Transformation of Series

G. Adomian and R. Rach
155 Clyde Rd., Athens, GA 30605, U.S.A.
(Received January 1991)

Abstract. Nonlinear transformation of series are evaluated using the A_{n} polynomials defined in the decomposition method.

Given a specific function $f(u)$ with u given by a convergent series, a convenient evaluation of $f(u)$ can be made by using the A_{n} polynomials which have been used to represent nonlinearities in differential and partial differential equations in the decomposition method.

For an analytic function $f(u)$, we can write (using decomposition)

$$
f(u)=\sum_{n=0}^{\infty} A_{n}\left(u_{0}, \ldots, u_{n}\right)
$$

where the A_{n} are given by $A_{n}=\left.\sum_{n=0}^{\infty} c(\nu, n) f^{(\nu)}(u)\right|_{u=u_{0}}$.
The $f^{(\nu)}(u)_{u=u_{0}}$, or simply $f^{(\nu)}\left(u_{0}\right)$, is the ν th derivative of $f(u)$ evaluated at $u=u_{0}$. To determine $c(\nu, n)$, we form the sum of possible products of ν components u_{i} with $i=$ $0,1,2, \ldots$ which sum to n, and divide by the factorial of the number of repetitions of the components.

For convenience, we list

$$
\begin{aligned}
& A_{0}=f\left(u_{0}\right) \\
& A_{1}=u_{1} f^{(1)}\left(u_{0}\right) \\
& A_{2}=u_{2} f^{(1)}\left(u_{0}\right)+\left(\frac{u_{1}^{2}}{2!}\right) f^{(1)}\left(u_{0}\right) \\
& A_{3}=u_{3} f^{(1)}\left(u_{0}\right)+u_{1} u_{2} f^{(2)} u_{0}+\left(\frac{u_{1}^{3}}{3!}\right) f^{(3)}\left(u_{0}\right)
\end{aligned}
$$

For differential equations involving a nonlinearity $f(u)$, the decomposition method determines components u_{0}, u_{1}, \ldots such that the n-term approximation

$$
\phi_{n}=\sum_{i=0}^{n-1} u_{i}
$$

Suppose we are now given the convergent series $u=\sum_{n=0}^{\infty} c_{n} x^{n}$ and $f(u)$. We wish to find the resulting transformed series. Since $u=\sum_{n=0}^{\infty} u_{n}=\sum_{n=0}^{\infty} c_{n} x^{n}$, we have $u_{n}=c_{n} x^{n}$. Consequently,

$$
\begin{equation*}
A_{n}=\left(u_{0}, u_{1}, \ldots, u_{n}\right)=x^{n} A^{n}\left(c_{0}, c_{1}, \ldots, c_{n}\right) \tag{1}
\end{equation*}
$$

so that

$$
\begin{aligned}
A_{0}\left(u_{0}\right) & =f\left(u_{0}\right)=f\left(c_{0}\right) x A_{0}\left(c_{0}\right), \\
A_{1}\left(u_{0}, u_{1}\right) & =u_{1} f^{(1)}\left(u_{0}\right)=x c_{1} f^{(1)}\left(c_{0}\right)=x A_{1}\left(c_{0}, c_{1}\right), \\
A_{2}\left(u_{0}, u_{1}, u_{2}\right) & =u_{2} f^{(1)}\left(u_{0}\right)+\left(\frac{u_{1}^{2}}{2!}\right) f^{(2)}\left(u_{0}\right), \\
& =x^{2} c_{2} f^{(1)}\left(u_{0}\right)+x^{2}\left(\frac{c_{1}^{2}}{2!}\right) f^{(2)}\left(u_{0}\right)=x^{2} A_{2}\left(c_{0}, c_{1}, c_{2}\right),
\end{aligned}
$$

etc. Now we can state the theorem:
Theorem.

$$
f(u)=f\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)=\sum_{n=0}^{\infty} A_{n}\left(c_{0}, \ldots, c_{n}\right) x^{n}
$$

The following very simple examples are given to demonstrate use and to make comparisons: Example 1:

$$
u=e^{x}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!}
$$

We know, of course, that

$$
u^{2}=e^{2 x}=\sum_{m=0}^{\infty} \frac{(2 x)^{m}}{m!}
$$

however, we obtain the result using the theorem which can be used also for less transparent cases. Since $e^{x}=\sum_{m=0}^{\infty} x^{m} / m!=\sum_{m=0}^{\infty} c_{m} x^{m}$, we have $c_{m}=1 / m!$. Hence, from Equation (1), $\left(e^{x}\right)^{2}=\sum_{m=0}^{\infty} A_{m} x^{m}$ where we can evaluate the $A_{n}\left(u_{0} \ldots u_{n}\right)$, replace u_{i} by c_{i}, and use $c_{m}=1 / m$! so that

$$
\begin{aligned}
A_{0}\left(u_{0}\right) & =A_{0}\left(c_{0}\right)=1 \\
A_{1}\left(u_{0}, u_{1}\right) & =A_{1}\left(c_{0}, c_{1}\right)=2 \\
A_{2}\left(u_{0}, u_{1}, u_{2}\right) & =A_{2}\left(c_{0}, c_{1}, c_{2}\right)=2 \\
A_{3}\left(u_{0} \ldots u_{3}\right) & =A_{3}\left(c_{0} \ldots c_{3}\right)=4 / 3
\end{aligned}
$$

Therefore, $\left(e^{x}\right)^{2}=\sum_{m=0}^{\infty} A_{m} x^{m}=1+2 x+2 x^{2}+(4 / 3) x^{3}+\cdots=\sum_{m=0}^{\infty}(2 x)^{m} / m$! which is the expected result. This is, of course, a trivial example to make the method transparent and so checks can readily be made.
Example 2: Let $u=\sin t=t-t^{3} / 3!+t^{5} / 3!-\cdots=\sum_{n=0}^{\infty}(-1)^{n} t^{2 n+1} /(2 n+1)$!. We have $c_{0}=0, c_{1}=0, c_{2}=0, c_{3}=-1 / 3!\ldots$. Thus, $A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+\cdots=t^{2}+\cdots$ or $u^{2}=t^{2}-2 t^{4} / 3!+\cdots$.
Example 3:

$$
u(x)=\tan ^{-1} x
$$

and

$$
\begin{aligned}
& f(u)=u^{2} \\
& u(x)=\tan ^{-1} x=x-x^{3} / 3+x^{5} / 5-\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)}+\cdots .
\end{aligned}
$$

We have $u_{0}=x, u_{1}=-x^{3} / 3, u_{2}=x^{5} / 5$

$$
\begin{aligned}
A_{0}\left(u_{0}\right) & =u_{0}^{2}=x^{2} \\
A_{1}\left(u_{0}, u_{1}\right) & =2 u_{0} u_{1}=-2 x^{4} / 3 \\
A_{2}\left(u_{0}, u_{1}, u_{2}\right) & =u_{1}^{2}+2 u_{0} u_{2}=x^{6} / 9+2 x^{6} / 5=23 x^{6} / 45 \\
& \vdots \\
\left(\tan ^{-1} x\right)^{2} & =x^{2}-\frac{2}{3} x^{4}+\frac{23}{45} x^{6}+\cdots
\end{aligned}
$$

Let $x=1 / 5$ then $\tan ^{-1}(1 / 5)=(1 / 5)-(1 / 5)^{3} / 3+(1 / 5)(1 / 5)^{5}-\cdots \cong 0.2$. As expected, $\left[\tan ^{-1}(1 / 5)\right]^{2}=(1 / 5)^{2}-(2 / 3)(1 / 5)^{4}+(23 / 45)\left(1 / 5^{6}\right) \cdots \cong 0.04$.

Example 4:

$$
\begin{aligned}
u(x) & =\sum_{n=0}^{\infty} \frac{u^{(n)}(a)}{n!}(x-a)^{n}=u(a)+u^{\prime}(a)(x-a)+\cdots \\
u & =f^{(0)}(a)+f^{(1)}(a)(x-a)+\cdots=u_{0}+u_{1}+\cdots \\
f(u) & =\sum_{n=0}^{\infty} A_{n}=\sum_{n=0}^{\infty} \sum_{\nu=1}^{n} c(\nu, n) f^{(\nu)}\left(u_{0}\right) \\
A_{0} & =f\left(u_{0}\right) \\
A_{1} & =c(1,1) f^{(1)}\left(u_{0}\right)=u_{1} f^{(1)}\left(u_{0}\right) \\
A_{2} & =c(1,2) f^{(1)}\left(u_{0}\right)+c(2,2) f^{(2)}\left(u_{0}\right) \\
& =u_{2} f^{(1)}\left(u_{0}\right)+(1 / 2) u_{1}^{2} f^{(2)}\left(u_{0}\right) \\
f(u) & =f(u(a))+u^{\prime}(a)(x-a) f^{\prime}(u(a))+\cdots .
\end{aligned}
$$

For multi-dimensional series,

$$
\begin{aligned}
u & =u\left(x_{1}, \ldots, x_{n}\right)=\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} c_{m_{1}, \ldots, m_{n}} x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \\
f(u) & =\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{n}=0}^{\infty} A_{m_{1}, m_{2}, \ldots, m_{n}} x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}
\end{aligned}
$$

where the (Adomian) polynomials $A_{m_{1}, \ldots, m_{n}}$ are functions of the coefficients $\boldsymbol{c}_{\mu_{1}, \ldots, \mu_{n}}$.

References

1. G. Adomian, A review of the decomposition method and some recent results for nonlinear Equations, Comp. and Math. with Applic. 13 (7), 17-43 (1990).
