
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 256 (2009) 2656–2696

www.elsevier.com/locate/jfa

Continuous model for homopolymers

M. Cranston a,∗, L. Koralov b, S. Molchanov c, B. Vainberg c

a Department of Mathematics, University of California, Irvine, CA 92697, USA
b Department of Mathematics, University of Maryland, College Park, MD 20742, USA

c Department of Mathematics, University of North Carolina, Charlotte, NC 28223, USA

Received 10 July 2008; accepted 14 July 2008

Available online 28 August 2008

Communicated by Paul Malliavin

Abstract

We consider the model for the distribution of a long homopolymer in a potential field. The typical shape
of the polymer depends on the temperature parameter. We show that at a critical value of the temperature
the transition occurs from a globular to an extended phase. For various values of the temperature, including
those at or near the critical value, we consider the limiting behavior of the polymer when its size tends to
infinity.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of this paper is to analyze various critical phenomena for a model of long homo-
geneous polymer chains in an attracting potential field. The model exhibited here demonstrates
a phase transition from a densely packed globular phase at low temperatures to an extended
phase at higher temperatures. In the latter phase, the thermal fluctuations overcome the attraction
between monomers and the chain takes on the shape of a 3d random walk or Brownian mo-
tion with a typical scale O(

√
T ) where T is the length of the polymer. A real life example of

this phenomenon is that of albumen (egg white). We describe a rough picture of this situation.
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The physical reality is more complex as there are present several types of protein with different
critical points. However in a simplified version, at room temperature the albumen is in the glob-
ular state and as a result, it forms a viscous, translucent liquid. However, at higher temperatures
(around 60–65 ◦C) there is a transition of the albumen to a diffusive (extended) state resulting in
an opaque semi-solid material. While this transition may be reversible for an individual polymer,
in the aggregate, the polymer strands in the diffusive state become interwoven and form chemical
bonds with each other and cannot return to the globular state when the temperature is decreased.

It is worthwhile recalling Gibbs’ philosophy of phase transitions. Start with a system of finite
size T . The configuration space ΣT = {x(·)} denotes all possible states x(·) of the system. The
space ΣT is equipped with a reference measure P0,T which corresponds to infinite absolute
temperature (in our case, the inverse temperature β = 0). The configurations satisfy boundary
conditions which reflect the interaction of the finite system with its environment. This system is
endowed with a Hamiltonian HT giving the energy HT (x) of the state x. For β > 0, the Gibbs
measure Pβ,T is given by the density

dPβ,T

dP0,T

(x) = exp(−βHT (x))

Zβ,T

, (1)

where

Zβ,T =
∫

ΣT

exp
(−βHT (x)

)
dP0,T . (2)

When T < ∞, the measure Pβ,T and the thermodynamic quantities associated to Pβ,T are ana-
lytic functions of β .

Now let T → ∞. In typical situations, there is a critical value βcr such that for β > βcr,

there exists a unique limiting measure Pβ on Σ, the space of infinite configurations, and this
limiting measure is independent of the boundary conditions on ΣT . Moreover, Pβ and its relevant
thermodynamic quantities are still analytic functions of β for β > βcr. One manifestation of the
phase transition is the non-uniqueness for β < βcr of the limiting measure as T → ∞ as it has
dependence on the boundary conditions on ΣT . Another is the non-analyticity of thermodynamic
quantities associated to Pβ as a function of β. The mathematical characterization of the phase
transition in terms of non-uniqueness of the limiting Gibbs measure traces its history to the works
of Dobrushin [4] and Ruelle [9].

Modern physical theories predict that near the critical point β = βcr the limiting Gibbs mea-
sure Pβ must be invariant with respect to renormalizations of the system (self-similarity). This
idea is related to the two-parametric scaling by Fisher [5] for β near βcr. Another important fact
is that critical behavior as β → βcr of the physical system demonstrates universality, that is the
same behavior holds for a wide class of Hamiltonians.

The most essential part of the present paper is the detailed description of the polymer chain
near the critical point and the establishment of the physical ideas of universality and self-
similarity for our particular model of homopolymers.

2. Description of the model and results

A continuous function x : [0, T ] → R
d , x(0) = 0, will be thought of as a realization of the

polymer. The parameter t ∈ [0, T ] can be intuitively understood as the length along the polymer
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(although the functions x = x(t) are not differentiable and the genuine notion of length cannot
be defined).

We assume that for β = 0, the polymer is distributed according to the Wiener measure P0,T on
ΣT = C([0, T ],R

d). For an infinitely smooth compactly supported potential v ∈ C∞
0 (Rd) and a

coupling constant β � 0, the polymer is distributed according to the Gibbs measure Pβ,T , whose
density with respect to P0,T is

dPβ,T

dP0,T

(x) = exp(β
∫ T

0 v(x(t)) dt)

Zβ,T

, x ∈ C
([0, T ],R

d
)
. (3)

In other words, the Hamiltonian HT is given by HT = − ∫ T

0 v(x(s)) ds. The normalizing factor
Zβ,T , called the partition function, is given by

Zβ,T =
∫

C([0,T ],Rd )

exp

(
β

T∫
0

v
(
x(t)

)
dt

)
dP0,T (x) = E0,T e−βHT . (4)

It will be usually assumed that the potential is non-negative and not identically equal to zero. We
shall be interested in the prevalent behavior of the polymer with respect to the measure Pβ,T as
T → ∞.

More realistic models would include pairwise interaction of monomers and interaction with
an external field (here the latter is represented by β

∫ T

0 v(x(t)) dt). Pairwise interaction would
be modeled by introduction of a term in the exponential in (3) of the form γ

∫ t

0

∫ t

0 f (x(s) −
x(u)) ds du where f is a non-constant function, compactly supported in a neighborhood of the
origin and γ > 0. Self-repulsion would then be modeled by the requirement f � 0 while self-
attraction would occur in the case f � 0. Models involving self-interactions are highly complex
and phase transitions are difficult to establish. We will discuss only the mean field model and
exclude self-interaction. Under this simplifying assumption, we will give a complete physical
description. We shall see that there are two qualitatively different cases corresponding to different
values of β . Namely, for all sufficiently large values of β there is a limiting distribution for x(T )

with respect to P0,T . Moreover, for each positive constant s and each function S(T ) such that
S(T ) → ∞ and T −S(T ) → ∞ as T → ∞, the family of processes x(S(T )+ t), t ∈ [0, s], with
respect to either measure Pβ,T or Pβ,T (·|x(T ) = 0), converges to a Markov process as T → ∞.
The generator of the limiting Markov process and its invariant measure are written out explicitly
in Theorem 8.3. Since x(S(T )) and x(T ) converge to limiting distributions and thus typically
remain bounded as T → ∞, we shall say that the polymer is in the globular state.

If β > 0 is sufficiently small and d � 3, then the family of processes x(tT )/
√

T , 0 � t � 1,
defined on (C([0, T ],R

d),Pβ,T ), converges to a Brownian motion on the interval [0,1] (Theo-
rem 9.2). In this case we shall say that the polymer is in the diffusive state. Similarly, the family
of processes x(tT )/

√
T , 0 � t � 1, defined on (C([0, T ],R

d),Pβ,T (·|x(T ) = 0)), converges to
a Brownian bridge on the interval [0,1].

We shall see that there is a number βcr (called the critical value of the coupling constant) such
that the polymer is in the diffusive state for β < βcr and in the globular state for β > βcr. The
value of βcr and the behavior of the polymer when β is near βcr depend on the dimension d and
on the potential. In particular, we shall see that βcr = 0 for d = 1,2 and βcr > 0 for d � 3.
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Of particular interest is the behavior of the polymer when β = βcr. In this case the appropriate
scaling is the same as in the diffusive case, that is we study the family of processes x(tT )/

√
T ,

0 � t � 1. We shall find the limit of this family as T → ∞. It turns out to be a Markov process
with a non-Gaussian, spherically symmetric transition function (Theorem 10.6). The transition
function of the limiting Markov process will be written out explicitly. A remarkable fact is the
connection between this limiting process and a process derived at a critical value of a 0-range
potential for d = 3 in [3]. In that paper we considered a one parameter, call the parameter γ,

family of self-adjoint extensions of the Laplacian with domain C∞
c (R3 − {0}). This family of

operators, introduced by Bethe and Peierl’s as a model for a diplon, is now well understood. An
excellent exposition can be found in [1]. There exist non-trivial, closed self-adjoint extensions
only for d � 3. The corresponding theory of polymer (Gibbs) measures based on these Hamil-
tonians is interesting only in d = 3 since for d = 1,2 the polymer exhibits no phase transition
and is always in the globular phase. The heat kernel given at (79) is identical with the heat ker-
nel for the d = 3, 0-range self-adjoint extension of the Laplacian at the critical parameter value
γ = 0. As an aside we repeat that there are no closed, self-adjoint extensions of the Laplacian
with domain C∞

c (Rd − {0}), other than the Laplacian itself when d � 4.

In order to determine whether the polymer is in the globular or diffusive state for a given β ,
we shall look at the rate of growth of the partition function Zβ,T . Namely, let

λ0(β) = lim
T →∞

lnZβ,T

T
.

It will be demonstrated that the limit exists and is equal to the supremum of the spectrum of the
operator Hβ = 1

2� + βv : L2(Rd) → L2(Rd). The infimum of the set of β for which λ0(β) > 0
is equal to βcr. It will be seen that λ0(βcr) = 0 is an eigenvalue of Hβcr in dimensions d � 5, and
corresponds to a ground state of Hβcr in dimensions d = 3,4.

The paper is organized as follows.
In Section 3 we consider finite T and show that {x(t),0 � t � T } is a time-inhomogeneous

Markov process with respect to the measures Pβ,T and Pβ,T (·|x(T ) = 0).
In Section 4 we prove the existence of the critical value of the coupling constant. In Section 5

we analyze the properties of the resolvent of the operator Hβ which, in particular, will be needed
to study the asymptotic properties of the partition function.

In Section 6 we shall examine the asymptotics of λ0(β) when β ↓ βcr and show it has the
following asymptotic behavior as β ↓ βcr,

λ0(β) ∼
⎧⎨⎩ c3(β − βcr)

2, d = 3,

c4(β − βcr)/ ln(1/(β − βcr)), d = 4,

cd(β − βcr), d � 5.

These asymptotics demonstrate universality in that they depend only on dimension. The con-
stants cd , d � 3, are not universal however. In Section 7 we find the asymptotics, as T → ∞,
of Zβ,T . In particular, when β > βcr, we shall find that Zβ,T ∼ kβeλ0(β)T for some constant kβ ,
while for β < βcr, Zβ,T has a finite limit as T → ∞. Finally, when β = βcr, it turns out that
Zβ,T ∼ k3T

1/2 for d = 3, Zβ,T ∼ k4T/lnT for d = 4, while Zβ,T ∼ kdT for d � 5. We also
give asymptotics of the solutions to the parabolic equation ∂u/∂t = Hβu.

In Sections 8–10, we describe the behavior of the polymer for β > βcr, β < βcr and β = βcr,
respectively, establishing the convergence results mentioned above.
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Some of the results presented above have been obtained by Cranston and Molchanov in [2]
for the discrete model with the potential concentrated at one point. The analysis was based on
explicit formulas for the solution of the parabolic equation with such a potential. The current
results demonstrate that the behavior of the polymer is “universal” with respect to the choice of
the potential. Another essential feature of this paper is the detailed analysis of the behavior of the
polymer when β = βcr. We refer the reader to the review of Lifschitz, Grosberg and Khokhlov
[7] for a wealth of information and ideas on polymer chains.

3. Time-inhomogeneous Markov property

First we define pβ as the fundamental solution of the heat equation

∂pβ

∂t
(t, y, x) = 1

2
�xpβ(t, y, x) + βv(x)pβ(t, y, x),

pβ(0, y, x) = δ(x − y). (5)

In this section we shall prove that with respect to the measure Pβ,T , the process {x(t),0 �
t � T } is a time-inhomogeneous Markov process. Since we shall point out the link between
non-uniqueness of Gibbs measures and phase transitions it will be necessary to also consider
the transition mechanism for the process {x(t),0 � t � T } under the conditional measure
Pβ,T (·|x(T ) = 0). Namely, we will show that the free boundary condition corresponding to the
measure Pβ,T and the pinned boundary condition corresponding to the measure Pβ,T (·|x(T ) = 0)

lead to different Gibbs measures in the limit.
Let Zβ,t (x) = Ex exp(β

∫ t

0 v(xs) ds), where Ex is the expectation with respect to the measure
induced by the Brownian motion starting at x. Thus Zβ,t (0) = Zβ,t , where Zβ,t is the partition
function introduced in the previous section.

Theorem 3.1. The process {x(t),0 � t � T } is a time-inhomogeneous Markov process with
respect to the measures Pβ,T . Its transition density is given by

qT
β

(
(s, y), (t, x)

) = pβ(t − s, y, x)Zβ,T −t (x)
(
Zβ,T −s(y)

)−1
. (6)

The transition density qT
β ((s, y), (t, x)) solves the parabolic equation

∂

∂s
qT
β

(
(s, y), (t, x)

)+ 1

2
�yq

T
β

(
(s, y), (t, x)

) + ∇y lnZβ,T −s(y)∇yq
T
β

(
(s, y), (t, x)

) = 0. (7)

With respect to the conditional measure Pβ,T (·|x(T ) = 0), the process {x(t),0 � t � T } is a
time-inhomogeneous Markov process with transition density

q
(T ,0)
β

(
(s, y), (t, x)

) = pβ(t − s, y, x)pβ(T − t, x,0)
(
pβ(T − s, y,0)

)−1
. (8)

While this result is not used directly in later sections, it provides some intuition on the nature
of the limiting processes when we consider the limit T → ∞.
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Proof. The Feynman–Kac formula gives that for 0 < t � T ,

Pβ,T

(
x(t) ∈ dx

) = pβ(t,0, x)Ex exp(β
∫ T −t

0 v(xs) ds)

Zβ,T

dx. (9)

Similarly, for 0 = t0 < t1 < t2 < · · · < tn � T and x0 = 0,

Pβ,T

(
x(t1) ∈ dx1, . . . , x(tn) ∈ dxn

)
=

∏n−1
i=0 pβ(ti+1 − ti , xi, xi+1)Exn exp(β

∫ T −tn
0 v(xs) ds)

Zβ,T

dx1 dx2 . . . dxn.

So, if we set for 0 � s < t � T ,

qT
β

(
(s, y), (t, x)

) = pβ(t − s, y, x)Zβ,T −t (x)
(
Zβ,T −s(y)

)−1
,

then

Pβ,T

(
x(t1) ∈ dx1, . . . , x(tn) ∈ dxn

) =
n−1∏
i=0

qT
β

(
(ti , xi), (ti+1, xi+1)

)
.

Since qT
β ((s, y), (t, x)) > 0 and ∫

Rd

qT
β

(
(s, y), (t, x)

)
dx = 1,

this means that {x(t),0 � t � T } under the measure Pβ,T is a time-inhomogeneous Markov
process with transition probabilities qT . Turning the equation for qT

β around and solving for pβ

yields

pβ(t − s, y, x) = qT
β ((s, y), (t, x))Zβ,T −s(y)

Zβ,T −t (x)
.

Using the fact that

∂

∂s
pβ(t − s, y, x) + 1

2
�ypβ(t − s, y, x) + βv(y)pβ(t − s, y, x) = 0,

we derive that qT
β satisfies the equation

∂

∂s
qT
β

(
(s, y), (t, x)

)Zβ,T −s(y)

Zβ,T −t (x)
+ qT

β

(
(s, y), (t, x)

) ∂
∂s

Zβ,T −s(y)

Zβ,T −t (x)

+ 1

2
�yq

T
β

(
(s, y), (t, x)

)Zβ,T −s(y)

Zβ,T −t (x)
+ βv(y)qT

β

(
(s, y), (t, x)

)Zβ,T −s(y)

Zβ,T −t (x)

+ 1 qT
β ((s, y), (t, x))

�yZβ,T −s(y) + ∇yq
T
β

(
(s, y), (t, x)

)∇yZβ,T −s(y) = 0. (10)

2 Zβ,T −t (x) Zβ,T −t (x)
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Simplifying this leads to the following parabolic equation for qT
β ,

∂

∂s
qT
β

(
(s, y), (t, x)

) + 1

2
�yq

T
β

(
(s, y), (t, x)

) + ∇y lnZβ,T −s(y)∇yq
T
β

(
(s, y), (t, x)

) = 0.

(11)

Next we consider the pinned case, for 0 = t0 < t1 < · · · < tn < tn+1 = T and x0 = xn+1 = 0.

Then,

Pβ,T

(
x(t1) ∈ dx1, . . . , x(tn) ∈ dxn

∣∣x(T ) = 0
) = Pβ,T (x(t1) ∈ dx1, . . . , x(tn) ∈ dxn, x(T ) = 0)

Pβ,T (x(T ) = 0)

=
∏n−1

i=0 pβ(ti+1 − ti , xi, xi+1)

pβ(T ,0,0)
dx1 . . . dxn. (12)

Now set for 0 � s < t � T ,

q
(T ,0)
β

(
(s, y), (t, x)

) = pβ(t − s, y, x)pβ(T − t, x,0)
(
pβ(T − s, y,0)

)−1
. (13)

Then

Pβ,T

(
x(t1) ∈ dx1, . . . , x(tn) ∈ dxn

∣∣x(T ) = 0
) =

n−1∏
i=0

q
(T ,0)
β

(
(ti , xi), (ti+1, xi+1)

)
. (14)

Since q
(T ,0)
β ((s, y), (t, x)) > 0 and∫

Rd

qT
β

(
(s, y), (t, x)

)
dx = 1,

this means that {x(t),0 � t � T } under the conditional measure Pβ,T (·|x(T ) = 0) is a time-

inhomogeneous Markov process with transition densities q
(T ,0)
β . �

We shall see below in that in the globular phase β > βcr the drift term ∇x lnZβ,T −s(x) has
a non-trivial limit as T → ∞. This means that for β > βcr, the Gibbs measure corresponds to
a stationary Markov process in the T → ∞ limit. On the other hand, this limit will vanish for
β < βcr. This explains the nature of the diffusive state for high temperature.

4. Critical value of the coupling constant

Let

Hβ = 1

2
� + βv : L2(

R
d
) → L2(

R
d
)
, v = v(x) ∈ C∞

0

(
R

d
)
, β � 0.

We shall always assume that v(x) is non-negative and compactly supported, although many re-
sults do not require these restrictions or can be modified to be valid without these restrictions. We
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shall also assume that v is not identically equal to zero. It is well known that the spectrum of Hβ

consists of the absolutely continuous part (−∞,0] and at most a finite number of non-negative
eigenvalues:

σ(Hβ) = (−∞,0] ∪ {λj }, 0 � j � N, λj = λj (β) � 0.

We enumerate the eigenvalues in the decreasing order. Thus, if {λj } �= ∅, then λ0 = maxλj .

Lemma 4.1. There exists βcr � 0 (which will be called the critical value of β) such that
supσ(Hβ) = 0 for β � βcr and supσ(Hβ) = λ0(β) > 0 for β > βcr. For β > βcr the eigen-
value λ0(β) is a strictly increasing and continuous function of β . Moreover, limβ↓βcr λ(β) = 0
and limβ↑∞ λ(β) = ∞.

Proof. The form (Hβψ,ψ) is positive on a function ψ supported on supp(v) if β is large enough.
Thus supσ(Hβ) > 0 for sufficiently large β . On the other hand, σ(Hβ) = (−∞,0] when β = 0.
Let βcr = sup{β: supσ(Hβ) = 0}. It is clear that supσ(Hβ) = 0 for β < βcr since the operator
Hβ depends monotonically on β .

Other statements easily follow from the fact that for each ψ the form (Hβψ,ψ) depends
continuously and monotonically on β . �
Remark. As will be shown below, βcr = 0 for d = 1,2, and βcr � 0 for d � 3. Thus we do not
talk about phase transition for d = 1,2 since we do not consider negative values of β .

For d � 3, by the Cwikel–Lieb–Rozenblum estimate [8],

�
{
λi(β) � 0

}
� cdβd/2

∫
Rd

∣∣v(x)
∣∣d/2

dx.

This implies that there are no eigenvalues for sufficiently small values of β if d � 3, that is
βcr > 0. It is also well know (see [8]) that supσ(Hβ) > 0 for d = 1,2 if β > 0, v � 0 and v is
not identically zero. These statements will also be proved below without referring to the Cwikel–
Lieb–Rozenblum estimate.

5. Analytic properties of the resolvent

The resolvent of the operator Hβ will be considered in the spaces of square-integrable and
continuous functions. The resolvent Rβ(λ) = (Hβ −λ)−1 : L2(Rd) → L2(Rd) is a meromorphic
operator-valued function on C

′ = C \ (−∞,0]. Denote the kernel of Rβ(λ) by Rβ(λ, x, y). If
β = 0, the kernel depends on the difference x − y and will be denoted by R0(λ, x − y). The
kernel R0(λ, x) can be expressed through the Hankel function H

(1)
ν :

R0(1, x) = c|x|1− d
2 H

(1)
d
2 −1

(
i
√

2|x|), (15)

and

R0(λ, x) = ckd−2(k|x|)1− d
2 H

(1)
d

(
i
√

2k|x|), k = √
λ, Re k > 0. (16)
2 −1
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In particular,

R0(λ, x) = e−√
2k|x|

−√
2k

, d = 1; R0(λ, x) = e−√
2k|x|

−2π |x| , d = 3.

We shall say that f ∈ L2
exp(R

d) if f is measurable and

‖f ‖L2
exp(R

d ) =
( ∫

Rd

f 2(x)e|x|2 dx

) 1
2

< ∞.

Similarly, we shall say that f ∈ Cexp(R
d) if f is continuous and

‖f ‖Cexp(Rd ) = sup
x∈Rd

(∣∣f (x)
∣∣e|x|2) < ∞.

Note that R0(λ), λ ∈ C
′, is a bounded operator not only in L2(Rd) but also from Cexp(R

d) to
C(Rd), where C(Rd) is the space of bounded continuous functions on R

d . Denote

A(λ) = v(x)R0(λ) :L2
exp

(
R

d
) → L2

exp

(
R

d
) (

and Cexp
(
R

d
) → Cexp

(
R

d
))

. (17)

The well-known properties of the Hankel functions together with (15) and (16) imply the
following lemma (see [10] for a similar statement for general elliptic operators).

Lemma 5.1. Consider the operator A(λ) in the spaces L2
exp(R

d) and Cexp(R
d).

(1) The operator A(λ) is analytic in λ ∈ C
′. It admits an analytic extension as an entire function

of
√

λ if d is odd, except d = 1, when it has a pole (with respect to
√

λ ) at the origin. The
operator A(λ) has the form A(λ) = A1(λ) + lnλA2(λ) if d is even, where A1 and A2 are
entire functions.

(2) A2(0) = 0 if d � 4 (d is even), and therefore A(0) = limλ→0,λ∈C′ A(λ) exists and is a
bounded operator for all d � 3.

(3) The operator A(λ) is compact for all λ ∈ C
′ ∪ {0} (λ �= 0 if d = 1 or 2).

(4) For each ε > 0, we have ‖A(λ)‖ = O(1/|λ|) as λ → ∞, |argλ| � π − ε.
(5) The operator A(λ) has the following asymptotic behavior as λ → 0, λ ∈ C

′:

A(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−vP1/

√
λ + O(1), d = 1,

−vP2 ln(1/λ) + O(1), d = 2,

−v(P3 + Q3
√

λ ) + O(|λ|), d = 3,

−v(P4 + Q4λ ln(1/λ)) + O(|λ|), d = 4,

−v(Pd + Qdλ) + O(|λ|3/2), d � 5,

where the operators Pd , d � 1, Qd , d � 3, have the following kernels:
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P1(x, y) = 1√
2
, P2(x, y) = 1

π
,

P3(x, y) = 1

2π |x − y| , Q3(x, y) = − 1√
2π

,

P4(x, y) = 1

π2|x − y|2 , Q4(x, y) = − 1

2π2
,

Pd(x, y) = ad

|x − y|d−2
, Qd(x, y) = −ad

(d − 4)|x − y|d−4
, ad > 0, d � 5.

Proof. Let d be odd. From (15), (16) and (17) it follows that the kernel A(λ,x, y) =
v(x)R0(λ, x − y) of the operator A(λ) is an entire function of k = √

λ if d � 3 (but has a
pole at k = 0 if d = 1). The kernel has a weak singularity at x = y and an exponential estimate
at infinity. To be more exact,

∣∣A(
k2, x, y

)∣∣ +
∣∣∣∣∂A(k2, x, y)

∂k

∣∣∣∣ � C(d, k)
∣∣v(x)

∣∣e|k(x−y)|(|x − y| + |x − y|−(d−1)
)
, (18)

where C(d, k) has a singularity at k = 0 if d = 1. Since

∥∥A
(
k2)∥∥

Cexp(Rd )
� sup

x∈Rd

∫
e|x|2−|y|2 ∣∣A(

k2, x, y
)∣∣dy,

∥∥∥∥ d

dk
A

(
k2)∥∥∥∥

Cexp(Rd )

� sup
x∈Rd

∫
e|x|2−|y|2

∣∣∣∣∂A(k2, x, y)

∂k

∣∣∣∣dy,

the estimate (18) immediately leads to the analyticity in k = √
λ of the operator A(λ) in the space

Cexp(R
d). In order to get the same result in the space L2

exp(R
d), we represent A(λ) in the form

B1 + B2 were the kernel B1(λ, x, y) of the operator B1 is equal to χ(x − y)A(λ, x, y). Here χ

is the indicator function of the unit ball. Since

∣∣χ(x)R0
(
k2, x

)∣∣ +
∣∣∣∣ d

dk
χ(x)R0

(
k2, x

)∣∣∣∣ ∈ L1(
R

d
)
, (19)

the convolution with χ(x)R0(k
2, x) is an analytic in k operator in the space L2(Rd). Then B1

(which is the convolution followed by multiplication by v(x)) is an analytic operator in the space
L2

exp(R
d). The product of the kernel of the operator B2 and e|x|2−|y|2 is square integrable in

(x, y). The same is true for the derivative in k of the kernel of B2 multiplied by e|x|2−|y|2 . Thus
B2 is also analytic in k. This completes the proof of the analyticity of A(λ) when d is odd. The
case of even d is similar. One needs only to take into account that R0(λ, x) has a logarithmic
branching point at λ = 0 in this case. The second statement of the lemma follows immediately
from (15), (16) and (17).

To prove the compactness of A(λ), we note that the estimate (18) is valid not only for
A(k2, x, y) and ∂A(k2, x, y)/∂k, but also for ∇xA(k2, x, y). Thus the arguments above lead
to the boundedness of the operators ∂ A(λ) (the composition of A(λ) with the differentiation).
∂xi
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Since the supports of functions A(λ)f belong to the support of v, the standard Sobolev em-
bedding theorems imply the compactness of the operator A(λ) in both the spaces L2

exp(R
d) and

Cexp(R
d).

In order to prove the fourth statement of the lemma, we observe that the L2(Rd) norm
of the resolvent R0(λ) does not exceed 1/|Imλ| (the inverse distance from the spectrum).
Since A(λ) is obtained from R0(λ) after multiplying it by a bounded function with compact
support, the L2

exp(R
d) norm of A(λ) does not exceed c/|Imλ|, where c is a positive con-

stant which depends on v. The norm of A(λ) in the space Cexp(R
d) can be estimated by

supx∈Rd |v(x)e|x|2 | ∫
Rd |R0(λ, x)|dx, which is of order O(1/|λ|) as λ → ∞, |argλ| � π − ε,

due to (16).
The remaining statements also easily follow from (15) and (16). �
Note that for d � 3, there exists the limit

R0(0, x − y) := lim
λ→0,λ∈C′ R0(λ, x − y) = −ad |x − y|2−d ,

which is a fundamental solution of the operator 1
2�. The operator with this kernel will be de-

noted by R0(0). While R0(λ), λ ∈ C
′, acts in L2(Rd) and C(Rd), the operator R0(0) only maps

Cexp(R
d) to C(Rd) if d < 5. The following lemma follows from formulas (15) and (16) similarly

to Lemma 5.1.

Lemma 5.2. For d � 3, the operator R0(λ) considered as an operator from Cexp(R
d) to C(Rd)

is analytic in λ ∈ C
′. It is uniformly bounded in C

′. For each ε > 0, it is of order O(1/|λ|) as
λ → ∞, |argλ| � π − ε. It has the following asymptotic behavior as λ → 0, λ ∈ C

′:

R0(λ) =
⎧⎨⎩R0(0) + O(

√|λ| ), d = 3,

R0(0) + O(|λ lnλ|), d = 4,

R0(0) + O(|λ|), d � 5.

The following lemma is simply a resolvent identity. It plays an important role in our future
analysis.

Lemma 5.3. For λ ∈ C
′, we have the following relation between the meromorphic operator-

valued functions,

Rβ(λ) = R0(λ) − R0(λ)
(
I + βv(x)R0(λ)

)−1[
βv(x)R0(λ)

]
. (20)

Remark. Note that (20) can be written as

Rβ(λ) = R0(λ) − R0(λ)
(
I + βA(λ)

)−1[
βv(x)R0(λ)

]
. (21)

From here it also follows that

Rβ(λ) = R0(λ)
(
I + βA(λ)

)−1
, (22)
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which should be understood as an identity between meromorphic in λ operators acting from
L2

exp(R
d) to L2(Rd) and from Cexp(R

d) to C(Rd). In the lattice case considered in [2], the
operator A(λ) has rank one and

Rβ(λ, x, y) = R0(λ, x, y)/
(
1 − βI (λ)

)
,

where I (λ) is an analytic function of
√

λ related to A(λ). This exact formula is the key to all the
results in [2].

The kernels of the operators I +βA(λ) (both in spaces L2
exp(R

d) and Cexp(R
d)) are described

by the following lemma.

Lemma 5.4.

(1) The operator-valued function (I + βA(λ))−1 is meromorphic in C
′. It has a pole at λ ∈ C

′
if and only if λ is an eigenvalue of Hβ . These poles are of the first order.

(2) Let λi(β) be a positive eigenvalue of Hβ . There is a one-to-one correspondence between the
kernel of the operator I + βA(λi) and the eigenspace of the operator Hβ corresponding to
the eigenvalue λi . Namely, if (I + βA(λi))h = 0, then ψ = −R0(λi)h is an eigenfunction of
Hβ and h = βvψ .

(3) If d � 3, there is a one-to-one correspondence between the kernel of the operator I +βA(0)

and solution space of the problem

Hβ(ψ) = 1

2
�ψ + βv(x)ψ = 0,

ψ(x) = O
(|x|2−d

)
,

∂ψ

∂r
(x) = O

(|x|1−d
)

as r = |x| → ∞. (23)

Namely, if (I + βA(0))h = 0 for h ∈ L2
exp(R

d), then h ∈ Cexp(R
d), ψ = −R0(0)h is a solu-

tion of (23) and h = βvψ .

Remark. The relations (23) are an analogue of the eigenvalue problem for zero eigenvalue and
the eigenfunction ψ which does not necessarily belong to L2(Rd) (see Lemma 5.6 below). We
shall call a non-zero solution of (23) a ground state.

Proof. The operator A(λ), λ ∈ C
′, is analytic, compact, and tends to zero as λ → +∞ by

Lemma 5.1. Therefore (I + βA(λ))−1 is meromorphic by the analytic Fredholm theorem.
If λ ∈ C

′ is a pole of (I + βA(λ))−1, then it is also a pole of the same order of Rβ(λ) as
follows from (22) since the kernel of R0(λ) is trivial. Therefore the pole is simple and coincides
with one of the eigenvalues λi . Note that λ is a pole of (I +βA(λ))−1 if and only if the kernel of
I +βA(λ) is non-trivial. Let h ∈ L2

exp(R
d) be such that ‖h‖L2

exp(R
d ) �= 0 and (I +βvR0(λ))h = 0.

Then ψ := −R0(λ)h ∈ L2(Rd) and ( 1
2� − λ + βv)ψ = 0, that is ψ is an eigenfunction of Hβ .

Conversely, let ψ ∈ L2(Rd) be an eigenfunction corresponding to an eigenvalue λi , that is(
1
� − λi

)
ψ + βvψ = 0. (24)
2
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Denote h = βvψ . Then ( 1
2�−λi)ψ = −h. Thus ψ = −R0(λi)h and (24) implies that h satisfies

(I +βvR0(λi))h = 0. Note that h ∈ C∞(Rd), h vanishes outside supp(v), and therefore belongs
to the kernel of I + βA(λi). This completes the proof of the first two statements.

Similar arguments can be used to prove the last statement. If h ∈ L2
exp(R

d) is such that
‖h‖L2

exp(R
d ) �= 0 and (I + βA(0))h = 0, then h has compact support and the integral operator

R0(0) can be applied to h. It is clear that ψ := −R0(0)h satisfies (23) and, since h has compact
support, h ∈ Cexp(R

d).
In order to prove that any solution of (23) corresponds to an eigenvector of I + βA(0), one

only needs to show that the solution ψ of the problem (23) can be represented in the form
ψ = −R0(0)h with h = βvψ. The latter follows from the Green formula

ψ(x) = −(
R0(0)(βvψ)

)
(x) +

∫
|y|=a

[
R0(0, x − y)ψ ′

r (y) − ∂

∂r
R0(0, x − y)ψ(y)

]
ds, |x| < a,

after passing to the limit as a → ∞. �
Lemma 5.4 can be improved for λ = λ0(β). Due to the monotonicity and continuity of λ =

λ0(β) for β > βcr, we can define the inverse function

β = β(λ) : [0,∞) → [βcr,∞). (25)

We shall prove that the operator −A(λ), λ > 0, has a non-negative kernel and has a positive
simple eigenvalue such that all the other eigenvalues are smaller in absolute value. Such an
eigenvalue is called the principal eigenvalue.

Lemma 5.5. The operator −A(λ), λ > 0 (in the spaces L2
exp(R

d) and Cexp(R
d)), has the princi-

pal eigenvalue. This eigenvalue is equal to 1/β(λ) and the corresponding eigenfunction can be
taken to be positive in the interior of supp(v) and equal to zero outside of supp(v). If d � 3, then
the same is true for the operator −A(0) (in particular, βcr > 0).

Remark 1. Let d � 3. Lemmas 5.4 and 5.5 imply that the ground state of the operator Hβ for
β = βcr (defined by (23)) is defined uniquely up to a multiplicative constant and corresponds to
the principal eigenvalue of A(0). The ground state (with λ = 0) does not exist if β < βcr.

Remark 2. Let d � 3. From Lemma 5.1 it follows that

lim
λ→0, λ∈C′ A(λ) = A(0).

Therefore for all λ ∈ C
′ with |λ| sufficiently small, the operator −A(λ) has a simple eigenvalue

whose real part is larger than the absolute values of the other eigenvalues. We shall denote this
eigenvalue by 1/β(λ), thus extending the domain of the function β(λ) (see (25)) from [0,∞) to
[0,∞) ∪ (U ∩ C

′), where U is a sufficiently small neighborhood of zero.

Proof of Lemma 5.5. By Lemma 5.4 it is sufficient to consider the case of L2
exp(R

d). The max-

imum principle for the operator ( 1� − λ), λ > 0, implies that the kernel of the operator R0(λ),
2
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λ > 0, is negative. Thus, by (17), for all y the kernel of −A(λ) is positive when x is in the interior
of supp(v) and zero, otherwise. Thus −A(λ), λ > 0, has the principal eigenvalue (see [6]). On
the other hand, by Lemma 5.4, 1/β(λ) is a positive eigenvalue of −A(λ). Note that this is the
largest positive eigenvalue of −A(λ). Indeed, if μ = 1/β ′ > 1/β(λ) is an eigenvalue of −A(λ),
then λ is one of the eigenvalues λi of Hβ ′ by Lemma 5.4. Therefore, λi(β

′) = λ0(β) for β ′ < β .
This contradicts the monotonicity of λ0(β). Hence the statement of the lemma concerning the
case λ > 0 holds.

For d � 3, the kernel of −A(0) is equal to vPd and has the same properties as the kernel
of −A(λ), λ > 0. Thus −A(0) has the principal eigenvalue. Since A(λ) → A(0) as λ ↓ 0, the
principal eigenvalue 1/β(λ) converges to the principal eigenvalue μ < ∞ of −A(0). On the
other hand, β(λ) is a continuous function, and therefore μ = 1/βcr, which proves the statement
concerning the case λ = 0. �

The relationship between ground states and eigenfunctions of Hβ is explained by the follow-
ing lemma.

Lemma 5.6. Let β = βcr. If d = 3 or d = 4, then Hβ has a unique ground state (up to a multi-
plicative constant), but λ = 0 is not an eigenvalue. If d � 5, then λ = 0 is a simple eigenvalue of
Hβ and the sets of ground states and eigenfunctions coincide.

Proof. The ground states belong to L2(Rd) if and only if d � 5. In order to complete the proof
of the lemma, it remains to show that any eigenfunction of Hβ with zero eigenvalue satisfies (23).
Thus, it is enough to prove that if 1

2�ψ +βv(x)ψ = 0 and ψ ∈ L2(Rd), then ψ = −R0(0)h with
h = βvψ . From 1

2�ψ + βv(x)ψ − λψ = −λψ we obtain ψ = −R0(λ)(h + λψ). Obviously
R0(λ)h → R0(0)h in L2(Rd) as λ ↓ 0 since h ∈ L2

exp(R
d). Now the lemma will be proved if we

show that

∥∥λR0(λ)ψ
∥∥2

L2(Rd )
=

∫
Rd

(
2λ|ψ̃(σ )|
σ 2 + 2λ

)2

dσ → 0 as λ ↓ 0.

The latter follows from the dominated convergence theorem. �
The following lemma summarizes some facts about the operator (I +βA(λ))−1 proved above.

It also describes the structure of the singularity of the operator (I + βA(λ))−1 for λ and β in a
neighborhood of λ = 0, β = βcr.

Lemma 5.7. Let d � 3 and β � 0. The operator (I + βA(λ))−1 (considered in L2
exp(R

d) and

Cexp(R
d)) is meromorphic in λ ∈ C

′ and has poles of the first order at eigenvalues of the op-
erator Hβ . For each ε > 0 and some Λ = Λ(β), the operator is uniformly bounded in λ ∈ C

′,
|argλ| � π − ε, |λ| � Λ.

If β = βcr, then the operator (I + βA(λ))−1 is analytic in λ ∈ C
′ and uniformly bounded in

λ ∈ C
′, |argλ| � π − ε, |λ| � ε.

If β < βcr, then the operator (I + βA(λ))−1 is analytic in λ ∈ C
′ and uniformly bounded in

λ ∈ C′, |argλ| � π − ε.
There are λ0 > 0 and δ0 > 0 such that for λ ∈ C

′ ∪ {0}, |λ| � λ0, |β − βcr| � δ0, β �= β(λ),
we have the representation
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(
I + βA(λ)

)−1 = β(λ)

β(λ) − β

(
B + Sd(λ)

) + C(λ,β). (26)

Here β(λ) is defined in Remark 2 following Lemma 5.5, B is the one-dimensional operator with
the kernel

B(x, y) = v(x)ψ(x)ψ(y)∫
Rd v(x)ψ2(x) dx

, (27)

where ψ is a ground state defined in the remark following Lemma 5.4, and

S3(λ) = O
(√|λ| ), S4(λ) = O

(∣∣λ ln(λ)
∣∣), Sd(λ) = O

(|λ|), d � 5,

as λ → 0, λ ∈ C
′, (28)

Sd(0) = 0, d � 3, and C(λ,β) is bounded uniformly in λ and β .

Proof. The analytic properties of (I + βA(λ))−1 follow from Lemma 5.4. By Lemma 5.1, the
norm of A(λ) decays at infinity when λ → ∞, |argλ| � π − ε. Therefore there is Λ > 0 such
that the operator (I + βA(λ))−1 is bounded for |argλ| � π − ε, |λ| � Λ.

If β � βcr, then (I + βA(λ))−1 does not have poles in λ ∈ C
′, and therefore Λ can be taken

to be arbitrarily small.
If β < βcr, then (I + βA(0)) is invertible by Lemma 5.5. By Lemma 5.1, the operators A(λ)

tend to A(0) when λ → 0, λ ∈ C
′. Therefore (I + βA(λ))−1, λ ∈ C

′, are bounded in a neighbor-
hood of zero. It remains to justify (26).

For d � 3, let hλ be an eigenvector corresponding to the eigenvalue 1/β(λ) of the operator
−A(λ), λ ∈ [0,∞)∪ (U ∩C

′). By Lemma 5.5 and the second remark following it, this eigenvec-
tor is defined up to a multiplicative constant. Let A∗(λ) be the operator in L2

exp(R
d) or Cexp(R

d)

with the kernel A∗(λ, x, y) = A(λ,y, x)e|y|2−|x|2 . Similarly to Lemma 5.5, it is not difficult to
show that 1/β(λ) is an eigenvalue for the operator −A∗(λ) and that its real part exceeds the
absolute values of the other eigenvalues. The corresponding eigenvector h∗

λ is uniquely defined
up to a multiplicative constant. Moreover, we can take hλ and h∗

λ such that

v(x)e|x|2h∗
λ(x) = hλ(x). (29)

Note that hλ and h∗
λ can be chosen in such a way that

‖hλ − h0‖,
∥∥h∗

λ − h∗
0

∥∥ � k
∥∥A(λ) − A(0)

∥∥ (30)

for some k > 0 and all sufficiently small |λ|, where the norms on both sides of (30) are either in
the space L2

exp(R
d) or Cexp(R

d).
Recall that A(λ) → A(0) as λ → 0, λ ∈ C′, by Lemma 5.1. Using this and the fact that 1/βcr

is the principal eigenvalue for −A(0), it is easy to show that there are λ1 > 0 and δ1 > 0 such that
for λ ∈ C

′ ∪ {0}, |λ| � λ1, the eigenvalue 1/β(λ) of the operator −A(λ) is the unique eigenvalue
whose distance from 1/βcr does not exceed δ1. Take 0 < λ0 < λ1 and 0 < δ0 < δ1 such that for
λ ∈ C

′ ∪ {0}, |λ| � λ0, the distance between 1/β(λ) and 1/βcr does not exceed δ0.
Then for λ ∈ C

′ ∪ {0}, |λ| � λ0 and β such that |1/β − 1/βcr| � δ0, the operator-valued
function
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F(z) = (A(λ) + zI)−1

z − (1/β)

is meromorphic inside the circle γ = {z: |z − 1/βcr| = δ1}. It has two poles: one at z = 1/β and
the other at z = 1/β(λ). The residue at the first pole is equal to (A(λ) + I/β)−1. In order to find
the residue at the second pole, recall that it is a simple pole for (A(λ) + zI)−1, and therefore

(
A(λ) + zI

)−1 = T−1(λ)

(
z − 1

β(λ)

)−1

+ T0(λ) + T1(λ)

(
z − 1

β(λ)

)
+ · · ·

for some operators T−1, T0, T1, . . . and all z in a neighborhood of 1/β(λ). From here and the fact
that the kernels of A(λ) + I/β(λ) and A∗(λ) + I/β(λ) are one-dimensional and coincide with
span{hλ} and span{h∗

λ}, respectively, it easily follows that

T−1(λ)f =
hλ〈f,h∗

λ〉L2
exp(R

d )

〈hλ,h
∗
λ〉L2

exp(R
d )

, f ∈ L2
exp

(
R

d
) (

in particular if f ∈ Cexp
(
R

d
))

.

From (30) and Lemma 5.1 it follows that Sd(λ) := T−1(λ) − T−1(0) satisfies (28). The residue
of F(z) at z = 1/β(λ) is equal to

β(λ)β

β − β(λ)

(
T−1(0) + Sd(λ)

)
.

Integrating F(z) over the contour γ , we obtain

(
A(λ) + I/β

)−1 + β(λ)β

β − β(λ)

(
T−1(0) + Sd(λ)

) = 1

2πi

∫
γ

(A(λ) + zI)−1

z − (1/β)
dz.

The right-hand side of this formula is uniformly bounded, which completes the proof of the
lemma if we show that T−1(0) = B . Thus it remains to prove that

h0(x)e|y|2h∗
0(y)

〈h0, h
∗
0〉L2

exp(R
d )

= v(x)ψ(x)ψ(y)∫
Rd v(x)ψ2(x) dx

.

The latter follows from the relation h0 = βvψ (see Lemma 5.4) and (29). �
Formula (22) and Lemmas 5.2 and 5.7 imply the following result.

Lemma 5.8. Let d � 3 and β � 0. The operator Rβ(λ) (considered as an operator from Cexp(R
d)

to C(Rd)) is meromorphic in λ ∈ C
′ and has poles of the first order at eigenvalues of the oper-

ator Hβ . For each ε > 0 and some Λ = Λ(β), the operator is uniformly bounded in λ ∈ C
′,

|argλ| � π − ε, |λ| � Λ. It is of order O(1/|λ|) as λ → ∞, |argλ| � π − ε.
If β = βcr, then the operator Rβ(λ) is analytic in λ ∈ C

′ and uniformly bounded in λ ∈ C
′,

|argλ| � π − ε, |λ| � ε.
If β < βcr, then the operator Rβ(λ) is analytic in λ ∈ C

′ and uniformly bounded in λ ∈ C
′,

|argλ| � π − ε.
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There are λ0 > 0 and δ0 > 0 such that for λ ∈ C
′, 0 < |λ| � λ0, |β − βcr| � δ0, β �= β(λ), we

have the representation

Rβ(λ) = β(λ)

β(λ) − β

(
R0(0)B + Sd(λ)

) + C(λ,β), (31)

where β(λ) is defined in Remark 2 following Lemma 5.5 and B is given by (27), Sd , d � 3, satisfy
(28), and C(λ,β) is bounded uniformly in λ and β .

6. The behavior of the principal eigenvalue for β ↓ βcr

In Lemma 5.5 we showed that βcr > 0 for d � 3. The following theorem implies, in particular,
that βcr = 0 for d = 1 or 2.

Theorem 6.1. For d = 1,2 (when βcr = 0) the eigenvalue λ0(β) has the following behavior as
β ↓ βcr:

λ0(β) ∼ 1

2
c2

1β
2, c1 =

∫
Rd

v(x) dx, d = 1, (32)

λ0(β) ∼ exp

(
−c2

β

)
, c2 = π

c1
, d = 2. (33)

In dimensions d � 3 the eigenvalue λ0(β) has the following behavior as β ↓ βcr:

λ0(β) ∼ c3(β − βcr)
2, d = 3, (34)

λ0(β) ∼ c4(β − βcr)/ ln
(
1/(β − βcr)

)
, d = 4, (35)

λ0(β) ∼ cd(β − βcr), d � 5, (36)

where cd �= 0, d � 3, depend on v and will be indicated in the proof.

Proof. Since we are interested in the behavior of λ0(β) for β ↓ βcr and λ0(β) ↓ 0 when β ↓ βcr
by Lemma 4.1, we shall study the behavior of β(λ) as λ ↓ 0 (or, more generally, as λ → 0,
λ ∈ C

′). The arguments below are based on Lemma 5.1.
First consider the case d = 1. For λ → 0, λ ∈ C

′, the eigenvalue problem for −A(λ) can be
written in the form

(
vP1 + O(

√
λ)

)
hλ =

√
λ

β(λ)
hλ. (37)

Note that the kernel of vP1 is positive when x is an interior point of supp(v). Therefore vP1
has a principal eigenvalue. In fact, the operator vP1 is one-dimensional and the eigenvalue is
equal to c1/

√
2 where c1 = ∫

Rd v(x) dx. Since this eigenvalue is simple and the operator in the
left-hand side of (37) is analytic in

√
λ, both hλ and

√
λ/β(λ) are analytic functions of

√
λ in a

neighborhood of the origin and
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lim
λ→0,λ∈C′

(√
λ/β(λ)

) = c1/
√

2.

Therefore, βcr = 0, β(λ) is analytic in
√

λ, and β(λ) ∼ √
2λ/c1 as λ → 0, λ ∈ C′, which

proves (32).
The same arguments in the case d = 2 lead to the relation

lim
λ→0,λ∈C′

( −1

β(λ) lnλ

)
= c1/π.

This implies that βcr = 0 and (33) holds.
In the case d = 3 the eigenvalue problem for −A(λ) takes the form

(−A(0) + √
λv(x)Q3 + O(λ)

)
hλ = 1

β(λ)
hλ. (38)

As in the one-dimensional case, 1/β(λ) and hλ are analytic functions of
√

λ. Now 1/βcr is equal
to the principal eigenvalue of −A(0). Recall that h0 is the principal eigenfunction of −A(0) and
h∗

0 is the principal eigenfunction of −A∗(0). Standard perturbation arguments imply that

1

β(λ)
= 1

βcr
− γ

√
λ + O(λ), λ → 0, λ ∈ C

′, (39)

where

γ =
−〈vQ3h0, h

∗
0〉L2

exp(R
d )

〈h0, h
∗
0〉L2

exp(R
d )

> 0, (40)

which implies (34) with c3 = 1/(γ 2β4
cr). Note that γ > 0 since the kernel of the operator vQ3 is

negative and principal eigenfunctions h0, h∗
0 can be chosen to be positive inside supp(v).

Formula for γ can be simplified. We choose h0 = βvψ (see Lemma 5.4) and h∗
0 defined

in (29). Then

γ = (
∫

R3 v(x)ψ(x)dx)2

√
2π

∫
R3 v(x)ψ2(x) dx

, d = 3. (41)

Let d = 4. Then instead of (38) we get

(−A(0) + λ ln(1/λ)vQ4 + O(λ)
)
hλ = 1

β(λ)
hλ. (42)

From here it follows that

1

β(λ)
= 1

βcr
− γ λ ln(1/λ) + O(λ), λ → 0, λ ∈ C

′, (43)

where 1/βcr is the principal eigenvalue of −A(0) and γ is given by (40) with Q3 replaced
by Q4. Thus (35) holds with c4 = 1/(γβ2 ).
cr
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For d � 5 we get

(−A(0) + λvQd + O
(
λ3/2))hλ = 1

β(λ)
hλ.

From here it follows that

1

β(λ)
= 1

βcr
− γ λ + O

(
λ3/2), λ → 0, λ ∈ C

′,

where 1/βcr is the principal eigenvalue of −A(0) and γ is given by (40) with Q3 replaced
by Qd . Thus (36) holds with cd = 1/(γβ2

cr). �
7. Asymptotics of the partition function, solutions, and fundamental solutions

We shall need the following notation. Recall from (5) that by pβ(t, y, x) we denote the fun-
damental solution of the parabolic problem

∂pβ(t, y, x)

∂t
= 1

2
�xpβ(t, y, x) + βv(x)pβ(t, y, x),

pβ(0, y, x) = δ(x − y).

For a given f ∈ L2(Rd), let

uβ(t, x) =
∫
Rd

pβ(t, y, x)f (y) dy

be the solution of the Cauchy problem with the initial data f . The partition function is defined
as the integral of the fundamental solution

Zβ,t (x) =
∫
Rd

pβ(t, x, y) dy =
∫
Rd

pβ(t, y, x) dy.

Note that the partition function defined in (4) is simply Zβ,T = Zβ,T (0). Also note that Zβ,t (x)

is the solution of the Cauchy problem with initial data equal to one:

∂Zβ,t (x)

∂t
= 1

2
�Zβ,t (x) + βv(x)Zβ,t (x), Zβ,0(x) ≡ 1.

For β > βcr, let ψβ be the positive eigenfunction for the operator Hβ with eigenvalue λ0(β)

normalized by the condition ‖ψβ‖L2(R) = 1. This function is defined uniquely by Lemma 5.4
and is equal to −R0(λ)hλ, where λ = λ0(β) and hλ is the principal eigenfunction for the opera-
tor −A(λ). Note that ψβ decays exponentially at infinity.

For a ∈ R, let Γ (a) be the following contour in the complex plane:

Γ (a) = {a − s + is, s � 0} ∪ {a − s − is, s � 0}.
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We choose the direction along Γ (a) in such a way that the imaginary coordinate increases.
The following lemma is an important tool for investigating the asymptotics of Zβ,T .

Lemma 7.1. Let a > λ0(β). Then for f ∈ L2(Rd) (or f ∈ Cexp(R
d)) and t > 0,

uβ(t, x) = −1

2πi

∫
Γ (a)

eλt
(
Rβ(λ)f

)
(x) dλ, (44)

which holds in L2(Rd) (or C(Rd)). This formula remains valid if the initial function f is iden-
tically equal to one and Rβ(λ)f is understood by substituting f ≡ 1 into (20) with R0(λ)1 =
−1/λ. More precisely,

Zβ,t (x) − 1 = −1

2πi

∫
Γ (a)

eλt

λ

(
Rβ(λ)(βv)

)
(x) dλ (45)

in L2(Rd) and C(Rd).

Proof. First, let f ∈ L2(Rd). We solve the Cauchy problem for uβ using the Laplace transform
with respect to t . This leads to (44) with Γ (a) replaced by the line {λ: Reλ = a}. The integral
over this line is equal to the integral over Γ (a) since the resolvent is analytic between these
contours and its norm decays as |λ|−1 when |λ| → ∞.

Now let f ≡ 1. Then w(t, x) = Zβ,t (x) − 1 is the solution of the problem

∂w(t, x)

∂t
= 1

2
�w(t, x) + βv(x)w(t, x) + βv(x), w(0, x) ≡ 0.

By the Duhamel formula and (44),

w(t, x) = −1

2πi

t∫
0

∫
Γ (a)

eλ(t−s)
(
Rβ(λ)βv

)
(x) dλds = −1

2πi

∫
Γ (a)

eλt − 1

λ

(
Rβ(λ)βv

)
(x) dλ

= −1

2πi

∫
Γ (a)

eλt

λ

(
Rβ(λ)βv

)
(x) dλ,

since in the domain Γ +(a) to the right of the contour Γ (a), the operator Rβ(λ) : L2(Rd) →
L2(Rd) is analytic and decays as |λ|−1 at infinity. This justifies (45) in L2(Rd) sense. It remains
to show that the right-hand side of (44) is continuous for f ∈ Cexp(R

d) and the right-hand side
of (45) is continuous. Since βv ∈ C∞

0 , the integrands are continuous in (t, x) for each λ ∈ Γ (a).
It remains to note that the integrals converge uniformly when x ∈ R

n, t � t0 > 0. This is due to
the fact that ‖Rβ(λ)f ‖C(Rd ),‖Rβ(λ)βv‖C(Rd ) � Cd(a), as follows from Lemma 5.8. �

In order to state the next theorem we shall need the following notation. As in part (3) of
Lemma 5.4, it is not difficult to show that for d � 3, 0 � β < βcr and f ∈ C∞

0 (Rd) there is a
unique solution of the problem
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Hβ(ϕ) = 1

2
�ϕ + βv(x)ϕ = f,

ϕ = O
(|x|2−d

)
,

∂ϕ

∂r
(x) = O

(|x|1−d
)

as r = |x| → ∞. (46)

This solution is given by ϕ = R0(0)(I + βA(0))−1f . For f = −βv, we denote this solution
by ϕβ .

Theorem 7.2.

(1) For β > βcr there is ε > 0 such that we have the following asymptotics for the partition
function:

Zβ,t (x) − 1 = exp
(
λ0(β)t

)(‖ψβ‖L1(Rd )ψβ(x) + O
(
exp(−εt)

))
as t → ∞,

which holds in L2(Rd) and in C(Rd), where ψβ is the positive eigenfunction for the operator
Hβ with eigenvalue λ0(β) normalized by the condition ‖ψβ‖L2(R) = 1.

(2) For β = βcr we have the following asymptotics for the partition function:

Zβ,t (x) = k3t
1/2ψ(x) + O(1) as t → ∞, d = 3,

Zβ,t (x) = k4
t

ln t
ψ(x) + O

(
t

ln2 t

)
as t → ∞, d = 4,

Zβ,t (x) = kd tψ(x) + O(
√

t ) as t → ∞, d � 5,

which holds in C(Rd). Here kd , d � 3, are positive constants and ψ is the positive ground
state for Hβcr normalized by the condition ‖βcrvψ‖L2

exp(R
d ) = 1.

(3) If 0 � β < βcr, then

lim
t→∞Zβ,t (x) = 1 + ϕβ(x)

in C(Rd).

Proof. (1) Note that the resolvent Rβ(λ) has only one pole between the contours Γ (a) and
Γ (λ0(β) − ε) if ε is less than the distance from λ0 to the rest of the spectrum. This pole is at
the point λ0(β) and the residue is the integral operator with the kernel −ψβ(x)ψβ(y). Therefore
from (45) it follows that

Zβ,t (x) − 1 = eλ0(β)t

λ0(β)
ψβ(x)

∫
Rd

βv(y)ψβ(y) dy − 1

2πi

∫
Γ (λ0(β)−ε)

eλt

λ

(
Rβ(λ)βv

)
(x) dλ. (47)

Since ( 1
2� + βv − λ0(β))ψβ = 0, we have βvψβ = (λ0(β) − 1

2�)ψβ , and the integral in the
first term of the right-hand side of (47) is equal to λ0(β)‖ψβ‖L1(Rd ). Thus the first term on the
right-hand side coincides with the main term of the asymptotics stated in the theorem.
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It remains to show that the second term on the right-hand side of (47) is exponentially smaller
than the first term. This is due to the fact that the norm of the operator Rβ(λ) is of order 1/|λ| at
infinity for λ ∈ Γ (λ0(β) − ε).

(2) Let d = 3. First, let us analyze (31) when β = βcr and λ → 0, λ ∈ C
′. By (39), the factor

β(λ)/(β(λ) − β) in the right-hand side of (31) is equal to (βcrγ
√

λ )−1 +O(1) as λ → 0, λ ∈ C
′,

where γ > 0 is given by (40).
We choose the same ground state ψ specified in the statement of Theorem 7.2. Then from

(27) and Lemma 5.4 it follows that

R0(0)B(βcrv) =
∫
Rd v(x)ψ(x)dx∫
Rd v(x)ψ2(x) dx

R0(0)(βcrvψ) = −
∫
Rd v(x)ψ(x)dx∫
Rd v(x)ψ2(x) dx

ψ. (48)

Now, by Lemma 5.8 and (34), (39),

Rβcr(λ)(βcrv) = − ∫
Rd v(x)ψ(x)dx

γβcr
√

λ
∫
Rd v(x)ψ2(x) dx

ψ + D(λ) = −k′
3ψ√
λ

+ D(λ), k′
3 > 0, (49)

where the remainder D(λ) is of order O(1) when λ → 0, λ ∈ C
′. Note that D(λ) is bounded on

Γ +(0) since the left-hand side and the first term on the right-hand side of (49) are bounded on
Γ +(0) outside a neighborhood of zero.

Next, we apply (45) with a replaced by 1/t and use the expression (49) to obtain

Zβ,t (x) − 1 = 1

2πi

∫
Γ (1/t)

eλt

λ

(
k′

3ψ√
λ

+ D(λ)

)
dλ. (50)

Let us change the variables in the integral λt = z. Thus

Zβ,t (x) − 1 = 1

2πi

∫
Γ (1)

ez

z

(√
tk′

3ψ√
z

+ D

(
z

t

))
dz.

The contribution to the integral from the term containing D(z/t) is bounded, while the contribu-
tion from the first term is equal to k3t

1/2ψ(x), as claimed in the lemma. One needs only to note
that k3 > 0 since

1

2πi

∫
Γ (1)

z−3/2ez dz = 1

πi

∫
Γ (1)

z−1/2ez dz = 2

π

∞∫
0

σ−1/2e−σ dσ = 2√
π

> 0.

If d = 4, then (35), (43) imply that β(λ) − βcr ∼ β2
crγ λ ln(1/λ) as λ → 0, λ ∈ C′. This leads to

the following analog of (50)

Zβ,t (x) − 1 = 1

2πi

∫
eλt

λ

(
k′

4ψ(x)

λ ln(1/λ)
+ D(λ)

)
dλ, k′

4 > 0,
Γ (1/t)
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where D(λ) is of order O(1/|λ ln2 λ|) when λ → 0, λ ∈ C
′, and is bounded at infinity. After the

change of variables λt = z, we obtain

Zβ,t (x) − 1 = 1

2πi

∫
Γ (1)

ez

z

(
tk′

4ψ(x)

z(ln t − ln z)
+ D

(
z

t

))
dz,

which easily leads to the second part of the lemma in the case d = 4. The treatment of the case
d � 5 is similar.

(3) We apply (45) with a replaced by 1/t to obtain

Zβ,t (x) − 1 = −1

2πi

∫
Γ (1/t)

eλt

λ

(
Rβ(λ)(βv)

)
(x) dλ = −1

2πi

∫
Γ (1)

ez

z

(
Rβ

(
z

t

)
(βv)

)
(x) dz. (51)

Note that by Lemma 5.2 and since 1/β is not an eigenvalue of A(0) we have

lim
λ→0, λ∈C′ Rβ(λ)(βv) = lim

λ→0, λ∈C′ R0(λ)
(
I + βA(λ)

)−1
(βv)

= R0(0)
(
I + βA(0)

)−1
(βv) = −ϕβ.

Since the difference between Rβ(z/t)(βv) and −ϕβ is bounded on Γ (1), one can pass to the
limit t → ∞ under the integral sign in (51), which leads to

lim
t→∞Zβ,t (x) = 1 + ϕβ(x)

2πi

∫
Γ (1)

ez

z
dz = 1 + ϕβ(x). �

The third part of Theorem 7.2 establishes the existence of limt→∞ Zβ,t (x) for β < βcr. Next
we examine the behavior of this quantity as β ↑ βcr.

Lemma 7.3. There are positive constant bd , d � 3, such that

lim
t→∞Zβ,t (x) − 1 = bd

βcr − β
ψ(x) + O(1) as β ↑ βcr

is valid in C(Rd), where ψ is the positive ground state for Hβcr normalized by the condition
‖βcrvψ‖L2

exp(R
d ) = 1.

Proof. By the third part of Theorem 7.2, we only need to find the asymptotics as β ↑ βcr of
ϕβ = −R0(0)(I + βA(0))−1(βv). From (26) with λ = 0 and β(0) = βcr and (48) it follows that

ϕβ = −R0(0)
(
I + βA(0)

)−1
(βv) = −βcr

βcr − β
R0(0)B(βcrv) + O(1) = bd

βcr − β
ψ + O(1)

for some positive constant bd . �
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8. Behavior of the polymer for β > βcr

In this section we shall assume that β > βcr is fixed. A result similar to the first part of
Theorem 7.2 is valid for the solution of the Cauchy problem and for the fundamental solution.

Theorem 8.1. Let f ∈ L2(Rd) (or f ∈ Cexp(R
d)). For β > βcr there is ε > 0 such that we have

the following asymptotics for the solution uβ of the Cauchy problem with the initial data f :

uβ(t) = exp
(
λ0(β)t

)(〈ψβ,f 〉L2(Rd )ψβ + qf (t)
)
, (52)

which holds in L2(Rd) (or in C(Rd)), where ‖qf (t)‖ � c‖f ‖ exp(−εt) for some c and all suffi-
ciently large t .

We have the following asymptotics for the fundamental solution of the parabolic equation:

pβ(t, y, x) = exp
(
λ0(β)t

)(
ψβ(y)ψβ(x) + q(t, y, x)

)
, (53)

where limt→∞‖q(t, y, x)‖ = 0, uniformly in y, and (53) holds in L2(Rd) and in C(Rd) for each
y fixed.

Proof. The proof of (52) is the same as the proof of the first part of Theorem 7.2, and therefore
we omit it.

Let f
δ,y
β (x) = pβ(δ, y, x) be the fundamental solution of the parabolic problem at time δ.

Note that f
δ,y
β ∈ L2(Rd) for all δ > 0 and all y, and f

δ,y
β ∈ Cexp(R

d) for all sufficiently small

δ > 0 and all y. Denote the solution of the parabolic equation with the initial data f
δ,y
β by

u
δ,y
β (t, x). Then

pβ(t, y, x) = u
δ,y
β (t − δ, x) = exp

(
λ0(β)(t − δ)

)(〈
ψβ,f

δ,y
β

〉
L2(Rd )

ψβ(x) + qδ(t, y, x)
)
,

where ‖qδ(t, y, x)‖ � c‖f δ,y
β ‖ exp(−ε(t − δ)) for some c and all sufficiently large t .

Note that 〈ψβ,f
δ,y
β 〉L2(Rd ) can be made arbitrarily close to ψβ(y) uniformly in y, by choos-

ing a sufficiently small δ, and ‖f δ,y
β ‖ is uniformly bounded in y for any fixed δ. This justi-

fies (53). �
Next, let us study the distribution of the end of the polymer with respect to the measure Pβ,T

as T → ∞.

Theorem 8.2. The distribution of x(T ) with respect to the measure Pβ,T converges, weakly, as
T → ∞, to the distribution with the density ψβ/‖ψβ‖L1(Rd ).

Proof. The density of x(T ) with respect to the Lebesgue measure is equal to

pβ(T ,0, x)

Z (0)
= exp(λ0(β)T )(ψβ(0)ψβ(x) + q(T ,0, x))

exp(λ (β)T )(‖ψ ‖ 1 d ψ (0) + o(1))
, (54)
β,T 0 β L (R ) β
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where q is the same as in (53). When T → ∞, the right-hand side of (54) converges to
ψβ(x)/‖ψβ‖L1(Rd ) uniformly in x by Theorem 8.1. This justifies the weak convergence. �

Now let us examine the behavior of the polymer in a region separated both from zero and T .
Let S(T ) be such that

lim
T →∞S(T ) = lim

T →∞
(
T − S(T )

) = +∞. (55)

Let s > 0 be fixed. Consider the process yT (t) = x(S(T ) + t), 0 � t � s.

Theorem 8.3. The distribution of the process yT (t) with respect to either of the measures Pβ,T

or Pβ,T (·|x(T ) = 0) converges as T → ∞, weakly in the space C([0, s],R
d), to the distribution

of a stationary Markov process with invariant density ψ2
β and the generator

Lβg = 1

2
�g + (∇ψβ,∇g)

ψβ

.

Remark. Let

rβ(t, y, x) = pβ(t, y, x)ψβ(x)

ψβ(y)
exp

(−λ0(β)t
)
. (56)

Note that rβ(t, y, x) is the fundamental solution for the operator ∂/∂t −L∗
β , where L∗

β is the for-
mal adjoint to Lβ . Thus rβ is the transition density for the Markov process with the generator Lβ .
Also note that L∗

βψ2
β = 0, and thus ψ2

β is the invariant density for the Markov process.

Proof of Theorem 8.3. We shall only consider the measure Pβ,T since the arguments for the
measure Pβ,T (·|x(T ) = 0) are completely analogous. First, let us prove the convergence of the
finite-dimensional distributions. For y ∈ R

d and a Borel set A ∈ B(Rd), let

R(t, y,A) =
∫
A

rβ(t, y, x) dx,

with rβ given by (56). Note that R is a Markov transition function since∫
Rd

rβ(t, y, x) dx ≡ 1.

The generator of the corresponding Markov process is Lβ and the invariant density is ψ2
β . Let

0 � t1 < · · · < tn � s. The density of the random vector (yT (t1), . . . , y
T (tn)) with respect to the

Lebesgue measure on R
dn is equal to

ρT (x1, . . . , xn) = pβ

(
S(T ) + t1,0, x1

)
pβ(t2 − t1, x1, x2) · · ·pβ(tn − tn−1, xn−1, xn)

× Zβ,T −tn (xn)
(
Zβ,T (0)

)−1
.
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We replace here all factors pβ , except the first one, by rβ using (56). We replace the first factor
and the factors Z by their asymptotic expansions given in Theorems 8.1 and 7.2, respectively.
This leads to

ρT (x1, . . . , xn) = ψ2
β(x1)rβ(t2 − t1, x1, x2) · · · rβ(tn − tn−1, xn−1, xn) + o(1), T → ∞,

where the remainder tends to zero uniformly in (x1, . . . , xn). By the remark made after the state-
ment of the theorem, this justifies the convergence of the finite-dimensional distributions of yT to
those of the Markov process. It remains to justify the tightness of the family of measures induced
by the processes yT .

From the convergence of the one-dimensional distributions it follows that for any η > 0 there
is a > 0 such that

Pβ,T

(∣∣yT (0)
∣∣ > a

)
� η (57)

for all sufficiently large T . For a continuous function x : [0, T ] → Rd , x(0) = 0, let

mT (x, δ) = sup
|t1−t2|�δ, S(T )�t1,t2�S(T )+s

∣∣x(t1) − x(t2)
∣∣.

Let us prove that for each ε, η > 0, there is δ > 0 such that

Pβ,T

(
mT (x, δ) > ε

)
� η (58)

for all sufficiently large T . Observe that

Pβ,T

(
mT (x, δ) > ε

)
= (

Zβ,T (0)
)−1E0,T

(
exp

( S(T )+s∫
0

βv
(
x(t)

)
dt

)
χ{mT (x,δ)>ε}Zβ,T −S(T )−s

(
x
(
S(T ) + s

)))

�
(
Zβ,T (0)

)−1 sup
x∈Rd

Zβ,T −S(T )−s(x)E0,T

(
exp

( S(T )+s∫
0

βv
(
x(t)

)
dt

)
χ{mT (x,δ)>ε}

)

� exp
(
sβ sup

x∈Rd

v(x)
)(

Zβ,T (0)
)−1 sup

x∈Rd

Zβ,T −S(T )−s(x)E0,T

×
(

exp

( S(T )∫
0

βv
(
x(t)

)
dt

)
χ{mT (x,δ)>ε}

)

� exp
(
sβ sup

x∈Rd

v(x)
)(

Zβ,T (0)
)−1 sup

x∈Rd

Zβ,T −S(T )−s(x) sup
x∈Rd

pβ

(
S(T ),0, x

)
C(δ, ε),

where C(δ, ε) is the probability that for a d-dimensional Brownian motion Wt , 0 � t � s, we
have
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sup
|t1−t2|�δ, 0�t1,t2�s

∣∣W(t1) − W(t2)
∣∣ > ε.

Note that

exp
(
sβ sup

x∈Rd

v(x)
)(

Zβ,T (0)
)−1 sup

x∈Rd

Zβ,T −S(T )−s(x) sup
x∈Rd

pβ

(
S(T ),0, x

)
is bounded, as follows from Theorems 7.2 and 8.1, while C(δ, ε) can be made arbitrarily small
by selecting a sufficiently small δ. This justifies (58). Since the inequalities (57) and (58) hold
for all sufficiently large T , by choosing different a and δ, we can make sure that they hold for
all T . Thus the family of measures induced by the processes yT is tight. �
Remark. If instead of (55) we assume that S(T ) = 0, the result of Theorem 8.3 will hold with
the only difference that the initial distribution for the limiting Markov process will now be con-
centrated at zero, instead of being the invariant distribution.

9. Behavior of the polymer for β < βcr

First, we shall study the asymptotic behavior of the solution uβ(t, x) of the Cauchy problem
and of the fundamental solution pβ(t, y, x) when t → ∞, |y| � ε−1, ε

√
t � |x| � ε−1√t , and

ε > 0 is small but fixed. Recall that ϕβ was defined before Theorem 7.2.

Lemma 9.1. Let d � 3, 0 � β < βcr, ε > 0 and f ∈ Cexp(R
d), f � 0. We have the following

asymptotics for the solution uβ of the Cauchy problem with the initial data f :

uβ(t, x) = (2πt)−d/2 exp
(−|x|2/2t

)(〈1 + ϕβ,f 〉L2(R3) + qf (t, x)
)
, (59)

where for some constant Cβ(ε) we have

sup
ε
√

t�|x|�ε−1
√

t

∣∣qf (t, x)
∣∣ � Cβ(ε)t−1/2‖f ‖Cexp(R3), t � 1.

We have the following asymptotics for the fundamental solution of the parabolic equation:

pβ(t, y, x) = (2πt)−d/2 exp
(−|x|2/2t

)(
1 + ϕβ(y) + q(t, y, x)

)
, (60)

where

lim
t→∞ sup

|y|�ε−1, ε
√

t�|x|�ε−1
√

t

∣∣q(t, y, x)
∣∣ = 0.

Proof. Note that (60) follows from (59) since the fundamental solution at time t is equal to the
solution with the initial data pβ(t, y, δ) evaluated at time t − δ (the same argument was used in
the proof of Theorem 8.1). Therefore it is sufficient to prove (59).

For the sake of transparency of exposition, we shall consider only the case d = 3. From
Lemma 5.8 it follows that we can put a = 0 in (44) when β < βcr. Thus using (22) and the
explicit formula for R0(λ), we obtain
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uβ(t, x) = −1

2πi

∫
Γ (0)

eλt
(
Rβ(λ)f

)
(x) dλ = 1

2πi

∫
Γ (0)

∫
R3

eλt e
−√

2λ|x−y|

2π |x − y| g(λ, y) dy dλ, (61)

where

g(λ) = (
I + βA(λ)

)−1
f. (62)

By Lemma 5.1, A(λ) is an entire function of
√

λ. By the analytic Fredholm theorem,
(I + βA(λ))−1 is a meromorphic function of

√
λ, since A(λ) tends to zero as λ → +∞,

Im(λ) = 0. It does not have a pole at zero as follows from Lemma 5.4 and Remark 1 follow-
ing Lemma 5.5. Therefore, by the Taylor formula, for all sufficiently small |λ|, λ ∈ Γ (0), and
some c > 0, we have

g(λ) = g0 + g1(λ),
∥∥g1(λ)

∥∥
Cexp(R3)

� c
√|λ|‖f ‖Cexp(R3), (63)

where g0 = (I + βA(0))−1f . Since ‖(I + βA(λ))−1‖Cexp(R3) is bounded on Γ (0), formula (63)
is valid for all λ ∈ Γ (0), but not only in a neighborhood of zero.

Let u
(1)
β (x) be given by (61) with g replaced by g1. Then

u
(1)
β (t, x) = 1

2πi

∫
Γ (0)

∫
|y|�ε

√
t/2

eλt e
−√

2λ|x−y|

2π |x − y| g1(λ, y) dy dλ

+ 1

2πi

∫
Γ (0)

∫
|y|>ε

√
t/2

eλt e
−√

2λ|x−y|

2π |x − y| g1(λ, y) dy dλ

= I1 + I2.

We change the variable λt = ζ and use the estimate 1/|x − y| < 2/(ε
√

t ) in I1. This implies

|I1| �
c‖f ‖Cexp(R3)

2π2εt2

∫
Γ (0)

∫
|y|�ε

√
t/2

∣∣√|ζ |eζ−√
2ζ

|x−y|√
t e−y2 ∣∣dy dζ

�
C(ε)‖f ‖Cexp(R3)

t2
, ε

√
t � |x| � ε−1√t .

In I2 we change the variables λt = ζ, x = √
tz, y = √

tu and use the estimate e−y2 � e−(εt/2)2
.

This leads to the exponential decay of |I2| as t → ∞. Hence

uβ(t, x) = 1

2πi

∫
R3

∫
Γ (0)

eλt e
−√

2λ|x−y|

2π |x − y| g0(y) dλdy + r1(t, x), (64)

where the remainder r1(t, x) satisfies
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sup
ε
√

t�|x|�ε−1
√

t

∣∣r1(t, x)
∣∣ = ‖f ‖Cexp(R3)O

(
t−2) as t → ∞. (65)

The integral over Γ (0) in (64) can be evaluated, and we obtain

uβ(t, x) = 1

(2πt)3/2

∫
R3

e− |x−y|2
2t g0(y) dy + r1(t, x).

Since ‖g0‖Cexp(R3) � C‖f ‖Cexp(R3) for some constant C, we have

uβ(t, x) = 1

(2πt)3/2
e− |x|2

2t

∫
R3

g0(y) dy + r2(t, x),

where r2 satisfies (65) with r1 replaced by r2. In order to prove (59), it remains to show that∫
R3

g0(x) dx =
∫
R3

(
1 + ϕβ(x)

)
f (x)dx. (66)

Since (I + βvR0(0))g0 = f, we have g0 = f − βvR0(0)g0. Recall that ϕβ is the solution of
(46) with f = −βv. Thus∫

R3

g0(x) dx =
∫
R3

f (x)dx +
∫
R3

[
1

2
�ϕβ + βvϕβ

]
R0(0)g0 dx.

Since ϕβ,R0(0)g0 = O(1/|x|) and their derivatives are of order O(|x|−2) as |x| → ∞, the Green
formula implies ∫

R3

1

2
�ϕβR0(0)g0 dx =

∫
R3

ϕβ

1

2
�R0(0)g0 dx =

∫
R3

ϕβg0 dx.

Hence ∫
R3

g0(x) dx =
∫
R3

f (x)dx +
∫
R3

ϕβ

(
I + βvR0(0)

)
g0 dx,

which implies (66.) �
Next, let us study the distribution of the polymer with respect to the measure Pβ,T as T → ∞.

Consider the process yT (t) = x(tT )/
√

T , 0 � t � 1.

Theorem 9.2. Let d � 3 and 0 � β < βcr. With respect to Pβ,T , the distribution of the process
yT (t) converges as T → ∞, weakly in the space C([0,1],R

d), to the distribution of the d-
dimensional Brownian motion. With respect to Pβ,T (·|x(T ) = 0), the distribution of the process
yT (t) converges as T → ∞, weakly in the space C([0,1],R

d), to the distribution of the d-
dimensional Brownian bridge.
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Proof. We shall only prove the first statement since the proof of the second one is com-
pletely similar. First, let us prove the convergence of the finite-dimensional distributions.
Clearly Pβ,T (yT (0) = 0) = 1. Let 0 < t1 < · · · < tn � 1. The density of the random vector
(yT (t1), . . . , y

T (tn)) with respect to the Lebesgue measure on R
dn is equal to

ρT (x1, . . . , xn)

= T
dn
2 pβ

(
t1T ,0, x1T

1
2
)
pβ

(
(t2 − t1)T , x1T

1
2 , x2T

1
2
)
. . .

× pβ

(
(tn − tn−1)T , xn−1T

1
2 , xnT

1
2
)(

Zβ,T (0)
)−1

.

By Lemma 9.1,

pβ

(
t1T ,0, x1T

1
2
) = T −d/2(2πt1)

−d/2(1 + ϕβ(0)
)

exp
(−|x1|2/2t1

)(
1 + r(T , x1)

)
,

where

lim
T →∞ sup

ε�|x1|�ε−1

(∣∣r(T , x1)
∣∣) = 0. (67)

Note that pβ � p0 since v is non-negative, and limT →∞(Zβ,T (0)) = (1 + ϕβ(0)) by Theo-
rem 7.2. Therefore,

ρT (x1, . . . , xn)

� (2πt1)
− d

2 e
− |x1|2

2t1
(
1 + r(T , x1)

)(
2π(t2 − t1)

)− d
2 e

− |x2−x1|2
2(t2−t1) . . .

× (
2π(tn − tn−1)

)− d
2 e

− |xn−xn−1|2
2(tn−tn−1)

= ρW
t1,...,tn

(x1, . . . , xn)
(
1 + r(T , x1)

)
, (68)

where ρW
t1,...,tn

(x1, . . . , xn) is the density of the Gaussian vector (W(t1), . . . ,W(tn)), where W is
a d-dimensional Brownian motion, and q(T , x1) satisfies (67) with q instead of r . Since ε was
an arbitrary positive number, this implies the convergence of the finite-dimensional distributions
of yT to the finite-dimensional distributions of the Brownian motion. Indeed, the estimate from
below for ρT (x1, . . . , xn) in (68) is sufficient since we know a priori that ρW

t1,...,tn
(x1, . . . , xn) is

the density of a probability measure.
It remains to prove tightness of the family of processes yT , T � 1. For a continuous function

x : [0, T ] → R
d , let

m(x, δ) = sup
|t1−t2|�δT , 0�t1,t2�T

∣∣x(t1) − x(t2)
∣∣/√T ,

m̃(x, δ, ε) = sup
|t1−t2|�δT , 0�t1,t2�T , |x(t1)|�ε

√
T

∣∣x(t1) − x(t2)
∣∣/√T .

The tightness will follow if we show that for each ε, η > 0 there is δ > 0 such that

Pβ,T

(
m(x, δ) > ε

)
� η
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for all sufficiently large T . Note that m(x, δ) > ε implies that m̃(x, δ, ε/4) > ε/4. Therefore, it
is sufficient to show that

Pβ,T

(
m̃(x, δ, ε/4) > ε/4

)
� η. (69)

Fix ε > 0. For a continuous function x : [0, T ] → R
d , let

τ = min
(
T , inf

{
t � 0:

∣∣x(t)
∣∣ = ε

√
T /4

})
.

Let Eδ be the event that m(x, δ) > ε/4 and Ẽδ the event that m̃(x, δ, ε/4) > ε/4. For 0 � s � T ,
let E s

δ be the event that a continuous function x : [0, T − s] → R
d satisfies

sup
|t1−t2|�δT , 0�t1,t2�T −s

∣∣x(t1) − x(t2)
∣∣/√

T > ε/4.

Then

Pβ,T (Ẽδ) = (
Zβ,T (0)

)−1E0,T

(
exp

( T∫
0

βv
(
x(t)

)
dt

)
χẼδ

)

�
(
Zβ,T (0)

)−1E0,T

(
exp

( τ∫
0

βv
(
x(t)

)
dt

)
Ex(τ)

0,T −τ

(
χE τ

δ
exp

( T −τ∫
0

βv
(
x(t)

)
dt

)))
,

where Ex
0,T denotes the expectation with respect to the measure induced by the Brownian motion

starting at the point x. Since

E0,T exp

( τ∫
0

βv
(
x(t)

)
dt

)
� Zβ,T (0)

and

Ex(τ)
0,T −τ

(
χE τ

δ
exp

( T −τ∫
0

βv
(
x(t)

)
dt

))
� sup

x∈Rd , |x|=ε
√

T /4

Ex
0,T

(
χEδ

exp

( T∫
0

βv
(
x(t)

)
dt

))
,

it is sufficient to estimate

sup
x∈Rd , |x|=ε

√
T /4

Ex
0,T

(
χEδ

exp

( T∫
0

βv
(
x(t)

)
dt

))
. (70)

Let E ′ be the event that a trajectory starting at x reaches the support of v before time T . Note
that
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lim
T →∞ sup

x∈Rd , |x|=ε
√

T /4

Px
0,T (E ′) = 0

since d � 3. The expression in (70) is estimated form above by

sup
x∈Rd , |x|=ε

√
T /4

(
Ex

0,T

(
χE ′ exp

( T∫
0

βv
(
x(t)

)
dt

))
+ Px

0,T (Eδ)

)
.

The second term does not depend on T due to the scaling invariance of the Brownian motion,
and can be made arbitrarily small by selecting a sufficiently small δ. Due to the Markov property
of the Brownian motion, the first term is estimated from above by

sup
x∈Rd , |x|=εT /4

Px
0,T (E ′) · sup

x∈supp(v)

Zβ,T (x),

and thus tends to zero when T → ∞. �
10. Behavior of the polymer for β = βcr

In this section we assume that d = 3. Again, we start with the asymptotic behavior of the so-
lution uβ(t, x) of the Cauchy problem and of the fundamental solution pβ(t, y, x) when t → ∞,
|y| � ε−1, ε

√
t � |x| � ε−1√t , and ε > 0 is small but fixed.

Recall that ψ is the positive ground state for Hβcr normalized by the condition

‖βcrvψ‖L2
exp(R

3) = 1

(see the remark following Lemma 5.4 and Theorem 7.2). For f ∈ Cexp(R
3), define

α(f ) = �

∫
R3

ψ(x)f (x) dx, � = 1√
2πβcr

∫
R3 v(x)ψ(x)dx

.

We can formally apply this to f being the δ-function centered at a point y, and thus define

α
(
δy(x)

) = �ψ(y).

Theorem 10.1. Let d = 3, β = βcr, ε > 0 and f ∈ Cexp(R
3), f � 0. We have the following

asymptotics for the solution uβ of the Cauchy problem with the initial data f :

uβ(t, x) = 1

|x|√t
exp

(−|x|2/2t
)(

α(f ) + qf (t, x)
)
, (71)

where for some constant Cβ(ε) we have

sup√ −1
√

∣∣qf (t, x)
∣∣ � Cβ(ε)t−1/2‖f ‖Cexp(R3), t � 1.
ε t�|x|�ε t
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We have the following asymptotics for the fundamental solution of the parabolic equation:

pβ(t, y, x) = �

|x|√t
exp

(−|x|2/2t
)(

ψ(y) + q(t, y, x)
)
, (72)

where

lim
t→∞ sup

|y|�ε−1, ε
√

t�|x|�ε−1
√

t

∣∣q(t, y, x)
∣∣ = 0.

Proof. As in Lemma 9.1, formula (72) follows from (71). Lemma 5.7 implies

(
I + βcrA(λ)

)−1 = βcr

β(λ) − βcr
B + O(1), λ → 0, λ ∈ C

′,

where B is the one-dimensional operator with the kernel

B(x, y) = v(x)ψ(x)ψ(y)∫
R3 v(x)ψ2(x) dx

.

From here, (34) and (39) we get

(
I + βcrA(λ)

)−1 = 1

βcrγ
√

λ
B + O(1), λ → 0, λ ∈ C

′,

where γ is defined in (40), (41). Hence, for any f ∈ Cexp(R
3) and λ → 0, λ ∈ C

′,

h(λ, x) := (
I + βcrA(λ)

)−1
f = α̃(f )√

λ
v(x)ψ(x) + g1(λ),

α̃(f ) =
√

2π
∫

R3 ψ(x)f (x) dx

βcr(
∫

R3 v(x)ψ(x)dx)2
, (73)

where g1(λ) � c‖f ‖Cexp(R3) for some constant c. Now, similarly to (61), we have

uβ(t, x) = −1

2πi

∫
Γ (0)

eλt
(
Rβ(λ)f

)
(x) dλ = 1

2πi

∫
Γ (0)

∫
R3

eλt e
−√

2λ|x−y|

2π |x − y| h(λ, y) dy dλ.

The integral with g1(λ) instead of h can be estimated similarly to the estimate on u
(1)
β in the case

of β < βcr. This leads to following analogue of (64):

uβ(t, x) = α̃(f )

2πi

∫
R3

∫
Γ (0)

eλt e−√
2λ|x−y|

2π
√

λ|x − y|v(y)ψ(y)dλdy + r1(t, x),

where the remainder r1(t, x) satisfies
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sup
ε
√

t�|x|�ε−1
√

t

∣∣r1(t, x)
∣∣ = ‖f ‖Cexp(R3)O

(
t−3/2) as t → ∞. (74)

We evaluate the integral over Γ (0):

1

2πi

∫
Γ (0)

eλt−√
2λ|x−y|

√
2λ

dλ = 1√
2πt

e− |x−y|2
2t . (75)

This equality simply means that the inverse Laplace transform of the Green function of the one-
dimensional Helmholtz equation coincides with the fundamental solution of the corresponding
heat equation. Thus,

uβ(t, x) = α̃(f )

2π3/2
√

t

∫
R3

1

|x − y|e
− |x−y|2

2t v(y)ψ(y)dy + r1(t, x).

This implies (71) since v has a compact support. �
The next theorem concerns the fundamental solution when both y and x are at a distance of

order
√

t away from the origin. Note that now there are two terms in the asymptotic expansion
for the fundamental solution which are of the same order in t . The main terms have the order
t−3/2 when t → ∞, compared with t−1 in the case considered in Theorem 10.1 (where y was
bounded).

Theorem 10.2. Let d = 3, β = βcr, ε > 0. We have the following asymptotics for the fundamental
solution of the parabolic equation:

pβ(t, y, x) = p0(t, y, x) + 1

(2π)3/2|y||x|√t
e−(|y|+|x|)2/2t

(
1 + q(t, y, x)

)
, (76)

where

lim
t→∞ sup

ε
√

t�|y|,|x|�ε−1
√

t

∣∣q(t, y, x)
∣∣ = 0. (77)

Proof. Let pβ(t, y, x) = p0(t, y, x) + u. Then ut = Hβu + βvp0, u|t=0 = 0, and therefore by
the Duhamel formula

u(t, y, x) =
t∫

0

∫
R3

pβ(t − s, z, x)βv(z)p0(s, y, z) dz ds.

Using (72), we get

u(t, y, x) =
t∫ ∫

3

�

|x|√t − s
exp

(−|x|2/2(t − s)
)
ψ(z)βv(z)p0(s, y,0) dz ds + h1 + h2 (78)
0 R
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with

h1 =
t∫

0

∫
R3

�

|x|√t − s
exp

(−|x|2/2(t − s)
)
ψ(z)βv(z)

(
p0(s, y, z) − p0(s, y,0)

)
dzds,

h2 =
t∫

0

∫
R3

�

|x|√t − s
exp

(−|x|2/2(t − s)
)
q(t − s, z, x)βv(z)p0(s, y, z) dz ds,

where q is the same as in (72). The integral in the right-hand side of (78) (let us denote it by w)
is a convolution of two functions and can be evaluated using the Laplace transform (see (75)). It
gives the second term in the right-hand side of (76). The contribution from the other two terms
can be shown to satisfy (77). Let us prove the statement about w. In fact,

w = �1
(
w1 ∗ p0(t, y,0)

)
, �1 = �

√
2π

|x|
∫
R3

βv(z)ψ(z) dz = 1

|x| ,

w1 = 1√
2πt

exp
(−|x|2/2t

)
.

The Laplace transform ŵ1(λ) of the function w1 is equal to e−√
2λ|x|/

√
2λ (see (75)), and the

Laplace transform of p0(t, y,0) is equal to e−√
2λ|y|/2π |y|. Thus

ŵ(λ) = 1

2π |x||y|
e−√

2λ(|x|+|y|)
√

2λ
.

It remains to apply (75) one more time. �
As in Section 9, we shall study the limit, as T → ∞, of the family of processes yT (t) =

x(tT )/
√

T , 0 � t � 1. For 0 � s < t � 1, y, x ∈ R
3, define

pT
β (s, t, y, x) = pβ

(
T (t − s), y

√
T ,x

√
T

)
,

pβ(s, t,0, x) = lim
T →∞

(
TpT

β (s, t,0, x)
) = lim

T →∞
(
Tpβ

(
T (t − s),0, x

√
T

))
, x �= 0,

pβ(s, t, y, x) = lim
T →∞

(
T 3/2pT

β (s, t, y, x)
) = lim

T →∞
(
T 3/2pβ

(
T (t − s), y

√
T ,x

√
T

))
, y, x �= 0.

By Theorems 10.1 and 10.2,

pβ(s, t,0, x) = �ψ(0)

|x|√t − s
exp

(−|x|2/2(t − s)
)
, x �= 0,

pβ(s, t, y, x)

= p0(t − s, y, x) + 1
3/2

√ exp
(−(|y| + |x|)2

/2(t − s)
)
, y, x �= 0. (79)
(2π) |y||x| t − s
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For 0 < t1 < · · · < tn � 1, let the density of the random vector (yT (t1), . . . , y
T (tn)) with respect

to the Lebesgue measure on R
dn be denoted by ρT (x1, . . . , xn).

For 0 � s < t � 1 and y, x ∈ R
3, define

QT (s, t, y, x) = pT
β (s, t, y, x)

∫
R3

pT
β (t,1, x, z) dz

( ∫
R3

pT
β (s,1, y, z) dz

)−1

, t < 1,

QT (s,1, y, x) = pT
β (s,1, y, x)

( ∫
R3

pT
β (s,1, y, z) dz

)−1

.

Thus

ρT (x1, . . . , xn) = QT (0, t1,0, x1)Q
T (t1, t2, x1, x2) . . .QT (tn−1, tn, xn−1, xn).

In order to find the limit of the finite-dimensional distributions of yT , we need to identify the
limit of QT as T → ∞. For 0 � s < t � 1, y ∈ R

3 and x ∈ R
3 \ {0}, define

Q(s, t, y, x) = lim
T →∞QT (s, t, y, x). (80)

By Theorems 10.1 and 10.2,

Q(s, t, y, x) = pβ(s, t, y, x)

∫
R3

pβ(t,1, x, z) dz

( ∫
R3

pβ(s,1, y, z) dz

)−1

, t < 1, (81)

Q(s,1, y, x) = pβ(s,1, y, x)

( ∫
R3

pβ(s,1, y, z) dz

)−1

. (82)

We additionally define Q(s, t, y,0) = 0.
Using (80), (81) and (82), we can identify the limit of the densities ρT (x1, . . . , xn) for

x2, . . . , xn �= 0. In order to identify the weak limit of the finite-dimensional distributions of the
processes yT , we are going to show that the limit of the densities is the density of a probability
distribution, i.e. the mass does not escape to the origin or infinity. This is done in Lemma 10.4,
where we show that Q serves as the transition density for a Markov process. First, however, we
show that Q satisfies a Fokker–Plank type equation on R

3 \ {0}.
Let

g(t, x) = ln

( ∫
R3

pβ(t,1, x, z) dz

)
, 0 � t < 1, |x| > 0. (83)

Let L be the differential operator acting on C2(R3 \ {0}) according to the formula

(Lf )(t, x) = 1
�xf (t, x) +

(
∂g(t, x)

)
∂f

(t, x), |x| > 0,

2 ∂r ∂r
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and let L∗ be the formal adjoint of L, i.e.

L∗v = 1

2
�xv − 1

r2

∂[(∂g/∂r)v]
∂r

.

Lemma 10.3. For 0 � s < 1 and y ∈ R
3, the function Q(s, t, y, x) satisfies the equation

∂Q(s, t, y, x)

∂t
= L∗Q(s, t, y, x), |x| > 0, s < t < 1. (84)

Proof. Let us consider the case when y �= 0 (the other case is similar). Let

v1(s, t, y, x) = 1

(2π)3/2|y||x|√t − s
exp

(−(|y| + |x|)2
/2(t − s)

)
,

v2(t, x) =
∫
R3

1

(2π)3/2|x||z|√1 − t
exp

(−(|x| + |z|)2
/2(1 − t)

)
dz.

Observe that (
∂

∂t
− 1

2
�x

)
v1 = 0,

(
∂

∂t
+ 1

2
�x

)
v2 = 0. (85)

For fixed s and y, the function Q(s, t, y, x) is proportional to

u(t, x) = (
p0(t − s, y, x) + v1(s, t, y, x)

)[
1 + v2(t, x)

]
.

By (85), (
∂

∂t
− 1

2
�x

)
u = −

(
∂p0

∂r
+ ∂v1

∂r

)
∂v2

∂r
+ 2(p0 + v1)

∂v2

∂t
. (86)

For any two functions A and B we have(
A

∂

∂r
+ B

)
u = A

(
∂p0

∂r
+ ∂v1

∂r

)
(1 + v2) + A(p0 + v1)

∂v2

∂r
+ B(p0 + v1)(1 + v2). (87)

Thus(
∂

∂t
− 1

2
�x + A

∂

∂r
+ B

)
u

=
(

∂p0

∂r
+ ∂v1

∂r

)(
−∂v2

∂r
+ A(1 + v2)

)
+ 2(p0 + v1)

(
∂v2

∂t
+ A

∂v2

∂r
+ B(1 + v2)

)
= 0

if

A = ∂v2
(1 + v2)

−1, B = −
(

2
∂v2 + A

∂v2
)

(1 + v2)
−1.
∂r ∂t ∂r
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Since g(t, x) = ln(1 + v2) and 2∂v2/∂t = −∂2v2/∂r2 − 2∂v2/∂r (see (85)), it is easy to check
that the operator in the left-hand side of the equation for u is ∂

∂t
− L∗, and this justifies (84). �

Lemma 10.4. The function Q(s, t, y, x), 0 � s < t � 1, y, x ∈ R
3, is the transition density for a

Markov process on R
3.

Proof. To show the existence of a Markov process, we need to verify that∫
R3

Q(t1, t2, x1, x2) dx2 = 1, t1 < t2, (88)

and ∫
R3

Q(t1, t2, x1, x2)Q(t2, t3, x2, x3) dx2 = Q(t1, t3, x1, x3), t1 < t2 < t3. (89)

Let us assume that (88) has been demonstrated, and prove (89). Observe that∫
R3

T 2+αpT
β (t1, t2, x1, x2)p

T
β (t2, t3, x2, x3) dx2 = T 1+αpT

β (t1, t3, x1, x3), t1 < t2 < t3,

where α = 1/2 if x1 = 0 and α = 0 otherwise. For x3 �= 0 we take the limit, as T → ∞, on both
sides of this relation. The integrand on the left-hand side converges to

pβ(t1, t2, x1, x2)pβ(t2, t3, x2, x3),

however, the convergence is not necessarily uniform in x2, and we can only conclude by the
Fatou lemma that∫

R3\{0}
pβ(t1, t2, x1, x2)pβ(t2, t3, x2, x3) dx2 � pβ(t1, t3, x1, x3), t1 < t2 < t3, x3 �= 0.

From (81) and (82) it now follows that∫
R3\{0}

Q(t1, t2, x1, x2)Q(t2, t3, x2, x3) dx2 � Q(t1, t3, x1, x3), t1 < t2 < t3, x3 �= 0.

Note that both sides of this inequality are continuous in x3 ∈ R
3 \ {0}. Due to (88), the integrals

in x3 over R
3 \ {0} are equal to one for the expressions in both sides of this inequality. Therefore,∫

R3\{0}
Q(t1, t2, x1, x2)Q(t2, t3, x2, x3) dx2 = Q(t1, t3, x1, x3), t1 < t2 < t3, x3 �= 0,

and thus (88) implies (89).
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Now let us verify (88). Put s = t1, τ = t2, y = x1 and x = x2. Again, we shall consider the
case y �= 0, the other case being similar. Moreover, we can assume that τ < 1, since the case
τ = 1 can be treated by taking the limit τ ↑ 1. On a formal level, (88) follows from (84) by
integrating the both sides of (84) over Ω = [s, τ ] × R

3 ⊂ R
4
t,x :∫

R3

Q(s, τ, y, x) dx − lim
t↓s

∫
R3

Q(s, t, y, x) dx = 〈
L∗Q,1

〉
L2(Ω)

= 〈Q,L1〉L2(Ω). (90)

One needs only to note that

lim
t↓s

∫
R3

Q(s, t, y, x) dx = 1, (91)

and that the operator L applied to the identity function gives zero. The latter implies that the
left-hand side in (90) is zero, and (91) implies that the second term on the left-hand side of (90)
is one.

In order to make relations (90) rigorous we note that Q(s, t, y, x) is infinitely smooth in (t, x)

when x �= 0 and decays exponentially as |x| → ∞. However, it has a singularity at x = 0. Thus
the integrals over R

3 and Ω in (90) must be understood as limits of the corresponding integrals
over the region |x| > ε as ε → 0. Let us examine the singularities of Q and of the coefficients of
L∗ at the origin.

Relation (79) implies that

pβ(s, t, y, x) = a

r
+ O(r), r = |x| → 0, a = a(s, t, y). (92)

It is important that (92) does not contain a term of order O(1). From (92), (83) and (81) it follows
that

∂g(t, x)

r
= −1

r
+ O(r), Q(s, t, y, x) = c

r2
+ O(1),

∂Q(s, t, y, x)

∂r
= −2c

r3
+ O(1),

(93)

where r → 0, c = c(s, t, y). Since Q has a weak singularity at x = 0, the integral of the left-hand
side of (84) over Ωε = Ω ∩ {x: |x| > ε} converges to the left-hand side of (90). Hence, in order
to prove (88), it remains to show that∫

Ωε

L∗Qdt dx → 0, ε → 0.

The integral above is equal to

τ∫
s

∫ [
−1

2

∂Q

∂r
+ ∂g

∂r
Q

]
dσ dt, (94)
|x|=ε
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where dσ is the element of the surface area of the sphere |x| = ε. The convergence of (94) to
zero follows immediately from (93) �
Lemma 10.5. The family of processes yT (t), T � 1, is tight.

We shall prove this lemma below. First, however, we formulate the main result of this section.

Theorem 10.6. The distributions of the processes yT (t) converge as T → ∞, weakly in the
space C([0,1],R

3), to the distribution of the 3-dimensional Markov process with continuous
trajectories. The transition densities for the limiting Markov process are given by (81) and (82).

Proof. The convergence of the finite-dimensional distributions of yT (t) to those of the Markov
process follows from (80) and Lemma 10.4. Since the family yT (t) is tight, there is a modification
of the Markov process which has continuous trajectories. �
Proof of Lemma 10.5. To prove tightness it is enough to demonstrate that for each η, ε > 0
there are 0 < δ < 1 and T0 � 1 such that for all u ∈ [0,1] we have

Pβ,T

(
sup

u�s�min(t+δ,1)

∣∣yT (s) − yT (u)
∣∣ > ε

)
� δη, T � T0. (95)

Let η, ε > 0 be fixed. Let Eδ be the event that a continuous function x : [0, T ] → R
3 satisfies

sup
t�δT ,

∣∣x(t) − x(0)
∣∣/√T > ε/8.

Using arguments similar to those leading to (70), we can show that (95) follows from

sup
x∈Rd , |x|=ε

√
T /4

Ex
0,T

(
χEδ

exp

( T∫
0

βv
(
x(t)

)
dt

))
� δη, T � T0. (96)

Let

τ = min
(
δT , inf

{
t � 0:

∣∣x(t) − x(0)
∣∣ = ε

√
T /8

})
.

The expectation in (96) can be estimated as follows

Ex
0,T

(
χEδ

exp

( T∫
0

βv
(
x(t)

)
dt

))
� Ex

0,T

(
χEδ

Ex(τ)
0,T −τ exp

( T −τ∫
0

βv
(
x(t)

)
dt

))
.

We claim that

Ex(τ)
0,T −τ exp

( T −τ∫
βv

(
x(t)

)
dt

)
� sup

x∈Rd , |x|�ε
√

T /8

Ex
0,T exp

( T∫
βv

(
x(t)

)
dt

)
� c(ε) (97)
0 0
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for some constant c(ε) for all sufficiently large T . It then remains to choose δ such that
Ex

0,T (χEδ
) � δη/c(ε), and the estimate (96) will follow. The second inequality in (97) easily

follows from part (2) of Theorem 7.2 and the fact that the probability of reaching the support
of v before time T by a Brownian path starting at a distance ε

√
T /8 away from the origin is of

order O(T −1/2) if d = 3. �
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