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I. INTRODUCTION 

In the sequel, X will always denote a metric space with the metric cl, xr, a 
fixed point from X, and Y a subset of X such that x0 E Y. Iffis a real-valued 
function defined on X, denote 

IISIIY = SUP{lfW -f(.YW(.%.J4:.5?~ E K x f ,,I* (1.1) 

A Lipschitz function on X is a function f: X -+ R such that [if[lx < co. 
Denote by Lip,, X the Banach space of all Lipschitz functions on X which 
vanish at x,, , with the norm lifll = llfllx. Put also 

Y’- = (f:fE Lip, X,fjr = 0). (1.2) 

A Lipschitz extension of a function f E Lip, Y is a function FE Lip, X 
such that F Iy = f and I] Fjlx = llj& . It is known (see, e.g., [2]) that every 
j’~ Lip, Y has a Lipschitz extension in Lip, X. 

For a subset Y of X and x E X we put 

d(x, Y) = inf{d(x, JJ): y E Y>. (1.3) 

Now, let E be a normed linear space, G a nonempty subset of E, x an 
element from E, and 

PG(x) = {y E G: 11 x - y (I = d(x, G):. (1.4) 

An element from PC(x) is called a best approximation to x from G. If M is 
a subset of E we say that G is M-proximinal if P&x) T o, for all .K E M. 
If PG(x) contains exactly one element for every x E M, then G is called 
M-chebyshevian. If the set G is E-proximina1 (respectively E-chebyshevian) 
then we say, simply, that G is proximinal (respectively chebyshevian). 
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We say that a linear subspace Z of E has the property (U) if every 
continuous linear functional on Z has a unique Hahn-Banach extension to E 
(i.e., linear and norm preserving) [6]. Let us denote by E* the conjugate space 
of E and by Z” the annihilator of the subspace Z in E*, i.e., 

Zn = (p E E”; p lz = 01. 11.5) 

Phelps [6] showed that the subspace Z of E has property (C) if and only if 
its annihilator Zn is chebyshevian. This result can be extended to Lipschitz 
functions: 

THEOREM 1 ([5, Lemma 21). Let X be a metric space, x0 i:z X, and YC % 
such rhal x0 E Y. The space YvL . IS chebyshecian for f E Lip, X $ and on@ <f 
fly E Lip, Y has a unique Lipschitz extension in Lip,, X. 

We also need the following lemma. 

LEMMA 1. E:>ery best approximation to f E Lip, X.fionl 1” is @ tke f&Tz 
f - F, irhere F is a Lipschitz extension off i y to -AT. 

PF-00; Suppose F is a Lipschitz extension of ,f ~!. to X. Then, by ES. 
Theorem 2 and Lemma 11, we get 

Conversely, if g E Yl is a best approximation to ,{, then ilj”- g iI>- = 
4S. I.‘l) = lifllY and (f- g) 1 r = J’ j I- . Therefcre F = f - g is a Lipsc!litz 
extension of ,,f I y . 

2. MAIN THEQREM 

A metric space X is called uniformly discrete if there exists a number 
6 > 0, such that d(~, 1:) > 6 for all X, J E X with s =+ -1’. The following 
theorem appears in [5], in the hypothesis that I’ has an accumulation point 
in X. The main result is: 

THEOREM 2. Let X, x,, i am! Y be as ih Theorem 1. Suppose, f&her, thar Y 
is nonun<forml~~ discrete. If ecery f E Lip, Y has a iinique Lipschitz extensim. 
rheiir F = X (or eguioalently YL = (0)). 

Proqf: Since Y is nonuniformly discrete. for every II E IV, there exist 
-Y,~ , J’~ E Y, x,, + J’, such that d(x,, , ~9,) < l/n. Defining,f,,: X --, R by 

f,,(x) = d(s, x,) - d(x, y,J - d(x, . x,> + d(x, _ y,), IF = i. 2: I..... 
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we have 

fn(xo) = 0, II = 1) 2, 3 )...) 

-24& 9 J%J G fn(xn) = -d(xn 2 yn) - 4x, > x.,) + d(x, 7 yn) 

< 0, n = 1) 2, 3 )...) 

0 < fn(yn) = d(& 9 y,,) - d(x, , x,) + d(x, , J'n) 

G w&z 3 Yn), I1 = 1, 2, 3 ,...) 

llfn IIX = sup{/ 4x9 x,) - 4X? Yn) - 44’3 &I) + 4x Yn)I/4X, A: 
x, y E Y, x f y} < 2, II = 1) 2, 3, . ..) 

so that fn E Lip,, X for II = 1,2, 3 ,... . 
Let a, = d(x, , v~) - d(x, , x,), and suppose that the set I = (n E N: 

u,~~ < 0} is infinite, say 1 = {nj: j E N). Then, we have fn,(xo) = 0, fnj(xnj) < 0, 
fnj(ynj) 3 0,j = 1, 2, 3,... . Now, we consider the sequence {I/J~} of functions 
Q!Q:&(X) + [0, l] defined by 

$j(j> = l, j -=c f,,j(xnj), 

= tlfn,(xn,), fnj(x,j) < t < 0 = fn,(x& 

= 0, j 3 0, 

ford = 1, 2, 3,... . Putting qi = $j 0 f,Zj , we have 

By [5, Corollary 21 it follows that 

4-G Y) G (suP{$j(fnj(Y>): Y E Y1 - WMfn,(Y>): I’ E VM2 II 4j I/Y) 

= l/(2 II qj IIY) G l/IT, + 03 

so that x E Y, for all x E X, that is 7 = X. 
By Theorems 1 and 2, we have 

COROLLARY 1. Suppose that Y is nonuniformly discrete. Theft y-L is 
cheb.vshevian in Lip, X if and only if Y’ = (0). 

We can also prove the following result. 

THEOREM 3. Let X, x,, , and Y be as in Theorem 1. Zf (Yl)n has the property 
(U) then every f 6 Lip, I’ has n unique Lipschitz extension FE Lip, X. 

Proof. Follows from [8, Corollary 3.l.b)] and the above Theorem 1. 

COROLLARY 2. Let X, x0, and Y be as in Theorem 1. Suppose that Y is 
nonunifornz1y discrete. If (Yl)n has the property (U), then y = A’ [or equiva- 
lently YL = (0)). 
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3. EXAMPLES 

(a) Let X = [0, 11, ~!(.x, 11) = I .Y - 4’ /, x0 = 0, and Y = (3, I). Then 
every fE L&,(0, I> has a unique Lipschitz extension FE Lip&J, i], namely, 
F(X) = .i(I)x, This example shows that the supposition that Y is noa- 
uniformly discrete is essential in Theorem 2. 

(b.) Let SE LipJO, l] and let Y be the set of points 0 = ,yO < X, < 
<X n+l = 1. Then, we have: 

TREO~EM 4. The followirlg conditions are equivalent: 

is a Lipschitz extension of flI- and I!fijy > ![.x~: I~:+, ;J]I- k = 0, I,,.,, ft. 
Suppose that k,, , 0 < k,, < n is such that jlflil, > j[si., ~ ;fnOTi ;.i] i We have 
to consider the following cases: 

ii) S!xIJ -c f C~l;,+lh 

69 f(XkJ > fho+l), 

(iii) f(-‘iJ+) = f(~~~+~). 

If condition (i) holds, put I~ = xk, f (f(~,~+~> .-jF(.r7C,))/li.f!‘F and define 
the function Fl: [0, l] + R by 

F,(x) = L(s). s E [O> I] - Isi;, , -i’J& 

= f(x,,) L !Iflly (s - Sko)’ -AI E cqii , qj, (3,2j 

= f CbLJ, s E [q ) xh.o+lj. 

It is easy to see that Fl is a Lipschitz extension of ,f I p , distinct from L: 
and then, by Theorem 1, YJ- is not f-chebyshevian. 

In case (ii) the proof proceeds similarly. If condition (iii) holds, put 
z.? = (2xn,, + ,yk0L1)/3 and define 

Fz(s) = L(x), .r E [O, I] - [s,o 1 s,:-,,+,], 

= .m7;,) t :l.fllr t.-f - -qJ I E &’ ) LJ. ( 3 .2 ,i 

= .f(-~7:,+1) - /I fllY c-r - -‘ii~“+lL s E (22 - Xi,” -1 j. 

6,0!19..3-.? 
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Then Fz is a Lipschitz extension of S jy , different from L. By Theorem 1, 
y-L is not f-chebyshevian. 

(2”) * (1") If I[&, xl;,,; f]l = lIfilY for k = 0, 1, 2 ,..., n, then the 
function L defined by (3.1) is the only Lipschitz extension off Iy . 

A consequence of Theorem 4 is: 

COROLL.ARY 3. Let Y be the set ofpoints 0 = x, < x1 < ... < x,+~ = 1, 
f E LipJO, l] and 

K = (k: 12 E Lip, [0, 11, /2(x,) = f(xk), k = 0, 1, 2 ,..., 12 + 1). (3.4) 

Then YL is K-chebyshevian if and only if Y”- is f-chebyshevian. 

(c) Let C?[O, l] be the space of all continuously differentiable functions 
on [0, l] and let Y be the set of points 0 = x0 < x1 < ... < x,+~ = 1. Put 

2 = Cl[O, l] n LipJO, 11, W = Cl[O, l] n Y-‘. (3.5) 

For f E Z, we have 

ilfhl = m&l f’G4: x 6 [O, 11). (3.6) 

Let us define the function set S by 

S={h:hEZ,[x. 2, 9 . Y h-i-1 ; f~l[X?cfl > J.-k+2 ; 121 

f - 11 h II;, k = 0, 1, 2 ,..., n - 13. (3.7) 

We need the following two lemmas: 

LEMMA 2. Let [p, q] C R, f(x) = ax + b, a, b E R, a > 0, and M > a. 
Then there exists aftcnctiorz g E Cl[p, q] such that f(p) = g(p), f(q) = g(q), 
f’(p) = M (f’(q) = W, f’(q) = g’(q) (f’(p) = g’(p)) and m4l g’(x)l: 
x E [p, q]} = M. 

Proof. The proof of the lemma is obvious from Fig. 1: 

FIGURE 1 
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(,4C) sl(x) = f(p) j M(x - p), 

(EC) s&c) = f(q) - iw(x - q.1, 

(DE) So = f(r) - A&(X - v), I’ E (p, /If‘ 

Applying Lemma 2 to the intervals [xgO-l , x~,] and [x~,.,+~ I x~~~+~], twice 
it follows that there exists a function HI in Clj~~,-~, s~~,+~] such :har 
max(I E&‘(X);: x E [x2,+, 3~~~~~1) = 11 h /jy and which interpolates the function 
17 at the points xkO+, xk,, ~~~~~ , x!,+~ . 

iappiying Lemma 2 to the intervals [xi . s,+~], i = 0, I>.‘.? k, - 2, 
ka + 2...., /T? we get a function HE Z, which is a Lipschitz extension of & i !- 
to [O, I]. 

If [sTLO , J~~+~ ; h] = -1~ I? jiy we can proceed analogously. 

TE~EOREM 5. The subsyace W is S proxinuhal and jar each A E S t!:e 
,foltowii~g equalit? holds: 

d(h, J$‘j = d(h, FL>. (3.9,: 

Proclf: Let h ES. By Lemma 3, h Iy has a Lipschitz extension HE 2. 
Then, ir - HE JV, and this is a best approximation to 1:; from Y’-. 

But then 

so that 
ji I7 - (iz - H)llx = d(h> W> = d(i:, r-l->. 

Remark I. Let f E Z - S; that is, there exists 0 < kl < z + 1 SLLC!J. 
that 

In this case, it is possible that no Lipschitz extension to ,f^ exists in Z: e.g.- 
forj(x) = -4x’ + 4x, Y = [0, *P I> we have 

[O, $;f][& l;f] = -4 
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and the only Lipschitz extension off jy is 

F(x) = 2x, x E [O, +>, 

= -2(x - I)> XE [& 11, 
which, obviously, does not belong to Z. 

By Lemmas 2 and 3, every h ES has a best approximation in W, namely, 
12 - H, where H is a Lipschitz extension of II, such that HE Z. We can 
show that every best approximation is of this form (Lemma 1). It follows that 
W is chebyshevian for 11 E S if and only if h I y has a unique Lipschitz extension 
in Z. A class of such functions is given by 

S, = (/I: h E S: h(x,) = h(l) xk , k = 0, 1, 2, . . . . II + I>. (3.11) 

THEOREMS 6. W is S,-chebysheoiar7. 

Proof. If 11 E s, ) then the unique Lipschitz extension of 17 in Z is 
H(x) = /?(I jx. Therefore h(x) - /7(1)x is the only element of best approxi- 
mation for 12 in W. 

Remark 2. J. Favard and recently de Boor [l] considered a problem 
analogous to that in Example (c). 

(d) Finally, let X be a metric space of finite diameter (i.e., sup{d(x, y): 
x, )’ E X> < a), x,, a fixed element in X, and Y a subset of X such that x,, E Y. 
Let f~ Lip, X and let G(f) be the set of best approximation to ,f from Y’. 
We can define on Lip, X the uniform norm (1 . IIU: Lip,, X + R by 

llfllu = SUP{/ fW: x E a, f E Lip, X. (3.12) 

Obviously, the set G(f) C Yl is closed, convex, and bounded, for every 
f E Lip, X. We consider the following problems: Find g, , g* E G(f) such 
that 

and 
Ilf - g, IL = inftilf - g IL: g E WX, (3.13) 

Ilf - g” Ilu = su~{llf - s l/u: g E W-N; (3.14) 

i.e., find the nearest and the farthest point to fin G(f), in the uniform norm. 
Since every element in G(f) is of the form f - F, where F is a Lipschitz 

extension off ly it follows that the problems (3.13) and (3.14) are equivalent 
to the following problems: Find two Lipschitz extensions F, and F* of ,f Iy 
such that 

and 

[I F, /jl( = inf{/[ F Ila: F is a Lipschitz extension off 1 l.) (3.13’) 

11 F* I/,( = sup{/1 F 1111: F is a Lipschitz extension off [ y>. (3.14’) 
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THEOREM 6. The injimum (3.13) is attained for eoey.7 g, = f - F:.: nici2 
fhQt F, is a Lipschitz extension off 1 y and ;I F, ‘1 ,1 -= II f 1 y 1 I?:, . The set qf” !iiese 
estensiom is nonempty. 

Proqf If F is a Lipschitz extension off 1 I- then 

I’F’);, 3 SUp{jF(y)i:j’E Y} = sup(lf(J)l:J’E Y) = ~~.fli-ltI ~ 

Therefore. if Ij F, jju = [!fiu llLt then inf{(lFt;ji,: F is a Lipschitz extension of 
fly) = ‘, F, !i?I = IIS!r ilu. NOW? if F is a Lipschitz extension of jii.. me 
define a new Lipschitz function F, by 

F:;:h-) = 11 f /I. II L‘ if J-p; > :, “f I y I’LL , 
= F(s) if -Ii,f!y jilt 5: F(X) 6: ;$J”y I’,( . (3.15) 

=- -~lJ’Il.I!u if F(x) < -!,j’ly lUrc 

It is easy to see that F, is a Lipschitz extension ofj’lY such that 1: P:, ;I!; = 
r’.fr’,, ’ 

Fz”(x) = sup{[.f(J?) - I;,j$ cf(X, J.,,]: y E r:-. (-‘.iTjf 

Proqf. By [2], F,* and F2* are Lipschitz extensions off I,- and obviously. 
for every Lipschitz extension F off lY we have 

F,*(x) < F(x) < F,“(x), s E x. 

From these inequalities, it follows that 

11 F iIll < maxtll FL* ‘IL1 , /I F2* 1,)~ 

Refrzn& 3. Dunham [3] has considered a prob!em similar to the problem 
in (d) in the case when G(f) has the betweenness property (see [3] for 
definition). In (d) the set G(f), being convex, has the betweenness property. 
We found explicitly the nearest and the farthest points ofJin G(.i). 
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