MATHEMATICS

ON A HEXAGONIC STRUCTURE. I

BY

G. J. SCHELLEKENS

(Communicated by Prof. H. Freudenthal at the meeting of October 28, 1961)
0. A hexagonic structure is a geometry consisting of points and lines, in which each pair of points can be joined by a path containing at most 3 lines, but where no 2 -, 3 -, 4 - or 5 -gons exist. A geometry of this type is produced by the fixed lines of the triality between the points and spaces of both kinds on a 6 -dimensional quadric in a 7 -dimensional projective space. This triality can be adequately described by means of an octave algebra. The fixed lines come out as totally singular subalgebras.

However, there are more trialities, the geometrically most interesting of them being related with a semi-linear automorphism of the octave algebra. To these also belong hexagonic structures. To adapt the algebraic apparatus, a new multiplication has to be introduced. Then a similar treatment is possible.

It is the object of this paper to characterize the first example by means of its geometric properties. To this end one may use some peculiarities of its group, which is an extension of the exceptional group G_{2}. The available tools do not suffice to treat the case of a field of characteristic 2.

The split octave algebra. Trialities

1. The split octave algebra C over a commutative field K is uniquely characterized by the following conditions:
C is a composition algebra over K with unit e;
the norm Q is a non-degenerate and isotropic quadratic form;
$\operatorname{dim} C=8$.
A short treatment of the construction and the subsequent properties has been given by van der BliJ and Springer [1] §§ 1, 2 and [2].

The multiplication in C satisfies:

$$
\begin{equation*}
Q(x y)=Q(x) Q(y) \quad(x, y \in C) \tag{1.1}
\end{equation*}
$$

The associated bilinear form for Q

$$
(x, y)=Q(x+y)-Q(x)-Q(y)
$$

is non-degenerate. If the characteristic $\chi(K) \neq 2, Q$ is non-defective. Q is of index 4. By

$$
\begin{equation*}
x+\bar{x}=(x, e) e \tag{1.2}
\end{equation*}
$$

an involution $x \rightarrow \bar{x}$ in C is defined. The following formulae hold:

$$
\begin{align*}
& x(\bar{x} y)=Q(x) y, \tag{1.3}\\
& x(\bar{y} z)+y(\bar{x} z)=(x, y) z, \\
& \overline{x y}=\bar{y} \bar{x}, \\
& (x y, z)=(x, z \bar{y})=(y, \bar{x} z) .
\end{align*}
$$

From $x^{2}-(x, e) x+Q(x) e=0$ it follows that

$$
\begin{equation*}
a^{2}=0 \Leftrightarrow Q(a)=(a, e)=0 . \tag{1.4}
\end{equation*}
$$

The totally singular linear subspaces of C with respect to Q, on which $Q \equiv 0$, of dimensionality $1,2,3,4$ are called points, lines, planes, spaces respectively. The last mentioned are maximal and of two kinds, having the form $a C$ or $C a$ for some $a \in C$ with $a \neq 0, Q(a)=0$. The dimensionality of the intersection of spaces belonging to the same kind is even, to different kinds it is odd. For isotropic a, b we have

$$
\begin{array}{ll}
K a=K b & \Leftrightarrow a C=b C, \tag{1.5}\\
K a \neq K b,(a, b)=0 & \Leftrightarrow a C \cap b C=a(\bar{b} C), \\
(a, b) \neq 0 & \Leftrightarrow a C \cap b C=0 ; \\
a b=0 & \Leftrightarrow \operatorname{dim} a C \cap C b=3, \\
a b \neq 0 & \Leftrightarrow a C \cap C b=K a b .
\end{array}
$$

A plane determines uniquely a pair of spaces $a C, C b$, such that it is contained in both. If a is isotropic

$$
\begin{equation*}
x \in a C \Leftrightarrow \bar{a} x=0 . \tag{1.6}
\end{equation*}
$$

In C we may choose a basis $x_{0}, y_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ with the following properties:

$$
x_{0}+y_{0}=e,\left(x_{0}, y_{0}\right)=1, Q\left(x_{0}\right)=Q\left(y_{0}\right)=0
$$

so $x_{0}^{2}=x_{0}, y_{0}^{2}=y_{0}, x_{0} y_{0}=y_{0} x_{0}=0$;

$$
x_{1}, x_{2}, x_{3} \in x_{0} C \cap C y_{0}, y_{1}, y_{2}, y_{3} \in y_{0} C \cap C x_{0}
$$

so $y_{0} x_{i}=x_{i} x_{0}=x_{0} y_{i}=y_{i} y_{0}=0$,
$x_{0} x_{i}=x_{i} y_{0}=x_{i}, y_{0} y_{i}=y_{i} x_{0}=y_{i}$, and $x_{i}^{2}=y_{i}^{2}=0 \quad(i=1,2,3) ;$

$$
\left(x_{i}, y_{j}\right)=\delta_{i j}(i, j=1,2,3)
$$

so $\quad x_{i} y_{j}=-\delta_{i j} x_{0}, \quad y_{i} x_{j}=-\delta_{i j} y_{0}, \quad$ and after suitable normalization $x_{i} x_{i+1}=-x_{i+1} x_{i}=y_{i+2}, y_{i} y_{i+1}=-y_{i+1} y_{i}=x_{i+2} \quad(i=1,2,3$, and $i+1, i+2$ reduced $\bmod 3$).

For brevity we shall call a basis with these properties normal.
2. Let P be the orthogonal geometry of Q, i.e. the set of all totally singular subspaces of C ordered by inclusion. Let $Q=\{a \in C \mid Q(a)=0, a \neq 0\}$
and $a_{\#}{ }^{0}=a_{\#}=K a, a_{\#}^{1}=C \bar{a}, a_{\#}^{2}=\bar{a} C(a \in Q)$. In this and the next two sections, i will designate an element of the additive group of order 3. Let $Q^{i}=\left\{a_{\#}{ }^{i} \mid a \in Q\right\}$. The sets of spaces of both kinds Q^{1}, Q^{2} and the set of points Q^{0} of P are projectively isomorphic. Define an incidence-relation between elements of the Q^{i} by

$$
a_{\#}^{i} I b_{\#}^{i+1} \Leftrightarrow a b=0 \quad(a, b \in Q),
$$

then spaces of different kinds are incident iff their intersection is 3 dimensional. In the incidence-structure $T=\left\ulcorner Q^{0}, Q^{1}, Q^{2} ; I\right\urcorner$ the three sets Q^{i} take symmetric places. T is a symmetric T-geometry (see Tirs [1] § 3).

Let \mathscr{G}_{P} and \mathscr{G}_{T} be the groups of P and T respectively. The latter consists of the T-collineations (TiTs [2] § 3.3), i.e. the permutations of $Q^{0} \cup Q^{1} \cup Q^{2}$ that preserve the relation I. A $\pi \in \mathscr{G}_{T}$ permutes the Q^{i}, so there is a homomorphism $\pi \rightarrow[\pi]$ of \mathscr{G}_{T} in S_{3}. This map is onto, for the T-collineations

$$
\begin{aligned}
& \varrho: a_{\#}^{i} \rightarrow a_{\#}^{i+1}, \\
& \psi: a_{\#}^{0} \rightarrow \bar{a}_{\#}^{0}, a_{\#}^{1} \rightarrow \bar{a}_{\#}^{2}, a_{\#}^{2} \rightarrow \bar{a}_{\#}^{1}
\end{aligned}
$$

satisfy $[\varrho]=(012),[\psi]=(12)$. As $\varrho^{3}=\psi^{2}=\mathrm{id}, \varrho \psi=\psi \varrho^{2}$, they generate a subgroup $S \subset \mathscr{G}_{T}$ isomorphic to S_{3}.

For $\pi \in \mathscr{G}_{P}$, the restriction $\pi \mid Q^{0} \cup Q^{1} \cup Q^{2}$ is a T-collineation. Inversely, if $\pi \in \mathscr{G}_{T}$ and $[\pi]=(0)$ or (12), then π can be extended uniquely to a $\pi^{\prime} \in \mathscr{G}_{P}$. So $\mathscr{G}_{P} \subset \mathscr{G}_{T}$. Now consider the kernel $\mathscr{G}_{P^{+}}=\mathscr{G}_{T^{+}}$of the homomorphism $\mathscr{G}_{T} \rightarrow S_{3}$. For two elements α, β of any group, write $\alpha^{\beta}=\beta^{-1} \alpha \beta$. The inner automorphism $\pi \rightarrow \pi^{0}$ of \mathscr{G}_{T} induces an outer automorphism of $\mathscr{G}_{P^{+}}$of order 3 (see §3).

Let $t \rightarrow t_{\#}$ be the natural homomorphism of the group of semi-similarities $\Gamma O_{8}(K, Q)$ in \mathscr{G}_{P} (Dieudonné [1] I § 10). By Chow's theorem (see e.g. Dieudonné [1] III §3) this map is onto. The kernel, isomorphic to K^{*} (multiplicative group of K), consists of the homothetic transformations, so $t_{\#}=K^{*} t$. Write $\Gamma O_{8}^{+}(K, Q)$ for the inverse image of $\mathscr{G}_{P}{ }^{+}$. Take $t_{0} \in \Gamma O_{8}+(K, Q)$ and t_{1}, t_{2} such that $t_{0 \#}{ }^{e}=t_{1 \#}, t_{0 \#}{ }^{{ }^{2}}=t_{2 \#}$. If $\pi \mid Q^{0}$ is induced by t_{0}, then $\pi \mid Q^{i}$ by t_{i} (in the coordinates of Q^{i}).

Now $a b_{\#}^{i} I \bar{a}_{\#}^{i-1}, \bar{b}_{\#}^{i+1}$ implies $\left(t_{i} a b\right)_{\#^{i}}^{i} I\left(t_{i-1} \bar{a}\right)_{\#}^{i-1},\left(t_{i+1} \bar{b}\right)_{\#}{ }^{i+1}$. It follows easily that

$$
\begin{equation*}
t_{i} a b=\lambda_{i} \hat{t}_{i-1} a \cdot \hat{t}_{i+1} b, \quad \lambda_{i} \in K \tag{2.1}
\end{equation*}
$$

where $\hat{t} a=\bar{t} \bar{a}, \hat{t}_{\#}=\left(t_{\#}\right)^{\psi}$.
The semi-similarities t_{i} belong to the same automorphism of K, and their multipliers r_{i} satisfy $r_{i}=\lambda_{i}{ }^{2} r_{i-1} r_{i+1}, r_{i} \lambda_{i-1} \lambda_{i+1}=1$. Each of the three $t_{0 \#}, t_{1 \#}, t_{2 \#}$ determines the others uniquely by the condition (2.1) for one value of i. The three formulae (2.1) for different i are equivalent to one another and to

$$
\begin{equation*}
\hat{t_{i}} a b=\lambda_{i} t_{i+1} a \cdot t_{i-1} b, \quad \lambda_{i} \in K \tag{2.2}
\end{equation*}
$$

In the case of an octave algebra with anisotropic Q, the formulae (2.1) hold for the group of similarities $G O_{8}{ }^{+}(K, Q)$ (see van der BliJ and Springer [2] § 1).
3. Let L be the set of lines of P. A line $l \in L$ may be understood as union of the points it contains or as intersection of the spaces of the same kind it is contained in. Write $l^{\prime}=\{a \in Q \mid C \bar{a} \supset l\}, l^{\prime \prime}=\{a \in Q \mid \bar{a} C \supset l\}$, then l^{\prime} and $l^{\prime \prime}$ are lines, and we have by (1.6) $l \cdot l^{\prime}=l^{\prime \prime} \cdot l=0$.
(3.1) Lemma. Let $l, m, n \in L$. Then

$$
l \cdot m=m \cdot n=0 \Rightarrow n \cdot l=0 .
$$

Proof: Take independent $a_{1}, a_{2} \in m$ and $b \in n$. By (1.5)
$l=C \bar{a}_{1} \cap C \bar{a}_{2}=\left(C a_{1}\right) \bar{a}_{2}$. If $x \in C$, then $b\left(\left(x a_{1}\right) \bar{a}_{2}\right)=\left(\bar{b}, x a_{1}\right) \bar{a}_{2}-\left(\bar{a}_{1} \bar{x}\right)\left(\bar{b} \bar{a}_{2}\right)=0$. It follows that $\left(l^{\prime}\right)^{\prime}=l^{\prime \prime},\left(\left(l^{\prime}\right)^{\prime}\right)^{\prime}=l$.

In this section, if $l \in L$, write $l^{i}=\left\{a_{\#}{ }^{i} \mid a \in l\right\}$, and $L^{i}=\left\{l^{i} \mid l \in L\right\}$. Let $L^{\prime}=\left\{\left\ulcorner l^{i},\left(l^{\prime}\right)^{i+1},\left(l^{\prime \prime}\right)^{i+2\urcorner} \mid l \in L\right\}\right.$ be the set of the triples of incident lines of L^{0}, L^{1}, L^{2}. Now a T-collineation π, preserving incidence, maps L^{\prime} on L^{\prime}. For brevity, write $\left\ulcorner l^{i\urcorner}\right.$ for the triple of L^{\prime} containing $l^{i} \in L^{i}$. If $\left\ulcorner l^{0}, m^{1}, n^{2\urcorner} \in L^{\prime}\right.$, denote the element of L^{i} in this triple by $\left\ulcorner l^{0}, m^{1}, n^{2\urcorner i}\right.$. If $a_{\#}=l_{1} \cap l_{2},\left(a \in Q, l_{1}, l_{2} \in L\right), \pi a_{\#}{ }^{0}$ is the intersection of, or the space spanned by $\left(\pi\left\ulcorner l_{1}{ }^{0}\right\urcorner\right)^{0}$ and $\left(\pi\left\ulcorner l_{2}{ }^{0}\right\urcorner\right)^{0}$. So the representation of \mathscr{G}_{T} in L^{\prime} is faithful. The representation of \mathscr{G}_{T} in $Q^{0} \cup Q^{1} \cup Q^{2} \cup L^{\prime}$ is called the triality-group of Q (KUIPER [1] §5).
L can be mapped on L^{\prime} by $l \rightarrow\left\lceil l^{i\urcorner}\right.$ in three ways, corresponding to the interpretation of Q as coordinatization of the three Q^{i}. So $\pi \in \mathscr{G}_{T}$ induces three transformations π_{i} of L, corresponding to $\left\ulcorner l^{i\urcorner} \rightarrow\left(\pi^{\ulcorner }\ulcorner i\urcorner\right)^{i}\right.$ respectively. As $\varrho^{\ulcorner l i\urcorner}=\left\ulcorner l^{i+1}\right\urcorner$, we have $\pi_{i+1}=\left(\pi^{\varrho}\right)_{i}$. The induced transformation is unique iff $\pi=\pi^{Q}$.

Every T-collineation is of the form $\varphi \pi, \varphi \in S, \pi \in \mathscr{G}_{T}{ }^{+}$. Suppose $(\varphi \pi)^{\varrho}=\varphi \pi$, then $\left[\varphi^{\rho}\right]=[\varphi]$, so $\varphi=\varrho^{i}$. As $\varrho^{\varrho}=\varrho$, it follows that $\pi^{\varrho}=\pi$. Let $\pi=t_{\#}$. Now (2.2) takes the form $\hat{t} a b=\lambda t a \cdot t b$. In consequence te must belong to the centre $K e$ of C, so $t e=\varkappa e, \varkappa \in K$, and $\varkappa^{2}=r$. A suitable multiple of t has $x=r=\lambda=1$. Then $\hat{t} a=t a$. So the semi-similarity t can be chosen to be an automorphism of C as a ring (short: a semi-automorphism of C). All automorphisms of C as a ring are semi-linear, since the centre $K e$ must be invariant as a whole. They are semi-similarities, because $x^{2}-(x, e) x+Q(x) e=0$. Write \mathscr{G}_{C} for the group of semi-automorphisms. We have $\mathscr{G}_{C} \subset \mathscr{G}_{T^{+}}$.

We now prove that the automorphism $\pi \rightarrow \pi^{0}$ of $\mathscr{G}_{T^{+}}$is outer. Suppose we have $\sigma \in \mathscr{G}_{T^{+}}$such that $\pi^{\varrho}=\pi^{\sigma}$ for all $\pi \in \mathscr{G}_{T^{+}}$. Now $\sigma^{0}=\sigma$, so $\sigma \in \mathscr{G}_{C}$. Consider π, induced by $t_{0}: x \rightarrow \bar{a} x \bar{a}$ with $Q(a) \neq 0$. It follows from Moufang's identity $a(x y) a=(a x)(y a)$ that we may take in (2.2) $t_{1}: x \rightarrow a x$ and $t_{2}: x \rightarrow x a$. We have $t_{1}{ }^{\sigma}=x t_{2}(\varkappa \in K)$, so $\sigma^{-1} a \cdot x=x x a$. This leads to a contradiction.

We have the following representation of S in L :

$$
\begin{aligned}
& \varrho l=l^{\prime \prime}, \varrho^{2} l=l^{\prime}, \\
& \psi_{0} l=\bar{l}, \psi_{1} l=\overline{l^{\prime}}=\bar{l}^{\prime \prime}, \psi_{2} l=\overline{l^{\prime}}=\overline{l^{\prime \prime}} .
\end{aligned}
$$

In the case of a field K of characteristic $\chi(K) \neq 2$ the representation in L can be obtained from the Lie-algebra $L(Q)$ of Q (see van der Blij and Springer [2] § 3).
4. A triality is a T-collineation of order 3 permuting points and spaces of both kinds cyclically. Thus, if $\tau \in \mathscr{G}_{T^{+}}$is induced by $t_{0} \in \Gamma O_{8}{ }^{+}(K, Q)$, $\varrho \tau$ will be a triality iff $(\varrho \tau)^{3}=\tau^{\varrho^{2}} \tau^{\varrho} \tau=\mathrm{id}$, so iff $t_{i+2} t_{i+1} t_{i}=\varkappa \mathrm{id}, \varkappa \in K$. All trialities can be classified (see Tits [2] §5.2 and Springer [1]). The automorphism of K belonging to t_{i} has order 3, and for each such automorphism there is essentially only one triality, except in the case of the identical automorphism of K. Every automorphism of K can be extended to a semi-automorphism of C. We shall consider only trialities with $\tau \in \mathscr{G}_{C}$.

Let τ be a semi-automorphism of order 3 of C. The automorphism of K belonging to τ will be denoted by τ as well. We introduce a new product in C, which will prove to be adapted to the description of the geometry of $\varrho \tau$ (see Springer [l]):

$$
\begin{equation*}
a \star b=\tau^{2} \bar{a} \cdot \tau \bar{b} \quad(a, b \in C) \tag{4.1}
\end{equation*}
$$

The following formulae are easily derived from those of § 1:

$$
\begin{align*}
& Q(a \star b)=\tau^{2} Q(a) \tau Q(b) ; \tag{4.2}\\
& (\alpha a) \star(\beta b)=\tau^{2} \alpha \tau \beta(a \star b) \quad(\alpha, \beta \in K) ; \tag{4.3}\\
& (x \star x) \star x=\tau Q(x) x \tag{4.4}\\
& x \star(x \star x)=\tau^{2} Q(x) x ; \\
& (x \star y) \star z+(z \star y) \star x=\tau(x, z) y \\
& x \star(y \star z)+z \star(y \star x)=\tau^{2}(x, z) y ; \\
& (x \star y, z)=\tau(z \star x, y)=\tau^{2}(x, y \star z) .
\end{align*}
$$

Every space is of the form $a \star C$ or $C \star a$ with $a \neq 0, Q(a)=0$. Suppose $a, b \neq 0, Q(a)=Q(b)=0$, then we have

$$
\begin{array}{ll}
K a=K b & \Leftrightarrow a \star C=b \star C, \\
K a \neq K b, & (a, b)=0 \\
(a, b) \neq 0 & \Leftrightarrow \operatorname{dim} a \star C \cap b \star C=2, \\
a \star b=0 & \Leftrightarrow \operatorname{dim} a \star C \cap C \star b=3, \\
a \star b \neq 0 & \Leftrightarrow a \star C \cap C \star b=K a \star b ; \\
x \in a \star C \Leftrightarrow x \star a=0, \tag{4.6}\\
x \in C \star b \Leftrightarrow b \star x=0
\end{array}
$$

Suppose $t_{0}, t_{1}, t_{2} \in \Gamma O_{8}+(K, Q)$ such that

$$
t_{1 \#}=t_{0 \#}{ }^{\varrho \tau}, \quad t_{2 \#}=t_{0 \#}{ }^{(\varrho \tau)^{2}},
$$

then from (2.1) follows

$$
\begin{equation*}
t_{i}(a \star b)=\lambda_{i}\left(t_{i-1} a \star t_{i+1} b\right) . \tag{4.7}
\end{equation*}
$$

A semi-linear transformation t of C will be called a \star-automorphism if $t(a \star b)=t a \star t b$. We denote the group of \star-automorphisms of C by $\mathscr{G}_{C^{*}}$.
5. A line l will be fixed for the triality $\varrho \tau$ if $l=\varrho \tau l=(\tau l)^{\prime \prime}$, so if $l \cdot \tau l=0$, $l \star l=0$. This means $a \star b=0$ for all $a, b \in l$. A point $a_{\#}$ is called autoconjunct (short: a.c.) if $a \star a=0$. This implies $a_{\#} \subset C \star a=\varrho \tau a_{\#}$ and $a_{\#} \subset a \star C=(\varrho \tau)^{2} a_{\#}$. By (4.2) $a \star a=0$ implies $Q(a)=0$. A fixed line for $\varrho \tau$ will be called an autoconjunct line (instead of "droite fixe" Tits [2] §4.1). All its points are a.c. To an a.c. point $a_{\#}$ corresponds a plane $a \star C \cap C \star a$, containing $a_{\#}$. This will be called the centric plane with centre $a_{\#}$ and its points will be called centripetal points (instead of "plan spécial" and "points spéciaux" Tits l.c.). Let $b_{\#}$ be centripetal, $a_{\#}$ a.c. and $b \in a \star C \cap C \star a$. This implies $a \in b \star C \cap C \star b$ (by (4.6)), so if $b \star b \neq 0$ we have $a \in K b \star b$. It follows that $(b \star b) \star(b \star b)=0$. This relation characterizes all centripetal points. We shall say that two a.c. points $a_{\#}$ and $b_{\#}$ are conjunct if they lie on an a.c. line or coincide.

For a given semi-automorphism τ of order 3 write $\Gamma=\{a \in C \mid a \star a=0\}$. So $a \in \Gamma$ means $a_{\#}$ a.c. for $\varrho \tau$. Define a relation

$$
a \frown b \Leftrightarrow a \star b=0 \quad(a, b \in \Gamma) .
$$

It follows from (4.6) that $a \frown b$ implies $a, b \in b \star C \cap C \star a$, so a, b are dependent or $b \star a=0$. The relation - is symmetric. Moreover, $a \frown b$ implies $(a, b)=0$, and hence a and b span a line. This line is a.c., so $a \frown b$ means that $a_{\#}$ and $b_{\#}$ are conjunct.

Suppose $a_{1}, a_{2}, b \in \Gamma$ and $a_{1} \frown b \frown a_{2}$. We have

$$
b \in a_{1} \star C \cap C \star a_{1} \cap a_{2} \star C \cap C \star a_{2} \cap \Gamma=I \text { (say). }
$$

The following possibilities arise:

$$
\begin{aligned}
& \quad\left(a_{1}, a_{2}\right) \neq 0: \text { then } b=0 ; \\
& \quad\left(a_{1}, a_{2}\right)=0: \text { now } a_{1} \star a_{2} \in \Gamma \text {, for } \\
& \left(a_{1} \star a_{2}\right) \star\left(a_{1} \star a_{2}\right)=\tau\left(a_{1}, a_{1} \star a_{2}\right) a_{2}-\left(\left(a_{1} \star a_{2}\right) \star a_{2}\right) \star a_{1}= \\
& \tau^{2}\left(a_{1} \star a_{1}, a_{2}\right) a_{2}-\tau\left(a_{1}, a_{2}\right) a_{2} \star a_{1}+\left(\left(a_{2} \star a_{2}\right) \star a_{1}\right) \star a_{1}=0 .
\end{aligned}
$$

We have $\left(a_{1} \star a_{2}\right) \star a_{1}=\left(a_{1} \star a_{2}\right) \star a_{2}=0, a_{1} \frown a_{1} \star a_{2} \frown a_{2}$.
Distinguish two cases:
$a_{1} \star a_{2} \neq 0$: then $I=K a_{1} \star a_{2}=K a_{2} \star a_{1} ;$
$a_{1} \star a_{2}=0$: it follows that $a_{1}, a_{2} \in I$, so for independent $a_{1}, a_{2} I$ coincides with the a.c. line spanned by a_{1}, a_{2}.

We have proved:
(5.1) A triangle of a.c. lines is degenerate.
(5.2) If two a.c. points are not conjunct, at most one a.c. point is conjunct with both, so a quadrangle of a.c. lines is degenerate.

Suppose $a_{1}, \ldots, a_{5} \in \Gamma, a_{1} \frown a_{2} \frown \ldots \frown a_{5} \frown a_{1}$, but not

$$
a_{1} \frown a_{3}, a_{2} \frown a_{4}, \ldots, a_{5} \frown a_{2} .
$$

We have
$a_{2} \in K a_{1} \star a_{3}, a_{5} \in K a_{1} \star a_{4}, \quad$ so $\quad a_{3} \in K a_{4} \star\left(a_{1} \star a_{3}\right), a_{4} \in K a_{3} \star\left(a_{1} \star a_{4}\right)$.
But $a_{4} \star\left(a_{1} \star a_{3}\right)+a_{3} \star\left(a_{1} \star a_{4}\right)=\tau^{2}\left(a_{3}, a_{4}\right) a_{1}=0$. This implies:
(5.3) A pentagon of a.c. lines is degenerate.

Suppose Γ contains an independent pair a, b with $a \frown b$. Take $c \in \Gamma$. The line spanned by a, b contains an $a_{1} \neq 0$ with $\left(a_{1}, c\right)=0$. So there is an $a_{2} \neq 0$ such that $a \frown a_{1} \frown a_{2} \frown c$. It follows that we can find an element $d \in \Gamma$ with c, d independent and $c \frown d$. For every pair $a, c \in \Gamma$ there exist a_{1}, a_{2}, both $\neq 0$, for which $a \frown a_{1} \frown a_{2} \frown c$.

For the case $\tau=\mathrm{id}$, the preceding proofs were communicated to me by Professors F. van der Blij and T. A. Springer.

Hexagonic structures. Axial automorphisms
6. Let $\ulcorner V, E ; I\urcorner$ be an incidence-structure, consistsing of a set V of vertices, a set E of edges and a relation I, symmetric between V and E. $p \in V$ and $q \in E$ are said to be incident if $p I q$. The elements $p, q \in V \cup E$ are called similar, $p \sim q$, when both are vertices or both are edges. A chain of length n is a sequence $p_{0}, p_{1}, \ldots, p_{n} \in V \cup E$ such that $p_{i-1} \nsim p_{i}, p_{i-1} I p_{i}$ $(i=1, \ldots, n) . p_{0}$ and p_{n} are said to be joined by the chain. The chain is irreducible when all its elements are different.
(6.1) Definition. An n-gonic structure is an incidence-structure $\ulcorner V, E ; I\urcorner$ meeting the following requirements (see Tirs [2] § 11.1):
every pair $p, q \in V \cup E$ is joined by a chain of length $\leqslant n$;
a pair $p, q \in V \cup E$ is joined by at most one irreducible chain of length $<n$.
As before, let τ be a semi-automorphism of the split octaves of order 3. Take for V the set of a.c. points, for E the set of a.c. lines with respect to the triality $\varrho \tau$. Suppose $E \neq \varnothing$ (void set), then $\ulcorner V, E ; \in\urcorner$ is a hexagonic structure; to be proved from the results of $\S 5$ by straightforward verification. We shall denote this hexagonic structure by H_{τ}. The simplest example $H_{\text {id }}$ corresponds to $\tau=\mathrm{id}$. In this case we have

$$
\Gamma=\left\{a \in Q \mid a^{2}=0\right\}=\{a \in Q \mid(a, e)=0\}, \text { and } a \frown b \Leftrightarrow a b=0 .
$$

So $a_{\#}$ is a.c. iff $(a, e)=0$, the line l is a.c. iff l is a totally singular subalgebra of C. There is no distinction between a.c. and centripetal points, because $Q(b)=0 \Rightarrow b^{2}=(b, e) b$, so $b^{2} \cdot b^{2}=(b, e)^{2} b^{2}=0 \Rightarrow(b, e)=0$ or $b^{2}=0$.

Let \mathscr{G}_{τ} be the group of H_{τ}, consisting of all permutations of the sets of a.c. points and a.c. lines preserving incidence. It is clear that a \star-automorphism of C induces such a permutation. The following theorem I owe to Professor T. A. Springer:
(6.2) The homomorphism $\mathscr{G}_{C} \rightarrow \mathscr{G}_{\mathrm{id}}$ is onto.

Proof: A $\pi \in \mathscr{G}_{\mathrm{id}}$ maps a conjunct pair of a.c. points on a conjunct pair of a.c. points, and an orthogonal pair on an orthogonal pair. So π permutes the totally singular subspaces of Γ. By Cноw's theorem, π is induced by a semi-similarity t of $C_{0}=\{a \in C \mid(a, e)=0\}$ with respect to Q. However, if $\chi(K)=2$, this argument does not work, since the restriction of Q to C_{0} has defect 1. For the present we suppose $\chi(K) \neq 2$. Let r be the multiplier of t, then $(\operatorname{det} t)^{2}=r^{7}$, so $r \in K^{* 2}$. Now t can be chosen to have $r=1$. We extend t to C by $t e=e$. If $t \notin \Gamma O_{8}^{+}(K, Q)$, replace it by $x \rightarrow \overline{t x}$. Then π is induced by $t \in \Gamma O_{8}{ }^{+}(K, Q)$. According to (2.2), we can find $t^{\prime}, t^{\prime \prime}$ such that $t^{\prime} x y=t x \cdot t^{\prime \prime} y(x, y \in C)$. From $t e=e$ we derive

$$
t^{\prime} x=t^{\prime \prime} x=t x \cdot t^{\prime \prime} e .
$$

If $a, b \in \Gamma$, we have $a b=0 \Leftrightarrow t^{-1} a \cdot t^{-1} b=0 \Leftrightarrow t^{\prime}\left(t^{-1} a \cdot t^{-1} b\right)=a\left(b \cdot t^{\prime \prime} e\right)=0$. Take $b \in \Gamma, b \neq 0$ and $a_{1}, a_{2} \in C \bar{b} \cap \Gamma=C b \cap b C$ such that a_{1}, a_{2}, b are independent. Then $a_{1} b=a_{2} b=0, a_{1} a_{2} \neq 0$ (see §5). So $b \cdot t^{\prime \prime} e \in a_{1} C \cap a_{2} C=K b$. It follows that $t^{\prime \prime} e=x e, \chi \in K$, and $t^{\prime}=t^{\prime \prime}=\chi t$. So t is a semi-automorphism.

We assume theorem (6.2) to hold if $\chi(K)=2$ as well. The only result dependent on it will be (8.7).

As the a.c. points of $H_{\text {id }}$ span C_{0} (see above), $t \in \mathscr{G}_{C}$ induces the identity iff the restriction $t \mid C_{0}$ is a homothetic transformation. It is easily verified that this implies $t=\mathrm{id}$. So $\mathscr{G}_{C}=\mathscr{G}_{\mathrm{id}}$. The subgroup of (linear) automorphisms is an algebraic group of type G_{2} (see Tirs [2], § 8).

A theorem similar to (6.2) seems to hold for $\mathscr{G}_{C^{*}} \rightarrow \mathscr{G}_{\tau}$.
7. In the sequel we shall characterize the hexagonic structure $H_{\text {id }}$ by means of some geometrical properties, which we proceed to derive.

Let $H=\ulcorner V, E ; I\urcorner$ be a hexagonic structure. If $p, q \in V \cup E$ we define the distance $d(p, q)$ to be the length of the shortest chain joining p and q. We have

$$
\begin{aligned}
& d(p, q)=d(q, p) \\
& d(p, q) \leqslant 6 \text { and } d(p, q)=0 \Leftrightarrow p=q \\
& d(p, r) \leqslant d(p, q)+d(q, r)
\end{aligned}
$$

p and q are incident iff $d(p, q)=1$, joined iff $d(p, q)=0$ or 2 . In the cases $d(p, q)=2$ and 4 we shall denote the middle of the shortest chain joining p and q by $p \mapsto q$ and $p \wedge q$ respectively.

It follows from the definition of H that two vertices are joined by at most one edge, and that every 2 -, 3 -, 4 -, 5 -gon is degenerate. A sharper consequence is the following:
(7.1) Lemma. Let $p_{1}, p_{2}, p_{3} \in V \cup E$. Then
(a) $d\left(p_{1}, p_{2}\right)=d\left(p_{1}, p_{3}\right)=2, d\left(p_{2}, p_{3}\right)=2 \Rightarrow p_{1} \mapsto p_{2}=p_{1} \mapsto p_{3}$,
(c)
(d)

$$
\begin{array}{ll}
4, & 2 \Rightarrow p_{1} \wedge p_{2}=p_{1} \wedge p_{3} \\
3, & 2 \Rightarrow d\left(p_{1}, p_{2} \curvearrowleft p_{3}\right)=2 \tag{b}\\
3, & 4 \Rightarrow d\left(p_{1}, p_{2} \wedge p_{3}\right)=1
\end{array}
$$

Proof: (a) The chain $p_{2}, p_{1} \mapsto p_{2}, p_{1}, p_{1} \mapsto p_{3}, p_{3}$ has length <6 and $>d\left(p_{2}, p_{3}\right)$, hence cannot be irreducible
(b) Consider the chains $p_{1}, p_{1} \mapsto\left(p_{1} \wedge p_{2}\right), p_{1} \wedge p_{2},\left(p_{1} \wedge p_{2}\right) \mapsto p_{2}, p_{2}, p_{2} \mapsto p_{3}$ and $p_{1}, p_{1} \mapsto\left(p_{1} \wedge p_{3}\right), p_{1} \wedge p_{3},\left(p_{1} \wedge p_{3}\right) \mapsto p_{3}, p_{3}, p_{2} \mapsto p_{3}$.
These are different, hence must be reducible.
So $\left(p_{1} \wedge p_{2}\right) \mapsto p_{2}=p_{2} \mapsto p_{3}=\left(p_{1} \wedge p_{3}\right) \mapsto p_{3}$.
The chains $p_{1}, \ldots,\left(p_{1} \wedge p_{2}\right) \mapsto p_{2}$ and $p_{1}, \ldots,\left(p_{1} \wedge p_{3}\right) \mapsto p_{3}$ are irreducible. So $p_{1} \wedge p_{2}=p_{1} \wedge p_{3}$ ■
(c) Let $p_{1}, q_{2}, q_{2} \mapsto p_{2}, p_{2}$ and $p_{1}, q_{3}, q_{3} \mapsto p_{3}, p_{3}$ be the irreducible chains joining p_{1} with p_{2} and p_{3}.
Lengthen both by $p_{2} \longmapsto p_{3}$. The resulting chains are reducible, so $q_{2} \mapsto p_{2}=p_{2} \mapsto p_{3}$
(d) Take q_{2}, q_{3} as in (c) and consider the chains
$p_{1}, q_{2}, q_{2} \mapsto p_{2}, p_{2}, p_{2} \mapsto\left(p_{2} \wedge p_{3}\right), p_{2} \wedge p_{3}$ and
$p_{1}, q_{3}, q_{3} \mapsto p_{3}, p_{3}, p_{3} \mapsto\left(p_{2} \wedge p_{3}\right), p_{2} \wedge p_{3}$. These are reducible, so
$q_{2} \curvearrowleft p_{2}=p_{2} \mapsto\left(p_{2} \wedge p_{3}\right), q_{3} \mapsto p_{3}=p_{3} \mapsto\left(p_{2} \wedge p_{3}\right)$. Suppose that
$p_{1}, q_{2}, q_{2} \mapsto p_{2}, p_{2} \wedge p_{3}$ and $p_{1}, q_{3}, q_{3} \mapsto p_{3}, p_{2} \wedge p_{3}$ are irreducible, then $q_{2}=q_{3}$, and $q_{2}=q_{3}=p_{2} \wedge p_{3}$. So the chains must be reducible, which implies again $q_{2}=q_{3}=p_{2} \wedge p_{3}$
(a)

(b)

(c)

(d)

Fig. 1
For obvious reasons $p, q \in V \cup E$ are said to be orthogonal, $p \perp q$, if $d(p, q) \leqslant 4$. By the orthoplement of a subset $S \subset V \cup E$ is meant the set $S^{\perp}=\{p \in V \cup E \mid p \perp s$ for all $s \in S\}$. The pencil of p is the set $P(p)=\{q \in V \cup E \mid d(p, q)=1\}$. We define $P^{n}(p)=\{q \in V \cup E \mid d(p, q)=n, n-2, \ldots\}=\bigcup P(q)$ where $q \in P^{n-1}(p)$.

If $d(p, q)=6$, to each $p_{1} \in P(p)$ there is exactly one $q_{1} \in P(q)$ with
$d\left(p_{1}, q_{1}\right)=4$. This correspondence $P(p) \leftrightarrow P(q)$ is called a perspectivity (Tirs [2] § 11.2). It follows that $P(p)$ and $P(q)$ contain the same number of elements.

In H a closed irreducible chain of length 12 is called a hexagon. It is easily verified that if $p_{0}, p_{1}, \ldots, p_{12}=p_{0}$ is a hexagon we have $d\left(p_{i}, p_{j}\right)=$ $=\min ([i-j],[j-i])$, where $[i]$ is defined by $[i] \equiv i \bmod 12,0 \leqslant[i]<12$.
(7.2) Let $p_{0}, p_{1}, \ldots, p_{11}$ be a hexagon contained in H. For each $q \in V \cup E$, we have $d\left(q, p_{i}\right)=6$ for at least one i.

Proof: Take i such that $d\left(q, p_{i}\right)$ is maximal. Suppose $d\left(q, p_{i}\right)=d<6$. Then p_{i-1} and p_{i+1} are not both contained in the shortest chain joining q and p_{i}, so $d\left(q, p_{i-1}\right)=d+1$ or $d\left(q, p_{i+1}\right)=d+1$

From (7.2) we infer that, if H contains a hexagon, each pencil contains at least 2 elements. A hexagon is an example of a hexagonic structure. When we want to avoid this and other freak cases, such as degenerate or improper hexagonic structures (see Tits [2] § 11.2), we shall suppose that each pencil contains at least 3 elements.

Let \mathscr{G} be the group of automorphisms of H (pairs of permutations of V and E preserving I and consequently d). The pencil $P(q), q \in V \cup E$ is said to be an axis of $\pi \in \mathscr{G}$ if $P(q)^{\perp}$ is kept fixed by π elementwise.
(7.3) Suppose H contains a hexagon. Then

$$
P(q)^{\perp}=\{p \in V \cup E \mid d(p, q) \leqslant 3\} .
$$

Proof: Take $p \in P(q) \perp$ and $q_{1}, q_{2} \in P(q), d\left(q_{1}, q_{2}\right)=2$. Distinguish the following cases:
$d\left(p, q_{1}\right) \leqslant 2$ or $d\left(p, q_{2}\right) \leqslant 2$. Then $d(p, q) \leqslant 3$.
$d\left(p, q_{1}\right)=d\left(p, q_{2}\right)=3$. Apply (7.1(c)).
$d\left(p, q_{1}\right)=d\left(p, q_{2}\right)=4$. From (7.1(a), (b)) we infer
$p \wedge q_{1}=p \wedge q_{2} \in P(q), d(p, q)=2$
(7.4) Suppose each pencil contains at least 3 elements. Then an axial automorphism is determined completely by an axis and the image of one element outside the orthoplement of this axis.

We shall need two steps:
Suppose H contains a hexagon. Let $P(a)$ be an axis of $\pi, p, q \notin P(a)^{\perp}$ and $d(p, q)=1$. Then πp determines πq uniquely.

Proof: Write $p=p_{d(a, p)}, q=p_{d(a, q)}$. If p_{4} is lacking, take the element next to p_{5} in the shortest chain joining p_{5} and a. Let c be the element after p_{4} in this chain. If p_{6} is lacking, take $p_{6} \in P\left(p_{5}\right), p_{6} \neq p_{4}$. Then $d\left(a, p_{6}\right)=6$. Select a $b \in P\left(p_{6}\right), b \neq p_{5}$ and take c^{\prime} such that $d\left(b, c^{\prime}\right)=2$, $d\left(a, c^{\prime}\right)=3$. We have $p_{4}=c \mapsto p_{5}, p_{5}=P\left(p_{4}\right) \cap\left\{c^{\prime}\right\}^{\perp}=P\left(p_{6}\right) \cap\{p \mid d(c, p)=2\}$, $p_{6}=p_{5} \mapsto\left(c^{\prime} \wedge p_{5}\right)$. These relations are preserved by π, since $\pi c=c$, $\pi c^{\prime}=c^{\prime}$

Fig. 2
Now the proof of (7.4) is easily completed by means of:
(7.5) Suppose each pencil contains at least 3 elements. Then the complement of $P(q)^{\perp}, q \in V \cup E$, is connected, i.e. a pair $p, p^{\prime} \notin P(q)^{\perp}$ can be joined by a chain of elements outside $P(q) \perp$.

Proof: If $d(p, q)<6$, we can find $r \in P(p)$ such that $d(r, q)=d(p, q)+1$. So we may confine ourselves to the case $d(p, q)=d\left(p^{\prime}, q\right)=6$. Let $p=p_{0}, p_{1}, \ldots, p_{d}=p^{\prime}$ be a chain of length $d=d\left(p, p^{\prime}\right)$. Now $d\left(p_{i}, q\right) \geqslant$ $\geqslant \max (6-i, 6-d+i) \geqslant 6-\frac{1}{2} d$. So only the case $d=6, d\left(p_{3}, q\right)=3$ needs further consideration. Select $a \in P\left(p^{\prime}\right), a \neq p_{5}$ and $p^{\prime \prime} \in P(a), p^{\prime \prime} \neq p^{\prime}$ such that $d\left(p^{\prime \prime}, q\right)=6$. This is possible because $P(a)$ contains at least 3 elements. $d\left(p_{1}, a\right)=6$, so $d\left(p_{1}, p^{\prime \prime}\right)=5$. Let $p_{1}, p_{2}{ }^{\prime}, \ldots, p_{6}{ }^{\prime}=p^{\prime \prime}$ be the shortest chain joining p_{1} and $p^{\prime \prime}$. We have $p_{2} \neq p_{2}{ }^{\prime}$, since $p_{2}=p_{2}{ }^{\prime} \Rightarrow p_{4}=p_{4}{ }^{\prime} \in P(a)$, $d\left(p_{1}, a\right) \leqslant 4$ by (7.1). Suppose $d\left(p_{3}{ }^{\prime}, q\right)=3$, then $d\left(p_{2}, q\right)=d\left(p_{2}{ }^{\prime}, q\right)=4$, so $d\left(p_{1}, q\right)=3$, contradictory to $d\left(p_{1}, q\right)=5$

Remark: We need the property of $P(a)$ to contain 3 elements only for a with $d(a, q)$ odd.

Fig. 3
Let π be an axial automorphism, $\pi \neq \mathrm{id}$, and $P(a)$ an axis of $\pi . P(a) \perp$ is the set of fixed elements for π. It is easily verified that a is determined by $P(a) \perp$. So, except for the identity, an automorphism has at most one axis.

For brevity we shall sometimes say: π has axis a, when we mean: π has axis $P(a)$.
8. Now we shall investigate the axial automorphisms of H_{τ}. Let $\pi \in \mathscr{G}_{\tau}$ have the a.c. line l for axis and consider an a.c. point $x_{\#}, x \in \Gamma$, outside the orthoplement of the axis. This means $(x, a) \neq 0$ for an $a \in l$. (The concepts of orthogonality in the linear space and in the incidencestructure are not to be confused: if $x_{\#}, y_{\#}$ denote a.c. points and l, m a.c. lines, we have $(x, y)=0 \Leftrightarrow x_{\#} \perp y_{\#}, \quad(x, l)=0 \Leftrightarrow x_{\#} \perp l$, and $(l, m)=$ $=0 \Rightarrow l \perp m$, but not inversely, since $(l, m)=0$ iff $d(l, m) \leqslant 2)$. Take $y \in l$ such that $(x, y)=0$, and suppose there is an a.c. line m through x, not containing $x \star y$. Select $x^{\prime} \in m$ independent of x, and $y^{\prime} \in l$ such that $\left(x^{\prime}, y^{\prime}\right)=0$. Now $\pi x_{\#}$ is conjunct to $x \star y_{\#}$ and orthogonal to $x^{\prime} \star y^{\prime}$, hence contained in the 2 -dimensional intersection of the centric plane $(x \star y) \star C \cap C \star(x \star y)$ and the orthoplement of $x^{\prime} \star y^{\prime}$. It follows that $\pi x_{\#}$ is dependent on $x_{\#}$ and $y_{\#}$.

Fig. 4
In the case of H_{id}, according to (6.2), π is induced by a semi-linear transformation t of C. As the axis remains fixed pointwise, t is linear. So $t x$ is a linear combination of x and y with for coefficients constants. If a_{1}, a_{2} is a basis of l, we may choose $y=\left(x, a_{1}\right) a_{2}-\left(x, a_{2}\right) a_{1}$. This induces us to investigate the transformations t of the form

$$
\begin{equation*}
t x=x+\lambda\left\{\left(x, a_{1}\right) a_{2}-\left(x, a_{2}\right) a_{1}\right\} . \tag{8.1}
\end{equation*}
$$

Consider H_{τ} again. Let $a_{0}, a_{1}, a_{2}, a_{3} \in \Gamma, a_{0} \frown a_{1} \frown a_{2} \frown a_{3}$, but not $a_{0} \frown a_{2}$ and $a_{1} \frown a_{3}$. Define $\alpha_{02}, \alpha_{20}, \alpha_{13}, \alpha_{31}$ by

$$
\begin{aligned}
& a_{1}=\alpha_{02}\left(a_{0} \star a_{2}\right)=\alpha_{20}\left(a_{2} \star a_{0}\right), \\
& a_{2}=\alpha_{13}\left(a_{1} \star a_{3}\right)=\alpha_{31}\left(a_{3} \star a_{1}\right) .
\end{aligned}
$$

Then we have
$a_{1}=\alpha_{02}\left(a_{0} \star\left(\alpha_{13}\left(a_{1} \star a_{3}\right)\right)\right)=\alpha_{02} \tau \alpha_{13}\left(a_{0} \star\left(a_{1} \star a_{3}\right)\right)=\alpha_{02} \tau \alpha_{13} \tau^{2}\left(a_{0}, a_{3}\right) a_{1}$, and similarily $a_{1}=\alpha_{20} \tau^{2} \alpha_{31} \tau\left(a_{0}, a_{3}\right) a_{1}$. So

$$
\alpha_{02} \tau \alpha_{13} \tau^{2}\left(a_{0}, a_{3}\right)=\alpha_{20} \tau^{2} \alpha_{31} \tau\left(a_{0}, a_{3}\right)=1 .
$$

It follows that

$$
\left(\tau^{2} \alpha_{20}\right)^{-1} \tau \alpha_{02}=\left(\tau^{2} \alpha_{13}\right)^{-1} \tau \alpha_{31}=\gamma\left(a_{1}, a_{2}\right)
$$

is independent of a_{0} or a_{3} and invariant under inversion of the order. So $\gamma\left(a_{1}, a_{2}\right)=\gamma\left(a_{2}, a_{1}\right)$. Let A be a linear transformation of the line l spanned by a_{1}, a_{2}. Write $A a_{1}=A_{11} a_{1}+A_{21} a_{2}$, then
$A a_{1} \star a_{3}=\tau^{2} A_{11}\left(a_{1} \star a_{3}\right)=\left(\alpha_{13}\right)^{-1} \tau^{2} A_{11} a_{2}, a_{3} \star A a_{1}=\left(\alpha_{31}\right)^{-1} \tau A_{11} a_{2}$. So
$\gamma\left(A a_{1}, a_{2}\right)=\left(\tau^{2} A_{11}\right)^{-1} \tau A_{11} \gamma\left(a_{1}, a_{2}\right)$ and in the same way $\gamma\left(a_{1}, A a_{2}\right)=\left(\tau^{2} A_{22}\right)^{-1} \tau A_{22} \gamma\left(a_{1}, a_{2}\right)$. Combining we get $\gamma\left(A a_{1}, A a_{2}\right)=\left(\tau^{2} \operatorname{det} A\right)^{-1} \tau \operatorname{det} A \gamma\left(a, a_{2}\right)$.
(8.2) Let t be of the form (8.1) with $a_{1}, a_{2} \in \Gamma$, independent, a_{1} - a_{2}, and suppose for some $x \in \Gamma$ we have $t x \neq x, t x \in \Gamma$, then t satisfies

$$
\begin{equation*}
(\tau \lambda)^{-1} \tau^{2} \lambda=-\gamma\left(a_{1}, a_{2}\right) \tag{8.3}
\end{equation*}
$$

Proof: It is easily verified that for A as above

$$
t x=x+(\operatorname{det} A)^{-1} \lambda\left\{\left(x, A a_{1}\right) A a_{2}-\left(x, A a_{2}\right) A a_{1}\right\} .
$$

It follows that A affects both sides of (8.3) in the same way. We may suppose $\left(x, a_{1}\right)=1,\left(x, a_{2}\right)=0$. Write $a_{4}=x, a_{3}=\alpha_{24}\left(a_{2} \star a_{4}\right)=\alpha_{42}\left(a_{4} \star a_{2}\right)$. Then $t x \star t x=\left(a_{4}+\lambda a_{2}\right) \star\left(a_{4}+\lambda a_{2}\right)=$ $\tau^{2} \lambda\left(a_{2} \star a_{4}\right)+\tau \lambda\left(a_{4} \star a_{2}\right)=\left(\left(\alpha_{24}\right)^{-1} \tau^{2} \lambda+\left(\alpha_{42}\right)^{-1} \tau \lambda\right) a_{3}=$ $=\left(\tau^{2} \lambda \tau^{2} \alpha_{13}+\tau \lambda \tau \alpha_{31}\right) a_{3}=0$.
So $(\tau \lambda)^{-1} \tau^{2} \lambda=-\left(\tau^{2} \alpha_{13}\right)^{-1} \tau \alpha_{31}=-\gamma\left(a_{1}, a_{2}\right)$
(8.4) Let t be of the form (8.1) with $a_{1}, a_{2} \in \Gamma$, independent, $a_{1} \frown a_{2}$ and satisfying (8.3). Then t induces an automorphism of H_{v}.

Proof: As t^{-1} is of the form (8.1) with $-\lambda$ instead of λ, it suffices to show $x \in \Gamma \Rightarrow t x \in \Gamma$ and $x \frown y \Rightarrow t x \frown t y$. The first follows from the proof of (8.2). For the second, we need only consider the case $t x \neq x, t y \neq y$. Take a_{3}, a_{4} as before. Now if $\left(y, a_{2}\right)=0, y$ is dependent on a_{3} and a_{4}. If $\left(y, a_{2}\right) \neq 0$, we may suppose $\left(y, a_{1}\right)=0,\left(y, a_{2}\right)=1$. Write $a_{5}=y, a_{4}=\alpha_{35}\left(a_{3} \star a\right)$. Now $\left(a_{3}, t a_{5}\right)=0$. We have $a_{3} \star t a_{5}=a_{3} \star\left(a_{5}-\lambda a_{1}\right)=\left(\alpha_{35}\right)^{-1} a_{4}-\left(\alpha_{31}\right)^{-1} \tau \lambda a_{2}$. Now $-\left(\alpha_{31}\right)^{-1} \tau \lambda=\left(\alpha_{31}\right)^{-1} \lambda \tau^{2} \gamma\left(a_{1}, a_{2}\right)=\left(\tau \alpha_{13}\right)^{-1} \lambda=\lambda \tau^{2} \alpha_{24}=\left(\tau \alpha_{35}\right)^{-1} \lambda$. So $a_{3} \star t a_{5}=\left(\alpha_{35}\right)^{-1} t a_{4}$. This implies $t a_{4}$ - $t a_{5}$.

Combining (8.2) and (8.4) we get (see also Tits [2] § 6.4):
(8.5) Let l be an a.c. line, a_{1}, a_{2} a basis of $l, x_{\#}$ and $x_{\#}{ }^{\prime}$ a.c. points of H_{τ} with $x^{\prime}=x+\lambda\left\{\left(x, a_{1}\right) a_{2}-\left(x, a_{2}\right) a_{1}\right\}$. Then there exists $a \pi \in \mathscr{G}_{\tau}$ with axis l such that $\pi x_{\#}=x_{\#}{ }^{\prime}$.

Proof: Define t by (8.1) with y instead of x for all $y \in C$. Then (8.2) applies, so (8.3) is satisfied. It follows that (8.4) also applies. $\pi=t_{\#}$ 【

Let L be the subfield of K of fixed elements for $\tau . K$ is a cyclic extension of L of order 3. Condition (8.3) means that $N_{K / L}\left(\gamma\left(a_{1}, a_{2}\right)\right)=-1$. If this is fulfilled, λ is determined up to a factor from L^{*} (see e.g. Bourbaki [1] Algèbre, chap. V § 10 , no 5 and § 11, no 5). Suppose that there are at least 3 a.c. lines through each a.c. point, then it follows that for each axis there exist axial automorphisms of the form (8.1) and no others.

The automorphisms with the same a.c. line for axis constitute a group isomorphic to the additive group of L.

For $H_{\text {id }}$ we have $\gamma\left(a_{1}, a_{2}\right)=-1$. Moreover, it may be verified directly that every linear transformation of the form (8.1) with $a_{1}, a_{2} \in \Gamma$, independent and $a_{1} \frown a_{2}$ is an automorphism of C. We indicate the lines of the computation. The line spanned by a_{1}, a_{2} is a totally singular subalgebra D of C. Its orthoplement D^{\prime} is a 6 -dimensional subalgebra with radical D. D^{\prime} contains a split quaternion algebra A. So $C=A \oplus A x$ with suitable x (see van der Blij and Springer [1] § 2), and $D^{\prime}=A \oplus B x, D=B x$, where B is a right ideal of A, satisfying $\bar{c} c^{\prime}=0$ for all $c, c^{\prime} \in B$. The rest is straightforward, utilizing the multiplication rule $\left(a_{1}+b_{1} x\right)\left(a_{2}+b_{2} x\right)=\left(a_{1} a_{2}-Q(x) \bar{b}_{2} b_{1}\right)+\left(b_{2} a_{1}+b_{1} \bar{a}_{2}\right) x \quad\left(a_{1}, b_{1}, a_{2}, b_{2} \in A\right)$.
A similar treatment of H_{τ} would require an elaboration of the structure of C as a ring with respect to the \star-multiplication.

Now we restate the result (8.5) in terms of distance:
(8.6) Let l, m, m^{\prime} be a.c. lines of H_{τ} satisfying $d(l, m)=d\left(l, m^{\prime}\right)=4$, $d\left(m, m^{\prime}\right)=2$ and $d\left(l, m \mapsto m^{\prime}\right)=3$. Then there is a $\pi \in \mathscr{G}_{\tau}$ having l for axis such that $\pi m=m^{\prime}$.

Proof: Take $x_{\#} \in m, x_{\#} \neq m \mapsto m^{\prime}$, and $x_{\#}^{\prime} \in m^{\prime}$ such that $x_{\#}$ and $x_{\#}{ }^{\prime}$ are collinear with the point $y_{\#} \in l$ having $d\left(y_{\#}, m \mapsto m^{\prime}\right)=2$. Apply (8.5)

Concerning axial automorphisms with an a.c. point for axis we have the following result:
(8.7) For $H_{\text {id }}$ the only axial automorphism having an a.c. point for axis is the identity, except if $\chi(K)=3$. In this case, for every a.c. point $a_{\#}$ and pair of a.c. points $x_{\#}, x_{\#}{ }^{\prime}$ on an a.c. line l, such that $d\left(a_{\#}, l\right)=3, d\left(a_{\#}, x_{\#}\right)=$ $=d\left(a_{\#}, x_{\#}{ }^{\prime}\right)=4$, there is $a \pi \in \mathscr{G}_{\text {id }}$ with axis $a_{\#}$ such that $\pi x_{\#}=x_{\#}{ }^{\prime}$.

Proof: Let the a.c. point $a_{\#}$ be an axis of $\pi \in \mathscr{G}_{\mathrm{id}}$. We can find a normal basis $x_{0}, y_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ of C (§ 1 , end) with $x_{1}=a$. The points $x_{1 \#}, \ldots, y_{3 \#}$ and the joining lines constitute a hexagon of $H_{\text {id }}$. According to (6.2), π is induced by $t \in \mathscr{G}_{C}$. The plane spanned by x_{1}, y_{2}, y_{3} is fixed pointwise, so t is linear, and $t x_{1}=\lambda x_{1}, t y_{2}=\lambda y_{2}, t y_{3}=\lambda y_{3}$. Now $t x_{1}=t y_{2} \cdot t y_{3}$ implies $\lambda=1$. The lines joining $y_{2 \#}, x_{3 \#}$ and $y_{3 \#}, x_{2 \#}$ are a.c. A straightforward computation shows that t has the form

$$
\begin{aligned}
& t x_{1}=x_{1}, t y_{2}=y_{2}, t y_{3}=y_{3} \\
& t x_{2}=x_{2}+\alpha y_{3}, t x_{3}=x_{3}-\alpha y_{2}, \\
& t y_{1}=y_{1}+\alpha\left(x_{0}-y_{0}\right)+\alpha^{2} x_{1} \\
& t x_{0}=x_{0}+\alpha x_{1}, t y_{0}=y_{0}-\alpha x_{1} .
\end{aligned}
$$

It can be verified that t is an automorphism. Now the pencil

$$
P\left(\left(\lambda_{1} x_{1}+\lambda_{2} y_{2}+\lambda_{3} y_{3}\right)_{\#}\right)
$$

remains fixed elementwise. We may suppose $\lambda_{2} \neq 0$. In the plane spanned by y_{1}, x_{2}, y_{3} we have

$$
\left(\lambda_{1} x_{1}+y_{2}+\lambda_{3} y_{3}, \mu_{1} y_{1}+\mu_{2} x_{2}+\mu_{3} y_{3}\right)=\lambda_{1} \mu_{1}+\mu_{2} .
$$

The line $\lambda_{1} \mu_{1}+\mu_{2}=0$ is not a.c., since it does not contain x_{2}. Consider

$$
z=\left(\lambda_{1} x_{1}+y_{2}+\lambda_{3} y_{3}\right)\left(\mu_{1} y_{1}-\lambda_{1} \mu_{1} x_{2}+\mu_{3} y_{3}\right) .
$$

Now $(t-1) z=\alpha \mu_{1}\left(\lambda_{1} x_{1}+y_{2}+\lambda_{3} y_{3}\right)-3 \alpha \lambda_{1} \mu_{1} x_{1}$ has to be proportional to $\lambda_{1} x_{1}+y_{2}+\lambda_{3} y_{3}$ for all λ_{1}, μ_{1}. So $\chi(K)=3$ or $\alpha=0$. If $3=0, t$ is axial for all $\alpha \in K$, for the line containing z may arbitrarily be chosen in the pencil $P\left(\left(\lambda_{1} x_{1}+y_{2}+\lambda_{3} y_{3}\right)_{\#}\right)$

Fig. 5

The different behaviour if $\chi(K)=3$ is related with several other peculiarities of the algebraic groups of type G_{2} in this case (see Tirs [2] § 10).

Similar results to (8.7) seem to be obtainable for $H_{v}, \tau \neq \mathrm{id}$. Instead of 3α the trace $\alpha+\tau \alpha+\tau^{2} \alpha$ will occur.
9. In order to distinguish $H_{\text {id }}$ from $H_{\tau}, \tau \neq \mathrm{id}$, by geometrical means we consider for an a.c. point $a_{\#}$ the pencil $P\left(a_{\#}\right)$ of a.c. lines containing $a_{\#}$. If $\tau=\mathrm{id}$, in the centric plane $a C \cap C a$ every line containing a is a.c. In the general case, however, we have the following theorem:
(9.1) Suppose H_{τ} contains a hexagon. Then the pencil $P\left(a_{\#}\right)$ of an a.c. point $a_{\#}$ possesses in the centric plane $a \star C \cap C \star a$ the structure of a projective line over L, embedded in the pencil of all lines of $a \star C \cap C \star a$ containing $a_{\#}$.

Again L designates the subfield of K of invariant elements for τ. The proof of (9.1) requires an algebraic preliminary, the proof of which I owe to Professor T. A. Springer:
(9.2) Suppose $a \star a=b \star b=(a, b)=0, a \star b \neq 0$, so $b \star a=\alpha(a \star b)$. Then $N_{K / L}(\alpha)=-1$.

Proof: Choose $x \in C$ satisfying $(x, a \star b)=1$. Then $(x, b \star a)=\alpha$. We have

$$
\begin{aligned}
& ((a \star x) \star b) \star a=-((b \star x) \star a) \star a=-(b \star x, a) a=-a, \\
& ((a \star x) \star b) \star b=\tau(a \star x, b) b=\tau^{2} \alpha b .
\end{aligned}
$$

Write $(a \star x) \star b=u$, so $u \star a=-a, u \star b=\tau^{2} \alpha b$.
Now $(u, a)=((a \star x) \star b, a)=-((b \star x) \star a, a)=0,(u, b)=0$.
Compare the following expressions $(b \star a) \star u=-(u \star a) \star b=a \star b$, $(b \star a) \star u=\tau^{2} \alpha(a \star b) \star u=-\tau^{2} \alpha(u \star b) \star a=-\tau^{2} \alpha \tau \alpha(b \star a)=$ $=-\tau^{2} \alpha \tau \alpha \propto(a \star b)$

Proof of (9.1): According to a conclusion from (7.2), $P\left(a_{\#}\right)$ contains at least 2 a.c. lines l_{1}, l_{2}. Take $a_{1} \in l_{1}, a_{2} \in l_{2}$ such that a is not dependent on a_{1}, a_{2}. Then $a_{1} \star a_{2} \neq 0$, and from (9.2) we deduce $a_{2} \star a_{1}=\alpha\left(a_{1} \star a_{2}\right)$, $N_{K / L}(-\alpha)=1$. Now we have

$$
\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) \star\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right)=\left(\tau^{2} \alpha_{1} \tau \alpha_{2}+\alpha \tau^{2} \alpha_{2} \tau \alpha_{1}\right)\left(a_{1} \star a_{2}\right) .
$$

So $\alpha_{1} \alpha_{1}+\alpha_{2} \alpha_{2} \in \Gamma$ iff $\alpha_{1}=0$ or $\alpha_{2}=0$ or

$$
\alpha_{1}, \alpha_{2} \neq 0 \text { and }\left(\tau\left(\alpha_{2}^{-1} \alpha_{1}\right)\right)^{-1} \tau^{2}\left(\alpha_{2}^{-1} \alpha_{1}\right)=-\alpha .
$$

We have remarked already (§ 8, after (8.5)) that this equation is solvable and that the solutions form a coset $\bmod L^{*}$ in K^{*}. Finally $\alpha_{1} a_{1}+\alpha_{2} \alpha_{2} \in \Gamma$ implies that the line spanned by a and $\alpha_{1} a_{1}+\alpha_{2} a_{2}$ is a.c.

Consider a centric plane $a \star C \cap C \star a$ of H_{τ}. If $\tau \neq \mathrm{id}$, the set of a.c. points contained in $a \star C \cap C \star a$ is not a projective plane, as it is in the case $\tau=\mathrm{id}$. The point of intersection of a pair of non-a.c. lines need not be a.c. We want to express this property in terms of the elements of the hexagonic structure and its group.

Suppose $a_{1}, a_{2}, a_{3} \in \Gamma$ such that $d\left(a_{1 \#}, a_{2 \#}\right)=4, d\left(\left(a_{1} \star a_{2}\right)_{\#}, a_{3 \#}\right)=6$. We ask for an axial automorphism π with an a.c. line for axis satisfying $\pi a_{1 \#}=a_{2 \#}, \tau a_{3 \#}=a_{3 \#}$. The axis of π has to intersect the non-a.c. line l spanned by a_{1}, a_{2} in an a.c. point. This point has to be orthogonal to

Fig. 6
$a_{3 \#}$, hence must belong to the non-a.c. line m, which is the intersection of the orthoplement of a_{3} with $\left(a_{1} \star a_{2}\right) \star C \cap C \star\left(a_{1} \star a_{2}\right)$. If $\tau \neq \mathrm{id}$, it is easy to choose a_{1}, a_{2}, a_{3} so as to ensure that $l \cap m$ is not a.c. If $\tau=\mathrm{id}$, each point $b_{\#} \in l \cap m$ is necessarily a.c., and we may take the line spanned by b and $a_{3} \star b$ for axis, except if $l \neq m$ and $b_{\#}=a_{1 \#}$ or $b_{\#}=a_{2 \#}$. We have shown:
(9.3) Suppose $a_{1 \#}, a_{2 \#}, a_{3 \#}$ are a.c. points of $H_{\text {id }}, d\left(a_{1 \#}, a_{2 \#}\right)=4$ and $d\left(a_{1 \#}, a_{3 \#}\right)=d\left(a_{2 \#}, a_{3 \#}\right)=d\left(\left(a_{1} \star a_{2}\right)_{\#}, a_{3 \#}\right)=6$. Then there is $a \pi \in \mathscr{G}_{\text {id }}$ with an a.c. line for axis such that $\pi a_{1 \#}=a_{2 \#}, \pi a_{3 \#}=a_{3 \#}$.

Finally we remark that, for each automorphism σ of order 3 of K, there is a hexagonic structure H_{τ} containing a hexagon with $\tau=\sigma$ on K. To prove this, take a normal basis of C, and put

$$
\tau \sum_{0}^{3}\left(\xi_{i} x_{i}+\eta_{i} y_{i}\right)=\sum_{0}^{3}\left(\sigma \xi_{i} \cdot x_{i}+\sigma \eta_{i} \cdot y_{i}\right) .
$$

Then $x_{1}, y_{2}, x_{3}, y_{1}, x_{2}, y_{3}$ determine a hexagon.

