem 4.9. Since *G* is locally connected, there exists a countable family \mathcal{V} of non-void connected open neighborhoods at the identity of *G* satisfying that for every point $x \in G$ there exists $V \in \mathcal{V}$ such that |f(x) - f(y)| < 1 whenever $y \in xV$. Then for each $\beta < \omega_1$, there exists $V_{\beta} \in \mathcal{V}$ such that $x_{\beta}V_{\beta} \subseteq \bigcup_{\alpha < \omega_1} O_{\alpha}$. Since $x_{\beta}V_{\beta}$ is connected and $\{O_{\alpha} \mid \alpha < \omega_1\}$ is discrete, $x_{\beta}V_{\beta} \subseteq O_{\beta}$. Since \mathcal{V} is countable, there are $V_0 \in \mathcal{V}$ and an uncountable subset $A \subseteq \omega_1$ such that $x_{\alpha}V_0 \subseteq O_{\alpha}$ for each $\alpha \in A$. Then $x_{\alpha}V_0 \cap x_{\beta}V_0 = \emptyset$ whenever $\alpha, \beta \in A, \alpha \neq \beta$. Let W be an open symmetric neighborhood of the identity of *G* such that $W^2 \subseteq V_0$. The group *G* is ω -narrow by Theorem 4.9. Therefore there exists a countable subset $K \subseteq G$ such that G = WK. Since *A* is uncountable, one can find a point $x \in K$ and distinct $\alpha, \beta \in A$ such that $\{x_{\alpha}, x_{\beta}\} \subseteq Wx$. Then $x_{\beta}^{-1}x_{\alpha} \in W^2 \subseteq V_0$, that is, $x_{\alpha} \in x_{\beta}V_0$, a contradiction with $x_{\alpha}V_0 \cap x_{\beta}V_0 = \emptyset$. \Box

Theorem 4.16. Let *G* be a topological group with property ω -*U* (resp. property $B\omega$ -*U*). If *N* is a closed normal subgroup of *G*, then the quotient group G/N has property ω -*U* (resp. property $B\omega$ -*U*).

Proof. Let $p: G \to G/N$ be a quotient homomorphism. Then p is an open continuous homomorphism [1, Theorem 1.5.1]. Take any (resp. bounded) continuous real-valued function f on G/N. Then $f \circ p$ is a (resp. a bounded) continuous real-valued function on G. Since G has property ω -U (resp. $B\omega$ -U), $f \circ p$ is ω -uniformly continuous by Definition 4.1. According to Theorem 3.6, there exists a countable family $\mathcal{U}_{f \circ p} \subseteq \mathscr{N}_s(G, e)$ satisfying that for every $x \in G$ and $\varepsilon > 0$, there exists $U_{x,\varepsilon} \in \mathcal{U}_{f \circ p}$ such that $|f \circ p(x) - f \circ p(y)| < \varepsilon$ whenever $x^{-1}y \in U_{x,\varepsilon}$. Put $\mathscr{U}_f = \{p(U) \mid U \in \mathscr{U}_{f \circ p}\}$. Since p is an open homomorphism, one can easily verify that \mathscr{U}_f satisfies the condition (2) in Theorem 3.6, which implies that f is (left) ω -uniformly continuous. So, G/N has property ω -U (resp. $B\omega$ -U) by Theorem 3.7. \Box

Since the continuous homomorphic image of an ω -narrow group is ω -narrow [1, Proposition 3.4.2], according to Theorems 4.16 and 4.9 one can easily obtain the following result.

Corollary 4.17. ([9, Theorem 3.10]) An open continuous homomorphic image of an \mathbb{R} -factorizable topological group is \mathbb{R} -factorizable.

5. ω-Uniform continuity and *m*-factorizable groups

A topological group *G* is called *m*-factorizable [1] (resp. *M*-factorizable [1]) if for every continuous function $f : G \to M$ to a metrizable space *M*, there exist a continuous homomorphism $p : G \to K$ onto a second-countable (resp. first-countable) topological group *K* and a continuous function $g : K \to M$ such that $f = g \circ p$.

The following question is posed by A.V. Arhangel'skiĭ and M. Tkachenko in 2008. It is affirmatively answered in this section.

Question 5.1. ([1, Open Problem 8.4.4]) Is any quotient group of an *M*-factorizable topological group *M*-factorizable?

Definition 5.2. Let *G* be a topological group and (M, ρ) be a metric space. A function $f : G \to M$ is *left* (resp. *right*) ω *uniformly continuous* if, for every $\varepsilon > 0$, there exists a countable family $\mathcal{U} \subseteq \mathscr{N}_S(G, e)$ satisfying that for every point $x \in G$, there exists $U \in \mathcal{U}$ such that $\rho(f(x), f(y)) < \varepsilon$ whenever $x^{-1}y \in U$ (resp. whenever $yx^{-1} \in U$).

Definition 5.3. Let *G* be a topological group and (M, ρ) be a metric space. A function $f : G \to M$ is ω -uniformly continuous if *f* is both left and right ω -uniformly continuous.

The invariance number inv(G) [1] of a semitopological group *G* is countable (notation: $inv(G) \leq \omega$) if for each open neighborhood *U* of the neutral element *e* in *G* there exists a countable family γ of open neighborhoods of *e* such that for each $x \in G$, there exists $V \in \gamma$ satisfying $xVx^{-1} \subseteq U$. A topological group *G* such that $inv(G) \leq \omega$ are also called ω -balanced [1].

Lemma 5.4. ([1, Theorem 3.4.18]) Let H be an ω -balanced topological group. Then, for every open neighborhood U of the identity in H, there exists a continuous homomorphism π from H onto a metrizable topological group G such that $\pi^{-1}(V) \subseteq U$, for some open neighborhood V of the identity in G.

It is well known that a topological group *G* is metrizable if and only if *G* is first-countable [1, Theorem 3.3.12]. In the proof of Lemma 4.8, it does not use the order property of \mathbb{R} , but uses the metrizable property of \mathbb{R} , so, making a simple change, one can easily obtain the following result by Lemmas 4.7 and 5.4.

Lemma 5.5. Let *G* be an ω -narrow (resp. an ω -balanced) topological group and $f : G \to M$ to a metric space (M, ρ) be either left or right ω -uniformly continuous. Then there exist a continuous homomorphism $p : G \to K$ onto a second-countable (resp. a first-countable) topological group *K* and a continuous function $h : K \to M$ such that $f = h \circ p$.

The following result is obvious.

Lemma 5.6. Let *G* be a topological group and (M, ρ) be a metric space. Then every continuous function from *G* into *M* is left ω -uniformly continuous if and only if every continuous function from *G* into *M* is right ω -uniformly continuous.

According to Lemma 5.6, the following definition is unambiguous.

Definition 5.7. A topological group *G* has property strong ω -*U* if each continuous function $f : G \to M$ to a metric space (M, ρ) is ω -uniformly continuous.

Every *m*-factorizable topological group is ω -narrow [5]. According to Lemmas 5.5 and 5.6, one can easily obtain the following result by making a simple modification of the proof of Theorem 4.9.

Theorem 5.8. A topological group G is m-factorizable if and only if it is ω -narrow and has property strong ω -U.

Lemma 5.9. ([1, Theorem 3.4.22]) A topological group *G* is ω -balanced if and only if it is topologically isomorphic to a subgroup of a topological product of metrizable topological groups.

Lemma 5.10. Every \mathcal{M} -factorizable topological group is ω -balanced.

Proof. Let *G* be an \mathcal{M} -factorizable topological group. To prove that *G* is ω -balanced it is enough to show that *G* is topologically isomorphic to a subgroup of a topological product of metrizable topological groups by Lemma 5.9.

Since *G* is a Hausdorff topological group, *G* is completely regular. Let $\gamma = \{f_{\alpha} \mid \alpha \in \Lambda\}$ be the family of all continuous real-valued functions on *G*. Then γ can separate points from closed subsets of *G*. Since *G* is \mathscr{M} -factorizable, there exist a continuous homomorphism $p_{\alpha} : G \to K_{\alpha}$ onto a first-countable topological group *K* and a continuous function $g_{\alpha} : K_{\alpha} \to \mathbb{R}$ such that $f_{\alpha} = g_{\alpha} \circ p_{\alpha}$ for each $\alpha \in \Lambda$. Since every first-countable topological group is metrizable, each K_{α} is metrizable. Put $\delta = \{p_{\alpha} \mid \alpha \in \Lambda\}$. We show that δ can separate points from closed subsets of *G*. Take any point *x* and closed subset *F* of *G* such that $x \notin F$. Then there exists $f_{\alpha} \in \gamma$ such that $f_{\alpha}(x) \notin \overline{f_{\alpha}(F)}$. We shall prove that $p_{\alpha}(x) \notin \overline{p_{\alpha}(F)}$, which implies that δ can separate points from closed subsets of *G*. Indeed, assume to the contrary, then $p_{\alpha}(x) \in \overline{p_{\alpha}(F)}$, thus

$$f_{\alpha}(x) = g_{\alpha}(p_{\alpha}(x)) \in g_{\alpha}(\overline{p_{\alpha}(F)}) \subseteq \overline{g_{\alpha}(p_{\alpha}(F))} = \overline{f_{\alpha}(F)}$$

according to $f_{\alpha} = g_{\alpha} \circ p_{\alpha}$ and the continuity of g_{α} . This is a contradiction. Therefore $\Delta_{\alpha \in \Lambda} p_{\alpha} : G \to \prod_{\alpha \in \Lambda} K_{\alpha}$ is a topologically isomorphic embedding, where $\Delta_{\alpha \in \Lambda} p_{\alpha}$ is a diagonal product of the family δ . \Box

Making a simple modification of the proof of Theorem 4.9, one can easily obtain the following result according to Lemmas 5.5, 5.6 and 5.10.

Theorem 5.11. A topological group G is \mathcal{M} -factorizable if and only if it is ω -balanced and has property strong ω -U.

The following result is obvious.

Lemma 5.12. An ω -balanced topological group is preserved by an open continuous homomorphism.

The following theorem gives a positive answer to Question 5.1.

Theorem 5.13. An *M*-factorizable topological group is preserved by a quotient homomorphism.

Proof. Let *G* be an *M*-factorizable group and $p: G \to K$ be a quotient homomorphism, where *K* is a topological group. It is well known that *f* is open [1, Theorem 1.5.1]. Therefore *K* is ω -balanced by Lemmas 5.10 and 5.12. Let (M, ρ) be a metric space. According to Lemma 5.6 and Theorem 5.11, it is enough to show that every continuous function $f: K \to M$ is left ω -uniformly continuous. Since *G* is *M*-factorizable, $f \circ p$ is ω -uniformly continuous by Theorem 5.11. Take any $\varepsilon > 0$. According to Definition 5.2 there exists a countable family $\mu \subseteq \mathcal{N}_{S}(G, e)$ satisfying that for every point $x \in G$, there exists $U \in \mu$ such that $\rho(f(p(x)), f(p(y))) < \varepsilon$ whenever $x^{-1}y \in U$. Put $\gamma = \{p(U) \mid U \in \mu\}$. Then γ is a countable family of open symmetric neighborhoods of the identity in *K*. For every point $x \in K$ take a point $z \in G$ such that x = p(z). Then there exists $U \in \mu$ such that $\rho(f(p(z)), f(p(y))) < \varepsilon$ whenever $z^{-1}y \in U$, that is, there exists $p(U) \in \gamma$ such that $\rho(f(x), f(x)) < \varepsilon$ whenever $z^{-1}x \in p(U)$, which implies that *f* is left ω -uniformly continuous. This completes the proof. \Box

Acknowledgements

We wish to thank the referee for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper.

References

- [1] A.V. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, World Sci., 2008.
- [2] W.W. Comfort, K.A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966) 483-496.
- [3] R. Engelking, General Topology, revised and completed edition, Heldermann, Berlin, 1989.
- [4] I.I. Guran, On topological groups close to being Lindelöf, Sov. Math. Dokl. 23 (1981) 173-175.
- [5] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Heidelberg, 1963.
- [6] J.M. Kister, Uniform continuity and compactness in topological groups, Proc. Amer. Math. Soc. 13 (1962) 37-40.
- [7] E.V. Ščepin, Real-valued functions and canonical sets in Tychonoff product spaces and topological groups, Uspekhi Mat. Nauk 31 (6) (1976) 17–27 (in Russian).
- [8] M.G. Tkachenko, Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991) 21-37.
- [9] M.G. Tkachenko, Subgroups, quotient groups and products of R-factorizable groups, Topology Proc. 16 (1991) 201-231.
- [10] M.G. Tkachenko, Introduction to topological groups, Topology Appl. 86 (1998) 179-231.
- [11] M.G. Tkachenko, R-factorizable groups and subgroups of Lindelöf P-groups, Topology Appl. 136 (2004) 135–167.
- [12] A. Weil, Surles espaces à structure uniforme et sur la topologie générale, Publ. Math. Univ. Strasbourg, Hermann, Paris, 1937.