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SUMMARY

Autism spectrum disorder (ASD), a neurodevelop-
mental disorder affecting nearly 1 in 88 children, is
thought to result from aberrant brain connectivity.
Remarkably, there have been no systematic
attempts to characterize whole-brain connectivity
in children with ASD. Here, we use neuroimaging to
show that there are more instances of greater func-
tional connectivity in the brains of children with
ASD in comparison to those of typically developing
children. Hyperconnectivity in ASD was observed at
the whole-brain and subsystems levels, across
long- and short-range connections, and was associ-
ated with higher levels of fluctuations in regional
brain signals. Brain hyperconnectivity predicted
symptom severity in ASD, such that children with
greater functional connectivity exhibited more
severe social deficits. We replicated these findings
in two additional independent cohorts, demon-
strating again that at earlier ages, the brain of chil-
dren with ASD is largely functionally hyperconnected
in ways that contribute to social dysfunction. Our
findings provide unique insights into brain mecha-
nisms underlying childhood autism.
INTRODUCTION

Autism spectrum disorder (ASD), a neurodevelopmental disor-

der that affects nearly 1 in 88 children (Baio, 2012), is thought

to affect multiple interconnected brain regions (Minshew and

Williams, 2007). Knowledge of brain connectivity in ASD and its

relation to core symptoms is therefore critical for understanding

the neurobiology of ASD (Kennedy and Courchesne, 2008;

Menon, 2011; Minshew and Williams, 2007; Monk et al., 2009;
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Vissers et al., 2012). Despite the early developmental origins of

this disorder and its variable developmental trajectory, almost

all of the current literature on brain connectivity has focused on

adolescents and adults with ASD, rather than on children (Gotts

et al., 2012; Kennedy and Courchesne, 2008).

Several previous studies in adults have reported that func-

tional connectivity between brain areas engaged during cogni-

tive tasks is weaker in ASD (Just et al., 2007; Kleinhans et al.,

2008; Koshino et al., 2008), leading to the ‘‘underconnectivity

theory’’ of autism (Just et al., 2012). Yet, empirical evidence in

support of the underconnectivity theory comes primarily from

analyses of a handful of regions of interest derived from task-

based activation studies in adults, often with poor replication

across studies because of variability in the choice of brain re-

gions examined (Müller et al., 2011; Vissers et al., 2012).

Although very little is currently known about brain connectivity

in childhood ASD, one of the earliest signs of autism is enlarged

head circumference or macrocephaly (Lainhart et al., 1997).

Infants and young children with ASD show signs of early brain

overgrowth (Courchesne et al., 2003), and postmortem studies

of children with ASD show that they have an overabundance or

excess number of neurons in the prefrontal cortex (Courchesne

et al., 2011). Animalmodels of autism have provided evidence for

hyperconnectivity in intrinsic functional circuits at very early time

points in development (Testa-Silva et al., 2012; Yizhar et al.,

2011). These findings of macrocephaly and hyperconnectivity

have yet to be reconciled with human neuroimaging studies.

As a result, there is a profound inconsistency in the extant liter-

ature, arising both from the failure to adequately distinguish

weak task-related modulation of functional connectivity from

intrinsic functional brain connectivity, and from inadequate

attention to childhood autism (Amaral, 2011). Additionally, a

major weakness in the field has been limited sample sizes and,

more importantly, the lack of replication of findings using iden-

tical analytic procedures (Vissers et al., 2012).

In this era of human brain connectomics, it is increasingly

recognized that understanding complex brain function and

dysfunction critically depends on accurate characterization of
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connections between brain regions (Sporns, 2011). Comprehen-

sive descriptions of whole-brain functional connectivity profiles

in clinical disorders have begun to provide greater insights into

the functional consequences of altered brain connectivity (For-

nito et al., 2012; Supekar et al., 2008). Yet, very little is known

about whole-brain functional connectivity in neurodevelopmen-

tal disorders such as ASD during childhood, and a mechanistic

understanding of neural processing in ASD is completely absent.

Here, we address these critical gaps by using task-free fMRI

(Greicius et al., 2003) to characterize whole-brain functional con-

nectivity in three independent cohorts totaling 110 children aged

7–13 years with ASD and age-, gender-, and IQ-matched

typically developing (TD) children. We test the hypothesis that

childhood ASD is associatedwith altered intrinsic functional con-

nectivity patterns that impact brain systems critical for social

cognition. Critically, we replicate our key findings across the

three cohorts and provide the most robust evidence for

widespread functional brain hyperconnectivity in children with

autism, demonstrating that at earlier ages, the brain in ASD is

largely functionally hyperconnected. Extensive additional ana-

lyses confirmed our findings of intrinsic functional hyperconnec-

tivity in childhood ASD. Finally, we demonstrate that this pattern

of functional hyperconnectivity predicted autism symptoms

such that children with greater functional connectivity exhibited

more severe impairment in the social domain.

RESULTS

One cohort of 40 children (ASD = 20; TD = 20) was recruited at

Stanford University; a second cohort of 40 children (ASD = 20;

TD = 20) was recruited at Georgetown University and Children’s

National Medical Center (CNMC); a third cohort of 30 children

(ASD = 15; TD = 15) was recruited at New York University

(NYU) and obtained from the National Database of Autism

Research (NDAR; http://ndar.nih.gov). Each cohort consisted

of well-characterized children with ASD and a well-matched

group of TD children. Task-free fMRI data were acquired from

each child in the Stanford, Georgetown/CNMC, and NYU/

NDAR cohorts (demographic data, data acquisition protocols,

and data preprocessing procedures are described in Experi-

mental Procedures). Here, we report findings from the Stanford

cohort. Convergent findings from the Georgetown/CNMC

and NYU/NDAR cohorts are described in the Supplemental

Information.

Functional Brain Hyperconnectivity in ASD Children
Compared to TD Children, at the Whole-Brain Level
We first examined differences in whole-brain functional connec-

tivity patterns between children with ASD and TD children. Pre-

processed fMRI data sets were parcellated into 90 cortical and

subcortical regions using anatomical templates (Tzourio-

Mazoyer et al., 2002). A time series was computed for each of

the 90 regions by averaging all voxels within each region.

Wavelet analysis of the extracted regional fMRI time series

(Supekar et al., 2009) was used to compute interregional func-

tional connectivity across the whole brain. Mean global connec-

tivity (the average of wavelet correlation values across all

possible pairwise functional connections) was higher in children
Ce
with ASD compared to TD children (p < 0.05, Cohen effect size

d0 = 0.67, Figure 1B). Comparing wavelet correlation values of

all possible pairwise functional connections (n = 4005), we found

that there weremore instances of greater connectivity in children

with ASD (Figure 1A). Specifically, 588 pairs (15%) of anatomical

regions showed higher correlations in the ASD group than the TD

group (p < 0.05, corrected for multiple comparisons; Zalesky

et al., 2010). No pairs of regions showed higher correlations in

the TD compared to the ASD group. Additional analyses were

conducted to determine the robustness of these results. First,

we examined the potential effects of alternate region of interest

(ROI) specification strategies on our results. We repeated our

entire analysis using two additional ROI specification strategies:

voxel-based, in which the regions of interest were cortical and

subcortical voxels selected using the procedure described by

van den Heuvel and colleagues (van den Heuvel et al., 2008),

and functionally defined, in which the regions of interest were

264 putative functional brain areas selected using the procedure

described by Power and colleagues (Power et al., 2011). These

two strategies, along with our original automated anatomical

labeling (AAL)-based ROI specification strategy, capture a

wide range of ROI specification strategies, from random-voxel

based to anatomically defined to functionally defined. Results

from these additional analyses were consistent with the results

from the original analysis (which used AAL-based ROIs), namely:

compared to TD children, childrenwith ASD showed significantly

higher functional connectivity between pairwise ROIs. Second,

we examined the potential effect of global signal regression on

our results. We regressed out the global signal and repeated

our functional connectivity analyses on the regressed out fMRI

data. Results from these additional analyses were consistent

with the results from the original analysis (which did not include

global signal regression); namely, compared to TD children, chil-

dren with ASD showed significantly higher functional connectiv-

ity. Taken together, results from these additional analyses further

confirm the robustness of our findings of hyperconnectivity in

children with ASD (see Supplemental Information for details).

Functional Brain Hyperconnectivity at the Subsystems
Level in ASD Children Compared to TD Children
To investigate whether differences in functional brain connectiv-

ity span multiple functional subsystems, we used the parcella-

tion scheme proposed by Mesulam (Mesulam, 1998) to examine

functional connectivity in five functional subsystems: primary

sensory, subcortical, limbic, paralimbic, and association areas.

Each subsystem has a distinct cytoarchitectonic profile and sub-

serves a unique set of functions, collectively mapping external

sensory information to cognition (Mesulam, 1998). Higher

mean functional connectivity in children with ASD, compared

with TD children, was detected in the primary sensory, paralim-

bic, and association areas (p < 0.05, d0 > 0.7; Figure 1C). Children

with ASD also showed higher mean connectivity across subsys-

tems: between primary sensory and paralimbic, primary sensory

and association, and paralimbic and association (p < 0.05, d0 >
0.49; Figure 1D). No links between or within any of these subsys-

tems showed greater connectivity in the TD group compared

with the ASD group. These results suggest that hyperconnectiv-

ity in ASD spans multiple functional subsystems of the human
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Figure 1. Functional Brain Hyperconnectivity in Children with ASD
(A) A total of 588 pairs (15%) of anatomical regions showed higher correlations in children with ASD compared to the TD group (p < 0.05, corrected for multiple

comparisons). No pairs of regions showed higher correlations in the TD compared to the ASD group.

(B) Mean whole-brain connectivity was higher in children with ASD compared to TD children (p < 0.05, d’ = 0.67).

(C) Within subsystems, mean connectivity was higher in children with ASD in primary sensory, paralimbic, and association areas (p < 0.05, d’ > 0.70). A total of

25% of the total functional connections within primary sensory, 10%within paralimbic, and 19%within association areas showed greater functional connectivity

in ASD than in TD.

(D) Across subsystems, mean functional connectivity between primary sensory and paralimbic, between primary sensory and association, and between par-

alimbic and association areas was greater in children with ASD (p < 0.05, d’ > 0.49). A total of 18% of functional connections between primary sensory and

paralimbic, 17%between primary sensory and association, and 17%between paralimbic and association areaswere greater in children with ASD. No links, either

within or between subsystems, showed greater connectivity in the TD group compared to the ASD group.

*p < 0.05. Error bars represent SEM. See also Figures S1 and S4.
brain. The paralimbic subsystem consists of the insula, anterior

cingulate cortex, posterior cingulate cortex, and the orbitofrontal

cortex, while association areas include the lateral frontal and

parietal cortices.

Functional Brain Hyperconnectivity in ASD Children
between Proximal and Distant Anatomical Regions
Reports in the literature suggest that short- and long-range con-

nections may be differentially affected in ASD (Courchesne and

Pierce, 2005). To examine whether both short- and long-range

intrinsic functional connectivity is disrupted in children with

ASD, we examined differences in regional functional connectivity

in the two groups as a function of the interregional distance. The
740 Cell Reports 5, 738–747, November 14, 2013 ª2013 The Authors
distance between two regions was computed by calculating the

Euclidean distance between centroids of those regions (Fair

et al., 2009; Supekar et al., 2009). We found that, compared to

TD children, children with ASD showed higher functional con-

nectivity across all distances examined (Figure 2). Thus, func-

tional hyperconnectivity in ASD was observed between both

proximal and distant anatomical regions.

Functional Brain Hyperconnectivity in ASD Children Is
Associated with High Amplitude of Low-Frequency
Fluctuations
To investigate potential node-level abnormalities contributing

to global hyperconnectivity in children with ASD, we examined



Figure 2. Functional Brain Hyperconnectivity in Children with ASD

as a Function of Interregional Distance
Connections across all distances showed higher levels of hyperconnectivity in

children with ASD, compared to TD children. Connectivity values that were

stronger in children with ASD are shown in blue, and connections that were

stronger in TD children are in red (none in this cohort). Interregional distance, d,

was computed by calculating the Euclidean distance between region cen-

troids. See also Figures S2 and S5.
the amplitude of low-frequency fluctuations (ALFFs) in the

regional fMRI signal. Whereas functional connectivity provides

an index of temporal synchrony between low-frequency fluctu-

ations in regional fMRI signals, ALFF is a measure of regional

changes in signal level (Yang et al., 2007). We computed

ALFF values for each of the 90 anatomical regions of interest

for each participant (see Experimental Procedures for details).

We found that the global mean ALFF values were greater

in the ASD group than the TD group (p < 0.05, d0 = 0.68;

Figures 3A and 3B). Furthermore, higher regional ALFF was

associated with higher levels of whole-brain connectivity in

children with ASD (r = 0.54, p = 0.01; Figure 3C). This empirical

finding, together with neurophysiological modeling of the un-

derlying neural mechanisms (see below), suggests that both

local circuit abnormalities and interregional hyperconnectivity

may contribute to atypical brain function in ASD (Yizhar et al.,

2011).

Replication of Results in Two Additional Independent
Cohorts of ASD and TD children
We repeated our entire fMRI analysis on the second group of

children from the Georgetown/CNMC cohort as well as the third

group of children from the NYU/NDAR cohort (Table S1). In spite

of differences in geographical location (Northern California

versus Washington DC versus New York), scanner (GE versus

Siemens), fMRI pulse sequence (spiral in-out versus echo planar

imaging), and other data acquisition protocols, results from both

the Georgetown/CNMC and NYU/NDAR cohorts entirely repli-

cated the Stanford-cohort findings of widespread functional

hyperconnectivity, enhanced ALFF, and significant associations

between ALFF and functional hyperconnectivity (see Supple-

mental Information for details).
Ce
Functional Brain Hyperconnectivity in ASD Children
Predicts Symptom Severity
To investigate the extent to which widespread functional brain

hyperconnectivity is associated with severity of symptoms in

ASD, we examined the relationship between whole-brain func-

tional connectivity and Autism Diagnostic Observation Schedule

(ADOS) (Lord, 2000) and Autism Diagnostic Interview-Revised

(ADI-R) (Lord et al., 1994) scores, using multivariate sparse

regression analysis (Friedman et al., 2010) and nonparametric

hypothesis testing (see Experimental Procedures for details).

Functional brain hyperconnectivity predicted scores on the

Social domain of the ADOS (p = 0.002) as well as the Social

domain of the ADI-R (p = 0.04) such that children who showed

greater levels of functional connectivity were more severely

impaired in the social domain. This effect was independently

replicated in the Georgetown/CNMC cohort for ADOS Social

(p = 0.001) as well as ADI-R Social (p = 0.03) scores. Combining

data from all 55 children with ASD across the three cohorts also

replicated this effect for both the ADOSSocial (p = 0.001) and the

ADI-R Social (p = 0.001) domain scores, further demonstrating

the robustness of our findings.

DISCUSSION

This study examines functional connectivity at the whole-brain

level in children with ASD. We analyzed data from 110 children

collected across three different sites, providing the largest sam-

ple of pediatric brain imaging data to date. Our findings from

multiple cohorts provide convergent, robust, and replicable evi-

dence for widespread functional brain hyperconnectivity in chil-

dren with ASD. Our findings of functional hyperconnectivity are

bolstered not only by the triple replication, but also by a link to

clinical symptoms of ASD. Children withmore severe impairment

in the social domain exhibited greater functional connectivity.

Our study reports a significant brain-behavior relationship linking

aberrant whole-brain functional connectivity to one of the core

symptoms of ASD.

Widespread Functional Brain Hyperconnectivity in
Childhood ASD
We examined functional whole-brain connectivity in children

with ASD and observed widespread hyperconnectivity in these

children compared to TD children. Extensive additional analyses

were conducted to determine the robustness of our findings.

Specifically, we examined the potential effect of alternate ROI

specification strategies as well as global signal regression on

our findings. Results from these additional analyses confirmed

our findings of widespread functional brain hyperconnectivity

in ASD children. More importantly, to address the recent con-

cerns about the effect of subject motion on functional connectiv-

ity findings (Deen and Pelphrey, 2012), (1) we used stringent

motion inclusion criteria and matched the ASD groups and

TD groups in terms of motion parameters; (2) we examined

functional connectivity within a narrow frequency range (0.01–

0.05 Hz; Scale 3), further removing physiological and motion-

related artifacts (Cordes et al., 2001; Cordes et al., 2000); (3)

we computed correlations between movement parameters and

brain connectivity values and found that there was no significant
ll Reports 5, 738–747, November 14, 2013 ª2013 The Authors 741



Figure 3. Higher Levels of Amplitude of

BOLD Oscillations Are Associated with

Functional Brain Hyperconnectivity in Chil-

dren with ASD

(A) fMRI time series averaged across all gray-

matter voxels in the brain from a representative

child with ASD (blue) and a TD child (red), illus-

trating abnormally high amplitude fluctuations in

children with ASD.

(B) Mean amplitude of fMRI BOLD oscillations

(ALFF) was greater in ASD than in TD (p < 0.05,

d’ = 0.68).

(C) Higher regional ALFF was associated with

higher levels of whole-brain connectivity in chil-

dren with ASD (r = 0.54, p = 0.01).

*p < 0.05. Error bars represent SEM. See also

Figures S3 and S6.
correlation between mean brain connectivity values and move-

ment parameters; (4) we applied the revised data-scrubbing pro-

cedure described by Power and colleagues (Power et al., 2013)

and found that our results remained unchanged after applying

the scrubbing procedures; and (5) we performed imputation

analysis that replaces volumes with relatively high motion pro-

posed by Carp and colleagues (Carp, 2013) and found that our

results remained unchanged after applying the imputation pro-

cedures. Critically, we replicated our main findings of brain

hyperconnectivity in ASD across three independent cohorts,

further providing robust evidence for widespread functional

brain hyperconnectivity in children with autism.

Very few studies have examined functional connectivity in

young children with ASD. A previous study reported weaker

interhemispheric functional connectivity between temporal and

prefrontal language areas in sleeping toddlers with ASD after re-

gressing out auditory stimulus processing (Dinstein et al., 2011).

The differential influence of connectivity changes in ASD during

sleep is currently not well understood. Another study of 7- to

13-year-old children found increased connectivity of striatal sys-

tems in children with ASD compared to TD children (Di Martino

et al., 2011). This report of ‘‘ectopic’’ hyperconnectivity of a spe-

cific system in children with ASD is in line with our current find-

ings, and extends them to the whole brain level. Importantly,

our study provides evidence for whole-brain hyperconnectivity

in awake, nonsedated children with ASD. Additionally, subsys-

tem analyses revealed hyperconnectivity across multiple func-

tional subsystems, including sensory and association cortices,

in children with ASD. These findings point to aberrant patterns

of functional connectivity in brain systems related to cognitive,

social, and affective processes (Mesulam, 1998). Examining

the aberrant patterns of functional connectivity as a function of

anatomical distance, we found functional hyperconnectivity in
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ASD between both proximal as well as

distant anatomical regions, pointing to

aberrant integration and segregation

within both short- and long-range func-

tional circuits in children with ASD

(Sporns et al., 2000; Supekar et al.,

2009). Taken together, these findings
provide evidence for widespread functional brain hyperconnec-

tivity in childhood ASD at both the whole-brain level and the level

of major functional subsystems, for both short- and long-range

anatomical connections.

Mechanisms Underlying Functional Brain
Hyperconnectivity in Childhood ASD
To better characterize the neural mechanisms underlying func-

tional hyperconnectivity in ASD, we then examined the ampli-

tude of ALFFs in the regional fMRI signal. We found that

abnormally high levels of fluctuations in regional fMRI signals

were associated with higher levels of global functional hypercon-

nectivity in children with ASD. These results show that enhanced

regional ALFF in children with ASD arising from an aberrant bal-

ance of excitation and inhibition in local neural circuits (Testa-

Silva et al., 2012; Tuchman and Cuccaro, 2011; Yizhar et al.,

2011) may be an important factor that contributes to interre-

gional hyperconnectivity observed in our fMRI data as well as

related electrophysiological data (Léveillé et al., 2010). This

potential mechanistic underpinning of our results is consistent

with an increasingly promising theory of autism, which postu-

lates that the neurophysiological substrate underlying the

disorder is an imbalance between excitation and inhibition

(Rubenstein, 2010; Rubenstein and Merzenich, 2003; Vattikuti

andChow, 2010; Yizhar et al., 2011). Specifically, the theory sug-

gests that the imbalance of excitation and inhibition in the local

brain circuits subserving sensory, social, and affective pro-

cesses, possibly caused by either increased synaptic excitation

or decreased synaptic inhibition, could engender cognitive and

behavioral deficits observed in ASD. Importantly, the pro-

posed theory unifies multiple lines of experimental findings in

ASD. Molecular studies have indicated gene-, receptor-, and

enzyme-level deficits in inhibitory signaling pathways involving



gamma-aminobutyric acid (GABA) in ASD (Baroncelli et al.,

2011; Gatto and Broadie, 2010; Pizzarelli and Cherubini, 2011).

Findings from imaging studies have suggested that ASD is

associated with hyperreactivity and high-frequency cortical

oscillations (Gomot et al., 2008; Orekhova et al., 2007). Notably,

epidemiological studies have consistently reported high levels of

epilepsy in children with ASD (Tuchman and Cuccaro, 2011).

Indeed, over one-third of children with ASD have comorbid epi-

lepsy, and half of them have epileptiform EEGs (Clarke et al.,

2005; Matsuo et al., 2010). We postulate that such abnormal

neuronal discharges arising from excitation-inhibition imbalance

caused by atypical underlying cellular/molecular circuitry might

contribute to high levels of intrinsic ALFF responses and global

hyperconnectivity. Based on evidence from animal studies

(Rubenstein and Merzenich, 2003), we further propose that this

hyperconnected brain state may make it more difficult for chil-

dren with ASD to modulate brain activity levels in response to

cognitive demands.

Taken together, empirical findings from three different cohorts

of children provide insights into the mechanisms underlying

widespread functional brain hyperconnectivity in childhood

autism. More broadly, our findings provide brain-system-level

empirical support for the unifying theory that autism arises

from an imbalance of excitation and inhibition in developing

neural systems (Rubenstein and Merzenich, 2003) and further

suggest that local circuit hyperexcitability as a result of this

imbalance likely contributes to aberrations in global brain con-

nectivity in autism.

Developmental Account of Functional Brain
Hyperconnectivity in Childhood ASD
The majority of published neuroimaging studies of ASD have

focused on adolescents or adults with the disorder, leaving the

question of brain connectivity in childhood ASD relatively open.

The current results suggest that in children with ASD, unlike pre-

viously reported in adults with ASD (Assaf et al., 2010; Gotts

et al., 2012; Kennedy and Courchesne, 2008; Monk et al.,

2009; von dem Hagen et al., 2012), there are more instances of

intrinsic functional hyperconnectivity than underconnectivity.

This suggests that there may be a developmental trajectory in

ASD that is altered from that of typical development. Structural

neuroimaging studies of ASD provide evidence that brain volu-

metric differences observed in early childhood can be dimin-

ished or normalized or overcompensated with development

(Amaral, 2011; Via et al., 2011).

Although the majority of studies of adolescent and adulthood

ASD report intrinsic functional underconnectivity in the disorder

(Assaf et al., 2010; Gotts et al., 2012; Kennedy and Courchesne,

2008; Monk et al., 2009; von dem Hagen et al., 2012), one of the

few studies that has examined children younger than 12 years

of age reported functional hyperconnectivity of the striatum in

children with ASD (Di Martino et al., 2011). Longitudinal studies

are needed to fully characterize age-related changes in brain

connectivity associated with ASD. However, the findings here

suggest that there may be a critical developmental shift,

perhaps during the time of puberty (Peper et al., 2011), that dif-

ferentially affects the maturation of connections in ASD (Uddin

et al., 2013).
Ce
Behavioral Consequences of Functional Brain
Hyperconnectivity in Childhood ASD
Our findings of widespread functional hyperconnectivity are

strengthened not only by replication across the three cohorts,

but also by a link to ASD symptoms. Brain hyperconnectivity pre-

dicted autism symptoms such that children with greater connec-

tivity exhibited more severe impairment in the social domain.

This brain-behavior relationship suggests that aberrant func-

tional connectivity may underlie social deficits, which are the

hallmark of ASD.

The relationships between functional brain hyperconnectivity

and cognitive deficits in ASD we report here may provide a

framework for understanding the complex behavioral manifesta-

tion of the disorder. Brain hyperconnectivity may result in isola-

tion of neural systems involved in high-level cognitive processes,

thus contributing to some of the core behavioral characteristics

of the disorder, including deficits in navigating real-world social

scenarios. Brain hyperconnectivity may limit flexible resource

allocation, resulting in the rigidity and need for sameness that

is often observed in individuals with ASD. The current findings

provide a neural processing account of cognitive deficits in child-

hood ASD. At the same time, such hyperconnectivity might also

contribute to ‘‘islets’’ of spared ability in autism, as have been

described in the domains of visual search (Keehn et al., 2013)

and mathematics (Baron-Cohen et al., 2001).
CONCLUSIONS

Understanding the neurobiology of ASD requires a critical

examination of brain connectivity in children (Belmonte et al.,

2004; Minshew and Keller, 2010; Uddin and Menon, 2009).

This study addresses a critical and controversial question

regarding the nature and extent of brain connectivity alterations

in childhood ASD. Our findings not only provide direct evidence

for hyperconnectivity at the whole-brain level spanning multiple

functional subsystems, but also demonstrate a link to core

clinical symptoms in school-age children with ASD. Our find-

ings also provide insights into a link between enhanced local

fluctuations and global aberrations in brain connectivity in

school-age children with the disorder. More generally, this

work challenges the notion of underconnectivity as the central

neurobiological feature of ASD. Furthermore, our study high-

lights the importance of studying neurodevelopmental disor-

ders closer to their onset, rather than in adulthood when a

lifetime of compensatory mechanisms may have already taken

place (Amaral, 2011).
EXPERIMENTAL PROCEDURES

Participants

Stanford Cohort

Twenty children with ASD and 20 age-, gender-, and IQ-matched TD children

participated in this study after giving written, informed consent. For those sub-

jects who were unable to give informed consent, written, informed consent

was obtained from their legal guardian. The study protocol was approved by

the Stanford University Institutional Review Board. The children with ASD

(16 males, 4 females) ranged in age from 7 to 13 years (mean age: 10.1) with

an IQ range of 78 to 142 (mean IQ: 113); the TD children (16 males, 4 females)

ranged in age from 7 to 13 years (mean age: 10) with an IQ range of 79 to 136
ll Reports 5, 738–747, November 14, 2013 ª2013 The Authors 743



(mean IQ: 111) (Table S1). Participants were recruited locally, from schools

and clinics near Stanford University. All children were required to have a Full

Scale IQR 70, asmeasured by theWechsler Abbreviated Scale of Intelligence

(WASI).

Children with ASD received a diagnosis based on scores from the Autism

Diagnostic Interview-Revised (ADI-R) (Le Couteur et al., 1989; Lord et al.,

1994) and/or the Autism Diagnostic Observation Schedule (ADOS) (Lord,

2000) following criteria established by the National Institute of Child Health &

Human Development/National Institute of Deafness and Other Communica-

tion Disorders Collaborative Programs for Excellence in Autism (Lainhart,

2006). Children with ASD were screened through a parent phone interview

and excluded if they had any history of known genetic, psychiatric, or neuro-

logical disorders (e.g., fragile X syndrome or Tourette syndrome) or were

currently prescribed antipsychotic medications. TD children were screened

and excluded if they or a first-degree relative had developmental, language,

learning, neurological, or psychiatric disorders, or psychiatric medication

usage, or if the child met the clinical criteria for a childhood disorder on the

Child Symptom Inventory–Fourth Edition or Child and Adolescent Symptom

Inventory. All participants underwent a battery of standardized neuropsycho-

logical assessments includingWASI (Wechsler Intelligence Scale for Children–

3rd Edition, Wechsler Intelligence Scale for Children–4th Edition, or WASI;

The Psychological Corporation, 1999), and the Wechsler Individual Achieve-

ment Test (WIAT, 2nd edition). Full Scale IQ was determined from scores on

the WASI.

Georgetown/CNMC Cohort

Twenty children with ASD and 20 age- and gender-matched TD children

participated in this study after providing assent and parental consent accord-

ing to guidelines of the Georgetown University institutional review board. The

children with ASD (15males, 5 females) ranged in age from 8 to 13 years (mean

age: 11.04) with an IQ range of 85 to 138 (mean IQ: 114); the TD children

(12 males, 8 females) ranged in age from 8 to 13 years (mean age: 10.83)

with an IQ range of 99 to 138 (mean IQ: 123) (Table S1). Children were recruited

through the local community via advertisements and a hospital’s outpatient

clinic specializing in ASD and neuropsychological assessment. All children

were required to have a Full Scale IQ R 70, as measured by WASI.

Children with ASD received a clinical diagnosis using criteria similar to the

Stanford cohort. Additionally, they also received a clinical diagnosis based

on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition,

Text Revision criteria (American Psychiatric Association, 2000). The participant

inclusion and exclusion criteria were identical to those of the Stanford cohort.

All participants underwent a battery of standardized neuropsychological

assessments including the WASI. Full Scale IQ was determined from scores

on the WASI.

NYU/NDAR Cohort

Fifteen children with ASD and 15 age-, gender-, and IQ-matched TD children

were included in this study. The subjects were identified from public domain

research data repositories. Specifically, ASD subjects were identified by

querying the National Database for Autism Research repository (NDAR;

http://ndar.nih.gov). The query parameters were aged 7 to 13 years, pheno-

type ASD, and task-free fMRI data present. The age range was chosen to

match that of the Stanford and Georgetown/CNMC cohorts. The query results

yielded 15 children with ASD (11 males, 4 females) ranging in age from 7 to

13 years (mean age: 10.37) with an IQ range of 73 to 132 (mean IQ: 99), with

task-free fMRI data. Notably, all of the subjects identified belong to one collec-

tion submitted by Francisco Castellanos at New York University (NYU). This

collection did not include data from TD children. To address this issue,

we queried the ADHD200 data set (http://fcon_1000.projects.nitrc.org/indi/

adhd200/), which consists of task-free fMRI data from TD children and children

with attention deficit/hyperactivity disorder (ADHD) across eight different sites,

including Dr. Castellanos’ lab at NYU. The query parameters were site NYU,

age between 7 and 13, phenotype typically developing, task-free fMRI data

present. The query results yielded 60 TD children.We used an in-housematch-

ing algorithm to select a subset of 15 TD children such that the mean age,

mean IQ, and gender distribution was matched to the ASD group. The algo-

rithm identified a well-matched subset of 15 TD children (11 males, 4 females)

ranging in age from 7 to 13 years (mean age: 10.22) with an IQ range of 80 to

142 (mean IQ: 107) (Table S1).
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Data Acquisition and Preprocessing

For each subject in each of the three cohorts (Stanford, Georgetown/CNMC,

andNYU/NDAR), a resting-state scan was acquired using protocols described

in detail in the Supplemental Information. The acquired data from the three

cohorts underwent identical preprocessing, as described in the Supplemental

Information, and analytical processing, as described below.

Analysis of Whole-Brain Functional Connectivity

Preprocessed fMRI data sets were parcellated into 90 cortical and subcor-

tical regions using previously published AAL anatomical template. Wavelet

analysis of the extracted regional fMRI time series was used to compute

interregional functional connectivity across the whole brain. We first exam-

ined differences in whole-brain functional connectivity patterns between

the two groups. To demonstrate the robustness of our findings, these ana-

lyses were repeated using two alternate ROI specification strategies: voxel

based (van den Heuvel et al., 2008) and functionally defined (Power et al.,

2011), which provided convergent results (see Supplemental Information

for details).

Next, to investigate whether differences in functional brain connectivity

spans multiple functional subsystems, we used the parcellation scheme of

Mesulam.

The aforementioned procedures are described in detail in the Supplemental

Information.

Analysis of Amplitude of Low-Frequency Fluctuations

To further characterize functional connectivity, we computed ALFFs in the

regional fMRI signal. While functional connectivity provides an index of tempo-

ral synchrony between low-frequency fluctuations in regional fMRI signals,

ALFF is ameasure of regional activity. ALFF has been previously used to quan-

tify regional intrinsic activity (He et al., 2007; Zang et al., 2007) and has been

suggested to reflect spontaneous neuronal activity (Zou et al., 2008). We

computed ALFF values for each of the 90 anatomical ROIs and the mean of

these 90 ALFF values for each subject. For each anatomical region of interest,

ALFF was computed by (1) transforming the regional time series to the fre-

quency domain, (2) calculating the power spectra of this transformed signal,

and (3) averaging the square root of amplitude at each frequency component

across 0.01–0.08 Hz (Zou et al., 2008).

Analysis of Differences in Functional Connectivity as a Function of

Anatomical Distance

We next examined the relationship between differences in regional correlation

values (connectivity) in the two groups and the interregional distance. The dis-

tance between two regions was computed by calculating the Euclidean dis-

tance between centroids of those regions.

Analysis of Functional Connectivity as a Function of Symptom

Severity: Prediction Analysis

We next investigated whether regional connectivity in the ASD group pre-

dicted symptom severity. We used a multivariate sparse regression approach

(Friedman et al., 2010), which models the relationship between the depen-

dent variable (scores on ADOS or ADI-R Social domain) and the multiple inde-

pendent variables (whole-brain interregional functional connectivity: 4,005

wavelet correlation values). An advantage of using a multivariate sparse

regression approach, as opposed to traditional univariate correlation, is that

it examines patterns of connectivity across the whole brain as opposed to a

single average measure of whole-brain connectivity and is thus more sensi-

tive. More importantly, such sparse methods are particularly elegant when

the number of possible predictor variables is large and the number of obser-

vations is small, which is the case in our analysis. We used GLMnet (http://

www-stat.stanford.edu/�tibs/glmnet-matlab), a state-of-the-art sparse re-

gression algorithm that is widely used to examine multivariate relationships

in large-scale genomic data (Friedman et al., 2010). GLMnet computes the

model in such a way that the coefficients of independent variables that do

not contribute to the prediction of the dependent variable are set to zero,

thus producing sparse-interpretable solutions. L1-norm regularization is

used to produce this sparse model. Nonparametric testing was used to

assess the performance of the regression algorithm in predicting symptom

severity. We first estimated R2, the proportion of variance explained by

the model, using a leave-one-out cross validation (LOOCV) procedure. In

LOOCV, data are divided into N folds. A sparse regression model is built using

http://ndar.nih.gov
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://www-stat.stanford.edu/%7Etibs/glmnet-matlab
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N � 1 folds, leaving out one sample. The left-out sample is then predicted

using this model, and the predicted value is noted. The above procedure is

repeated N times by leaving out one sample each time, and finally an R2 is

computed based on the observed and predicted values. This cross-validation

procedure avoids overfitting that is likely to happen when the number of sam-

ples is low and the number of parameters in the models is large, which is the

case in our analyses. Finally, the statistical significance of the sparse model

was assessed using nonparametric analysis. The empirical null distribution

of R2 was estimated by generating 10,000 surrogate data sets under the

null hypothesis that there was no association between scores on ADOS or

ADI-R Social domain and whole-brain interregional functional connectivity

patterns. Each surrogate data set Di of size equal to the observed data set

was generated by permuting the labels (scores on ADOS or ADI-R Social

domain) on the observed data points. The sparse model computed on the

observed data was used to predict labels of each surrogate data set Di. Ri
2

was computed using the actual labels of Di and predicted labels. This proce-

dure produces a null distribution of R2 of the sparse model. The statistical

significance (p value) of the sparse model was then determined by counting

the number of Ri
2 greater than R2 and then dividing that count by the number

of Di (10,000 in our case).

Participant Motion Characterization

As reported here, we rigorously address the critical issue related to motion

in resting-state functional connectivity analyses in several ways. First, we

used stringent motion inclusion criteria, which is within the acceptable

range of pediatric clinical neuroimaging studies. Second, the ASD group

and TD groups at each of the three sites were very well matched in motion

parameters. Third, we examined functional connectivity within a narrow fre-

quency range (0.01 to 0.05 Hz; Scale 3). Several studies have now shown

unambiguously that narrow-band-pass filtering in frequencies corresponding

to Scale 3 is important for removing physiological and motion-related arti-

facts (Cordes et al., 2001; Cordes et al., 2000). Fourth, we computed corre-

lations between movement parameters and brain connectivity values. We

found that there was no significant correlation between mean brain connec-

tivity values and movement parameters at each of three sites. Fifth, we

applied data-scrubbing procedures using (1) the more stringent ‘‘revised

data scrubbing’’ procedure by Power and colleagues (Power et al., 2013)

and (2) ‘‘imputation’’ procedure by Carp and colleagues (Carp, 2013) and

found that our results remained unchanged after applying these correction

procedures.

The details of these analyses and the ensuing results are described in detail

in the Supplemental Information. These results, and more importantly replica-

tion of our main findings of widespread brain hyperconnectivity in three inde-

pendent cohorts comprised of children with varied movement parameters

collected across three different scanners, confirm that our findings are robust

against potential movement confounds.

Structural MRI

Data Acquisition

For each subject in each of the three cohorts (Stanford, Georgetown/CNMC,

and NYU/NDAR), a structural MRI scan was acquired using protocols

described in detail in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results and Discussion,

Supplemental Experimental Procedures, six figures, and one table and can

be found with this article online at http://dx.doi.org/10.1016/j.celrep.2013.

10.001.
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