Appl. Math. Lett. Vol. 4, No. 4, pp. 69-71, 1991 Printed in Great Britain. All rights reserved

0893-9659/91 \$3.00 + 0.00 Copyright© 1991 Pergamon Press plc

Transformation of Series G. Adomian and R. Rach 155 Clyde Rd., Athens, GA 30605, U.S.A. (Received January 1991)

Abstract. Nonlinear transformation of series are evaluated using the A_n polynomials defined in the decomposition method.

Given a specific function f(u) with u given by a convergent series, a convenient evaluation of f(u) can be made by using the A_n polynomials which have been used to represent nonlinearities in differential and partial differential equations in the decomposition method.

For an analytic function f(u), we can write (using decomposition)

$$f(u) = \sum_{n=0}^{\infty} A_n(u_0, \ldots, u_n)$$

where the A_n are given by $A_n = \sum_{n=0}^{\infty} c(\nu, n) f^{(\nu)}(u)|_{u=u_0}$. The $f^{(\nu)}(u)_{u=u_0}$, or simply $f^{(\nu)}(u_0)$, is the ν th derivative of f(u) evaluated at $u = u_0$. To determine $c(\nu, n)$, we form the sum of possible products of ν components u_i with i = $0, 1, 2, \ldots$ which sum to n, and divide by the factorial of the number of repetitions of the components.

For convenience, we list

$$A_{0} = f(u_{0})$$

$$A_{1} = u_{1}f^{(1)}(u_{0})$$

$$A_{2} = u_{2}f^{(1)}(u_{0}) + \left(\frac{u_{1}^{2}}{2!}\right)f^{(1)}(u_{0})$$

$$A_{3} = u_{3}f^{(1)}(u_{0}) + u_{1} \ u_{2}f^{(2)}u_{0} + \left(\frac{u_{1}^{3}}{3!}\right)f^{(3)}(u_{0})$$

$$\vdots$$

For differential equations involving a nonlinearity f(u), the decomposition method determines components u_0, u_1, \ldots such that the *n*-term approximation

$$\phi_n = \sum_{i=0}^{n-1} u_i$$

Suppose we are now given the convergent series $u = \sum_{n=0}^{\infty} c_n x^n$ and f(u). We wish to find the resulting transformed series. Since $u = \sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} c_n x^n$, we have $u_n = c_n x^n$. Consequently,

$$A_n = (u_0, u_1, \dots, u_n) = x^n A^n(c_0, c_1, \dots, c_n)$$
(1)

Typeset by A_{MS} -TEX

so that

$$\begin{aligned} A_0(u_0) &= f(u_0) = f(c_0) \ x \ A_0(c_0), \\ A_1(u_0, u_1) &= u_1 f^{(1)}(u_0) = x \ c_1 \ f^{(1)}(c_0) = x \ A_1(c_0, c_1), \\ A_2(u_0, u_1, u_2) &= u_2 f^{(1)}(u_0) + \left(\frac{u_1^2}{2!}\right) f^{(2)}(u_0), \\ &= x^2 c_2 \ f^{(1)}(u_0) + x^2 \left(\frac{c_1^2}{2!}\right) f^{(2)}(u_0) = x^2 A_2(c_0, c_1, c_2) \end{aligned}$$

etc. Now we can state the theorem:

$$f(u) = f\left(\sum_{n=0}^{\infty} c_n x^n\right) = \sum_{n=0}^{\infty} A_n(c_0, \dots, c_n) x^n$$

The following very simple examples are given to demonstrate use and to make comparisons: EXAMPLE 1:

$$u=e^x=\sum_{m=0}^\infty\frac{x^m}{m!}$$

We know, of course, that

$$u^2 = e^{2x} = \sum_{m=0}^{\infty} \frac{(2x)^m}{m!}$$

however, we obtain the result using the theorem which can be used also for less transparent cases. Since $e^x = \sum_{m=0}^{\infty} x^m/m! = \sum_{m=0}^{\infty} c_m x^m$, we have $c_m = 1/m!$. Hence, from Equation (1), $(e^x)^2 = \sum_{m=0}^{\infty} A_m x^m$ where we can evaluate the $A_n(u_0 \dots u_n)$, replace u_i by c_i , and use $c_m = 1/m!$ so that

$$A_0(u_0) = A_0(c_0) = 1$$

$$A_1(u_0, u_1) = A_1(c_0, c_1) = 2$$

$$A_2(u_0, u_1, u_2) = A_2(c_0, c_1, c_2) = 2$$

$$A_3(u_0 \dots u_3) = A_3(c_0 \dots c_3) = 4/3$$

Therefore, $(e^x)^2 = \sum_{m=0}^{\infty} A_m x^m = 1 + 2x + 2x^2 + (4/3)x^3 + \dots = \sum_{m=0}^{\infty} (2x)^m/m!$ which is the expected result. This is, of course, a trivial example to make the method transparent and so checks can readily be made.

EXAMPLE 2: Let $u = \sin t = t - t^3/3! + t^5/3! - \dots = \sum_{n=0}^{\infty} (-1)^n t^{2n+1}/(2n+1)!$. We have $c_0 = 0, c_1 = 0, c_2 = 0, c_3 = -1/3! \dots$ Thus, $A_0 + A_1 t + A_2 t^2 + A_3 t^3 + \dots = t^2 + \dots$ or $u^2 = t^2 - 2t^4/3! + \dots$

EXAMPLE 3:

$$u(x) = \tan^{-1} x$$

and
$$f(u) = u^{2}$$

$$u(x) = \tan^{-1} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + \frac{(-1)^{n} x^{2n+1}}{(2n+1)} + \dots$$

We have $u_0 = x$, $u_1 = -x^3/3$, $u_2 = x^5/5$

$$A_0(u_0) = u_0^2 = x^2$$

$$A_1(u_0, u_1) = 2u_0u_1 = -2x^4/3$$

$$A_2(u_0, u_1, u_2) = u_1^2 + 2u_0u_2 = x^6/9 + 2x^6/5 = 23x^6/45$$

$$\vdots$$

$$(\tan^{-1} x)^2 = x^2 - \frac{2}{3}x^4 + \frac{23}{45}x^6 + \cdots$$

Let x = 1/5 then $\tan^{-1}(1/5) = (1/5) - (1/5)^3/3 + (1/5)(1/5)^5 - \cdots \cong 0.2$. As expected, $[\tan^{-1}(1/5)]^2 = (1/5)^2 - (2/3)(1/5)^4 + (23/45)(1/5^6) \cdots \cong 0.04$. EXAMPLE 4:

$$u(x) = \sum_{n=0}^{\infty} \frac{u^{(n)}(a)}{n!} (x-a)^n = u(a) + u'(a) (x-a) + \cdots$$
$$u = f^{(0)}(a) + f^{(1)}(a) (x-a) + \cdots = u_0 + u_1 + \cdots$$
$$f(u) = \sum_{n=0}^{\infty} A_n = \sum_{n=0}^{\infty} \sum_{\nu=1}^{n} c(\nu, n) f^{(\nu)}(u_0)$$
$$A_0 = f(u_0)$$
$$A_1 = c(1,1) f^{(1)}(u_0) = u_1 f^{(1)}(u_0)$$
$$A_2 = c(1,2) f^{(1)}(u_0) + c(2,2) f^{(2)}(u_0)$$
$$= u_2 f^{(1)}(u_0) + (1/2) u_1^2 f^{(2)}(u_0)$$
$$f(u) = f(u(a)) + u'(a) (x-a) f'(u(a)) + \cdots$$

For multi-dimensional series,

$$u = u(x_1, \dots, x_n) = \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} c_{m_1,\dots,m_n} x_1^{m_1} \dots x_n^{m_n}$$
$$f(u) = \sum_{m_1=0}^{\infty} \cdots \sum_{m_n=0}^{\infty} A_{m_1,m_2,\dots,m_n} x_1^{m_1} \dots x_n^{m_n}$$

where the (Adomian) polynomials A_{m_1,\ldots,m_n} are functions of the coefficients c_{μ_1,\ldots,μ_n} .

References

1. G. Adomian, A review of the decomposition method and some recent results for nonlinear Equations, Comp. and Math. with Applic. 13 (7), 17-43 (1990).

155 Clyde Rd., Athens, GA 30605, U.S.A.