On the relation between weighted trees and tropical Grassmannians

Filip Cools ${ }^{1}$
K. U. Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium

A R T I C L E I N F O

Article history:

Received 15 October 2008
Accepted 3 March 2009
Available online 13 March 2009

Keywords:

Weighted tree
Dissimilarity vector
Tropical geometry
Grassmannian

Abstract

In this article, we will prove that the set of 4-dissimilarity vectors of n-trees is contained in the tropical Grassmannian $\mathcal{g}_{4, n}$. We will also propose three equivalent conjectures related to the set of m dissimilarity vectors of n-trees for the case $m \geq 5$. Using a computer algebra system, we can prove these conjectures for $m=5$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let T be a tree with n leaves, which are numbered by the set $[n]:=\{1, \ldots, n\}$. Such a tree is called an n-tree. We assume that T is weighted, so each edge has a length. Denote by $D(i, j)$ the distance between the leaves i and j (i.e. the sum of the lengths of the edges of the unique path in T from i to j). We say that $D=(D(i, j))_{i, j} \in \mathbb{R}^{n \times n}$ is the dissimilarity matrix of T, or conversely, that D is realized by T. The set of dissimilarity matrices of n-trees is fully described by the following theorem (see Buneman (1974) or Pachter and Sturmfels (2005, Theorem 2.36)).

Theorem 1.1 (Tree Metric Theorem). Let $D \in \mathbb{R}^{n \times n}$ be a symmetric matrix with zero entries on the main diagonal. Then D is a dissimilarity matrix of an n-tree if and only if the four-point condition holds, i.e. for every four (not necessarily distinct) elements $i, j, k, l \in[n]$, the maximum of the three numbers $D(i, j)+D(k, l), D(i, k)+D(j, l)$ and $D(i, l)+D(j, k)$ is attained at least twice. Moreover, the n-tree T that realizes D is unique.

If T is an n-tree, $(D(i, j))_{i<j} \in \mathbb{R}^{\binom{n}{2}}$ is called the dissimilarity vector of T.

[^0]We can reformulate the above theorem in the context of tropical geometry (see Speyer and Sturmfels (2004, Theorem 4.2)). For some background, I refer the reader to Section 2.
Theorem 1.2. The set \mathcal{T}_{n} of dissimilarity vectors of n-trees is equal to the tropical Grassmannian $\mathcal{G}_{2, n}$.
We can generalize the definition of dissimilarity vectors of n-trees. Let m be an integer with $2 \leq m<n$ and let i_{1}, \ldots, i_{m} be pairwise distinct elements of $\{1, \ldots, n\}$. Denote by $D\left(i_{1}, \ldots, i_{m}\right)$ the length of the smallest subtree of T containing the leaves i_{1}, \ldots, i_{m}. We say that the point $D=$ $\left(D\left(i_{1}, \ldots, i_{m}\right)\right)_{i_{1}<\cdots<i_{m}} \in \mathbb{R}^{\binom{n}{m}}$ is the m-dissimilarity vector of T.

The following result gives a formula for computing the m-subtree weights from the pairwise distances of the leaves of an n-tree (see Bocci and Cools (2008, Theorem 3.2)).
Theorem 1.3. Let n and m be integers such that $2 \leq m<n$. Denote by $\mathcal{C}_{m} \subset \delta_{m}$ the set of cyclic permutations of length m. Let

$$
\phi^{(m)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{m}}: X=\left(X_{i, j}\right) \mapsto\left(X_{i_{1}, \ldots, i_{m}}\right)
$$

be the map with

$$
X_{i_{1}, \ldots, i_{m}}=\frac{1}{2} \cdot \min _{\sigma \in \mathcal{C}_{m}}\left\{X_{i_{1}, i_{\sigma(1)}}+X_{i_{\sigma(1)}, i_{\sigma^{2}(1)}}+\cdots+X_{i_{\sigma} m-1(1), i_{\sigma} m(1)}\right\} .
$$

If $D \in \mathcal{T}_{n} \subset \mathbb{R}^{\binom{n}{2}}$ is the dissimilarity vector of an n-tree T, then the m-dissimilarity vector of T is equal to $\phi^{(m)}(D)$. So $\phi^{(m)}\left(\mathcal{T}_{n}\right)$ is the set of m-dissimilarity vectors of n-trees.

The description of the set of m-dissimilarity vectors of n-trees as the image of \mathcal{T}_{n} under the map $\phi^{(m)}$ is not useful for deciding whether or not a given point in $\mathbb{R}\binom{n}{m}$ is an m-dissimilarity vector. So we are interested in finding a nice description of these sets as subsets of $\mathbb{R}^{\binom{n}{m}}$. The case $m=3$ is solved via the following result (see Bocci and Cools (2008, Theorem 4.6)).

Theorem 1.4. $\phi^{(3)}\left(\mathcal{T}_{n}\right)=\mathcal{q}_{3, n} \cap \phi^{(3)}\left(\mathbb{R}^{\binom{n}{2}}\right)$.
In this article, we prove the following partial answer for the case $m=4$.
Theorem 1.5. $\phi^{(4)}\left(\mathcal{J}_{n}\right) \subset \mathcal{G}_{4, n} \cap \phi^{(4)}\left(\mathbb{R}^{\binom{n}{2}}\right)$.
To finish the article, we propose three equivalent conjectures for the case $m \geq 5$. The case $m=5$ is solved using a computer algebra system.

2. Tropical geometry

Consider the tropical semi-ring $(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)$, where the tropical sum is the maximum of two numbers and the tropical product is the usual sum of the numbers. Let x_{1}, \ldots, x_{k} be real variables. Tropical monomials $x_{1}^{i_{1}} \ldots x_{k}^{i_{k}}$ represent linear forms $i_{1} x_{1}+\cdots+i_{k} x_{k}$ and tropical polynomials $\oplus_{i \in I} a_{i} x_{1}^{i_{1}} \ldots x_{k}^{i_{k}}$ (with $I \subset \mathbb{N}^{k}$ finite) represent piecewise linear forms

$$
\begin{equation*}
\max _{i \in I}\left\{a_{i}+i_{1} x_{1}+\cdots+i_{k} x_{k}\right\} . \tag{1}
\end{equation*}
$$

If F is such a tropical polynomial, we define the tropical hypersurface $\mathscr{H}(F)$ to be its corner locus, i.e. the points $x \in \mathbb{R}^{k}$ where the maximum is attained at least twice.

Let $K=\mathbb{C}\{\{t\}\}$ be the field of Puiseux series, i.e. the field of formal sums $c=\sum_{q \in \mathbb{Q}} c_{q} q^{q}$ in the variable t such that the set $S_{c}=\left\{q \mid c_{q} \neq 0\right\}$ is bounded below and has a finite set of denominators. For each $c \in K^{*}$, the set S_{c} has a minimum, which we call the valuation of c and is denoted by val(c).

A polynomial $f=\sum_{i \in I} f_{i} x_{i}^{i_{1}} \ldots x_{k}^{i_{k}}$ over K gives rise to a tropical polynomial trop(f), defined by taking $a_{i}=-\operatorname{val}\left(f_{i}\right)$ in (1).
Theorem 2.1. If $I \subset K\left[x_{1}, \ldots, x_{k}\right]$ is an ideal, the following two subsets of \mathbb{R}^{k} coincide:

1. the intersection of all tropical hypersurfaces $\mathcal{T}(\operatorname{trop}(f))$ with $f \in I$;
2. the closure in \mathbb{R}^{k} of the set

$$
\left\{\left(-\operatorname{val}\left(x_{1}\right), \ldots,-\operatorname{val}\left(x_{k}\right)\right) \mid\left(x_{1}, \ldots, x_{k}\right) \in V(I)\right\} \subset \mathbb{Q}^{k} .
$$

Proof. See Speyer and Sturmfels (2004, Theorem 2.1).
For an ideal $I \subset K\left[x_{1}, \ldots, x_{k}\right]$, the set mentioned in Theorem 2.1 is called the tropical variety $\mathcal{T}(I) \subset \mathbb{R}^{k}$ of the ideal I.

We say that $\left\{f_{1}, \ldots, f_{r}\right\}$ is a tropical basis of $\mathcal{T}(I)$ if and only if $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and

$$
\mathcal{T}(I)=\mathcal{T}\left(\operatorname{trop}\left(f_{1}\right)\right) \cap \cdots \cap \mathcal{T}\left(\operatorname{trop}\left(f_{r}\right)\right) .
$$

We are particularly interested in tropical Grassmannians $\mathcal{g}_{m, n}=\mathcal{T}\left(I_{m, n}\right)$. In this case, the ideal

$$
I_{m, n} \subset K\left[x_{i_{1} \ldots i_{m}} \mid 1 \leq i_{1}<\cdots<i_{m} \leq n\right]
$$

is the ideal of the affine Grassmannian $G(m, n) \subset K\binom{n}{m}$ parameterizing linear subspaces of dimension m in K^{n}. The ideal $I_{m, n}$ consists of all relations between the $(m \times m)$ minors of an ($m \times n$)-matrix.
Remark 2.2. In the case $m=2$, the Plücker relations

$$
p_{i j k l}:=x_{i j} x_{k l}-x_{i k} x_{j l}+x_{i l} x_{j k}
$$

(with $i<j<k<l$) generate the ideal $I_{2, n}$. One can show that these polynomials also form a tropical basis of $I_{2, n}$; hence $\mathcal{g}_{2, n}$ is the intersection of the tropical hypersurfaces $\mathscr{H}\left(\operatorname{trop}\left(p_{i j k l}\right)\right)$. Note that $\operatorname{trop}\left(p_{i j k l}\right)$ is equal to

$$
\left(x_{i j} \otimes x_{k l}\right) \oplus\left(x_{i k} \otimes x_{j l}\right) \oplus\left(x_{i l} \otimes x_{j k}\right)=\max \left\{x_{i j}+x_{k l}, x_{i k}+x_{j l}, x_{i l}+x_{j k}\right\}
$$

so we get Theorem 1.2 using Theorem 1.1.

3. The case $m=4$: The proof of the main theorem

Remark 3.1. Let $\phi^{(4)}: \mathbb{R}^{\binom{n}{2}} \rightarrow \mathbb{R}^{\binom{n}{4}}$ be the map sending $X=(X(i, j))_{i<j}$ to $(X(i, j, k, l))_{i<j<k<l}$, where $X(i, j, k, l)$ is the minimum of the three terms

$$
\begin{aligned}
& X(i, j)+X(j, k)+X(k, l)+X(i, l) \\
& X(i, j)+X(j, l)+X(k, l)+X(i, k) \\
& X(i, k)+X(j, k)+X(j, l)+X(i, l)
\end{aligned}
$$

divided by 2. By Theorem 1.3, the map $\phi^{(4)}$ sends the dissimilarity vector D of a tree T to its 4-dissimilarity vector $(D(i, j, k, l))_{i<j<k<l}$.

We will now prove the main theorem.
Proof of Theorem 1.5. Since the inclusion $\phi^{(4)}\left(\mathcal{T}_{n}\right) \subset \phi^{(4)}\left(\mathbb{R}^{\binom{n}{2}}\right.$) is evident, we only have to prove $\phi^{(4)}\left(\mathcal{T}_{n}\right) \subset \mathcal{G}_{4, n}$.

Let T be a tree with 4-dissimilarity vector

$$
\mathscr{D}:=(D(i, j, k, l))_{i<j<k<l}=\phi^{(4)}\left((D(i, j))_{i<j}\right) \in \phi^{(4)}\left(\mathcal{T}_{n}\right) \subset \mathbb{R}^{\binom{n}{2}} .
$$

If $M \in K^{4 \times n}$, we denote by $M(i, j, k, l)$ the 4×4 minor coming from the columns i, j, k, l of M. The tropical Grassmannian is the closure in $\mathbb{R}^{\binom{n}{4}}$ of the set

$$
S:=\left\{(-\operatorname{val}(\operatorname{det}(M(i, j, k, l))))_{i<j<k<l} \mid M \in K^{4 \times n}\right\} \subset \mathbb{Q}^{\binom{n}{4} .}
$$

Assume first that all edges of T have rational length; hence $\mathscr{D} \in \mathbb{Q}^{\binom{n}{4}}$. We are going to show that $\mathscr{D} \in S$.

Fix a rational number E with $E \geq D(i, n)$ for all i. Define a new metric D^{\prime} by

$$
D^{\prime}(i, j)=2 E+D(i, j)-D(i, n)-D(j, n)
$$

Fig. 1. The combinatorial types of 4 -subtrees.
for all different $i, j \in[n]$, in particular $D^{\prime}(i, n)=2 E$ for $i \neq n$. Note that $D^{\prime} \in \mathcal{T}_{n}$ and that D^{\prime} an ultrametric on $\{1, \ldots, n-1\}$, so it can be realized by an equidistant $(n-1)$-tree $T^{\prime \prime}$ with root r. Each edge e of $T^{\prime \prime}$ has a well-defined height $h(e)$, which is the distance from the top node of e to each leaf below e. Pick random rational numbers $a(e)$ and $b(e)$ for every edge e of $T^{\prime \prime}$. If $i \in\{1, \ldots, n-1\}$ is a leaf of $T^{\prime \prime}$, define the polynomial $x_{i}(t)$ (resp. $y_{i}(t)$) as the sum of the monomials $a(e) t^{2 h(e)}$ (resp. $\left.b(e) t^{2 h(e)}\right)$, where e is an edge between r and i. It is easy to see that

$$
D^{\prime}(i, j)=\operatorname{deg}\left(x_{j}(t)-x_{i}(t)\right)=\operatorname{deg}\left(y_{j}(t)-y_{i}(t)\right)
$$

for all $i, j \in\{1, \ldots, n-1\}$.
Denote the distance from r to each leaf by F. Since

$$
2 F=\max \left\{D^{\prime}(i, j) \mid 1 \leq i<j \leq n-1\right\}<2 E
$$

we have $F<E$. The metric D^{\prime} on $[n]$ can be realized by a tree T^{\prime}, where T^{\prime} is the tree obtained from $T^{\prime \prime}$ by adding the leaf n together with an edge (r, n) of length $2 E-F$. If we define $x_{n}(t)=y_{n}(t)=t^{2 E}$, we get that $D^{\prime}(i, j)=\operatorname{deg}\left(x_{j}(t)-x_{i}(t)\right)=\operatorname{deg}\left(y_{j}(t)-y_{i}(t)\right)$ for all $i, j \in[n]$.

Consider the matrix

$$
M^{\prime}:=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
x_{1}(t) & x_{2}(t) & x_{3}(t) & x_{4}(t) & \ldots & x_{n}(t) \\
x_{1}(t)^{2} & x_{2}(t)^{2} & x_{3}(t)^{2} & x_{4}(t)^{2} & \ldots & x_{n}(t)^{2} \\
y_{1}(t) & y_{2}(t) & y_{3}(t) & y_{4}(t) & \ldots & y_{n}(t)
\end{array}\right] .
$$

We claim that $\operatorname{deg}\left(\operatorname{det}\left(M^{\prime}(i, j, k, l)\right)\right)=2 D^{\prime}(i, j, k, l)$ for all $i, j, k, l \in[n]$. After renumbering the leaves, we may assume that $\{i, j, k, l\}=\{1,2,3,4\}$ and that $D^{\prime}(1,2) \leq D^{\prime}(1,3) \leq D^{\prime}(1,4)$. In Fig. 1 , all combinatorial types of the subtrees are pictured. Every edge in this picture may consist of several edges of the tree T^{\prime}. Note that types I and II are different, since the top node v sits on a different edge of the subtree. The type III case is special, since $n \in\{i, j, k, l\}$ (before the renumbering).

The determinant of $M^{\prime}(1,2,3,4)$ is equal to

$$
\begin{align*}
\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right|= & \left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} \\
0 & y_{2}-y_{1} & y_{3}-y_{1} & y_{4}-y_{1}
\end{array}\right| \\
= & \left(y_{2}-y_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{4}-x_{3}\right) \\
& -\left(y_{3}-y_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{4}-x_{2}\right) \\
& +\left(y_{4}-y_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{2}\right) . \tag{2}
\end{align*}
$$

The degree of the term $\left(y_{2}-y_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{4}-x_{3}\right)$ in (2) is

$$
D^{\prime}(1,2)+D^{\prime}(1,4)+D^{\prime}(1,3)+D^{\prime}(3,4),
$$

which equals $2 D^{\prime}(1,2,3,4)$ for each of the three types.
If v and w are nodes between r and i, we will denote the sum of the monomials $a(e) t^{2 h(e)}$ for e between v and w by $x_{i,[v, w]}(t)$. Analogously, we define $y_{i,[v, w]}(t)$.

Fig. 2. Type I.
We are going to take a look at the type I case. In Fig. 2, the arrows stand for edges of T^{\prime}. For example, the edge e_{v} is adjacent to v and goes in the direction of w.

Define $x:=x_{3,[v, u]}-x_{1,[v, w]}, x_{12}:=x_{2,[w, 2]}-x_{1,[w, 1]}, x_{13}:=x_{3,[u, 3]}-x_{1,[w, 1]}$, etc. Analogously, we define $y, y_{12}, y_{13}, \ldots, y_{34}$. The determinant (2) equals

$$
\begin{align*}
& y_{12} x_{34}\left(x+x_{13}\right)\left(x+x_{14}\right)-x_{12}\left(y+y_{13}\right)\left(x+x_{14}\right)\left(x+x_{24}\right) \\
& \quad+x_{12}\left(y+y_{14}\right)\left(x+x_{13}\right)\left(x+x_{23}\right) . \tag{3}
\end{align*}
$$

Since $\operatorname{deg}(x)=\operatorname{deg}(y)$ is bigger than $\operatorname{deg}\left(x_{i j}\right)=\operatorname{deg}\left(y_{i j}\right)$ for all i and j, we have that the degree of the last two terms is equal to

$$
\operatorname{deg}\left(x_{12} y x^{2}\right)>2 D^{\prime}(1,2,3,4)
$$

but the term $x_{12} y x^{2}$ vanishes in the determinant. So, the degree of the sum of the last two terms in (3) is equal to

$$
\begin{aligned}
\operatorname{deg}\left[x_{12}\left(x^{2}\left(y_{14}-y_{13}\right)+x y\left(x_{13}+x_{23}-x_{14}-x_{24}\right)\right)\right] & =\operatorname{deg}\left[x_{12}\left(y_{34} x^{2}-2 x_{34} x y\right)\right] \\
& =2 D^{\prime}(1,2,3,4)
\end{aligned}
$$

We conclude that the determinant of $M^{\prime}(1,2,3,4)$ has degree $2 D^{\prime}(1,2,3,4)$. Indeed, the coefficient of $t^{2 D^{\prime}(1,2,3,4)}$ is equal to

$$
\begin{aligned}
& \left(b\left(e_{w}^{\prime}\right)-b\left(e_{w}\right)\right)\left(a\left(e_{u}^{\prime}\right)-a\left(e_{u}\right)\right)\left(a\left(e_{v}^{\prime}\right)-a\left(e_{v}\right)\right)^{2} \\
& +\left(b^{\prime}\left(e_{u}\right)-b\left(e_{u}\right)\right)\left(a\left(e_{w}^{\prime}\right)-a\left(e_{w}\right)\right)\left(a\left(e_{v}^{\prime}\right)-a\left(e_{v}\right)\right)^{2} \\
& -2\left(b\left(e_{v}^{\prime}\right)-b\left(e_{v}\right)\right)\left(a\left(e_{v}^{\prime}\right)-a\left(e_{v}\right)\right)\left(a\left(e_{w}^{\prime}\right)-a\left(e_{w}\right)\right)\left(a\left(e_{u}^{\prime}\right)-a\left(e_{u}\right)\right) \neq 0 .
\end{aligned}
$$

For types II and III, the first two terms in (2) have degree $2 D^{\prime}(1,2,3,4)$ and the last term has a lower degree. Using the notation in Fig. 3, the coefficient of $t^{2 D^{\prime}(1,2,3,4)}$ in $\operatorname{det}\left(M^{\prime}(1,2,3,4)\right)$ is equal to

$$
\left(a\left(e_{v}^{\prime}\right)-a\left(e_{v}\right)\right)^{2}\left[\left(b\left(e_{u}^{\prime}\right)-b\left(e_{u}\right)\right)\left(a\left(e_{w}^{\prime}\right)-a\left(e_{w}\right)\right)-\left(b\left(e_{w}^{\prime}\right)-b\left(e_{w}\right)\right)\left(a\left(e_{u}^{\prime}\right)-a\left(e_{u}\right)\right)\right] \neq 0
$$

for type II and

$$
\left(b\left(e_{u}^{\prime}\right)-b\left(e_{u}\right)\right)\left(a\left(e_{w}^{\prime}\right)-a\left(e_{w}\right)\right)-\left(b\left(e_{w}^{\prime}\right)-b\left(e_{w}\right)\right)\left(a\left(e_{u}^{\prime}\right)-a\left(e_{u}\right)\right) \neq 0
$$

for type III.
Let M be the matrix obtained from M^{\prime} by multiplying, for each i, the i-th column of M^{\prime} by $\left(t^{D(i, n)-E}\right)^{2}$. We have

$$
\begin{aligned}
D(i, j) & =D^{\prime}(i, j)+(D(i, n)-E)+(D(j, n)-E) \\
& =\operatorname{deg}\left(t^{D(i, n)-E} \cdot t^{D(j, n)-E} \cdot\left(x_{i}(t)-x_{j}(t)\right)\right) .
\end{aligned}
$$

Using Remark 3.1, we get that $2 D(i, j, k, l)=\operatorname{deg}(\operatorname{det}(M(i, j, k, l)))$. If we replace each t in M by $t^{-1 / 2}$, we have

$$
D(i, j, k, l)=-\operatorname{val}(\operatorname{det}(M(i, j, k, l))),
$$

and hence $\mathscr{D} \in S$.

Fig. 3. Types II and III.
Now assume that T has irrational edge weights. We can approximate T arbitrarily close by a tree \widetilde{T} with rational edge weights. From the arguments above, it follows that the 4-dissimilarity vector $\widetilde{\mathscr{D}}$ of \widetilde{T} belongs to S; hence $\mathcal{D} \in \mathcal{G}_{4, n}$.

4. What about the case $m \geq 5$?

The proof of Theorem 1.5 does not give an obstruction for the following to be true for $m \geq 5$.
Conjecture 4.1. $\phi^{(m)}\left(\mathcal{T}_{n}\right) \subset g_{m, n} \cap \phi^{(m)}\left(\mathbb{R}^{\binom{n}{2}}\right)$.
Note that using the same arguments as in the proof of Theorem 1.5, it suffices to show the following.
Conjecture 4.2. Let $m \leq n$ be integers and let T^{\prime} be a weighted equidistant ($n-1$)-tree with root r such that all edges of T^{\prime} have rational length. Denote the distance between r and each leaf of T^{\prime} by d^{\prime}.

Let T be the tree attained from T^{\prime} by adding an edge (r, n) of length $d^{\prime \prime} \in \mathbb{Q}$ with $d^{\prime \prime}>d^{\prime}$.
For each edge e of T^{\prime}, pick random numbers $a_{1}(e), \ldots, a_{m-2}(e) \in \mathbb{C}$ and denote the height in T^{\prime} by $h(e)$. Let $x_{i}^{(j)}(t) \in K$ (with $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, m-2\}$) be the sum of the monomials $a_{j}(e) t^{h(e)}$, where e runs over all edges between r and i, and define

$$
x_{n}^{(1)}(t)=\cdots=x_{n}^{(m-2)}(t)=t^{\left(d^{\prime}+d^{\prime \prime}\right) / 2} \in K .
$$

Consider the matrix

$$
M=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{n}^{(1)} \\
\left(x_{1}^{(1)}\right)^{2} & \left(x_{2}^{(1)}\right)^{2} & \ldots & \left(x_{n}^{(1)}\right)^{2} \\
x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{n}^{(2)} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{(m-2)} & x_{2}^{(m-2)} & \ldots & x_{n}^{(m-2)}
\end{array}\right] \in K^{m \times n} .
$$

Let i_{1}, \ldots, i_{m} be pairwise disjoint elements in $\{1, \ldots, n\}$. Then we have that $D\left(i_{1}, \ldots, i_{m}\right)=$ $\operatorname{deg}\left(\operatorname{det}\left(M\left(i_{1}, \ldots, i_{m}\right)\right)\right)$.

Remark 4.3. The matrix M arising in Conjecture 4.1 has a sort of asymmetry. However, if one were to construct polynomials $x_{i}^{(j)}$ as in the conjecture with $j \in\{1, \ldots, m\}$ for each leaf $i \in\{1, \ldots, n\}$, the statement would fail for

$$
N=\left[\begin{array}{cccc}
x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{n}^{(1)} \\
x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{n}^{(2)} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{(m)} & x_{2}^{(m)} & \ldots & x_{n}^{(m)}
\end{array}\right] \in K^{m \times n},
$$

Fig. 4. Equidistant 5-tree T.
even for $m=3$. Indeed, if the minimal subtree \widetilde{T} of the equidistant tree T^{\prime} containing the three leaves i_{1}, i_{2}, i_{3} does not contain the root r, the degree of the determinant of $N\left(i_{1}, i_{2}, i_{3}\right)$ is not equal to the length of \widetilde{T}. Instead, it is equal to the length of the subtree of T^{\prime} containing the leaves i_{1}, i_{2}, i_{3} and the root r. The same happens for $m=4$. So it seems that the row consisting of ones in the matrix M is necessary for canceling the distance between the top node of \widetilde{T} and the root r. On the other hand, the determinant of a maximal minor has to be homogeneous in the variables $x_{i}^{(j)}$ of degree m (see Theorem 1.3), so once we put a row with ones in M, there should be a row consisting of quadric forms in the variables $x_{i}^{(j)}$, i.e. the third row of M.

We can simplify Conjecture 4.2. Firstly, we can see that the tree T can be considered as an equidistant n-tree, if we pick the top node to be the node on the edge (r, n) at distance $\left(d^{\prime}+d^{\prime \prime}\right) / 2$ of n. For example, in the proof of Theorem 1.5, the types II and III are in fact equivalent. Secondly, assume $I=\left\{i_{1}, \ldots, i_{m}\right\}$ is an m-subset of $\{1, \ldots, n\}$ and let T_{I} be the minimal subtree of T containing the leaves in I. The edges between the top node r_{I} of T_{I} and the root r of T do not give a contribution in the determinant of $M(I)=M\left(i_{1}, \ldots, i_{m}\right)$. Also, the edges of T_{I} with 2 -valent top node different from r_{I} can be canceled out in the computation of $\operatorname{deg}(\operatorname{det}(M(I)))$. So we see that Conjecture 4.2 is equivalent to the following.
Conjecture 4.4. Let T be an equidistant m-tree with root r such that all edges of T have rational length.
For each edge e of T, pick random numbers $a_{1}(e), \ldots, a_{m-2}(e) \in \mathbb{C}$ and denote the height in T by $h(e)$.
Let $x_{i}^{(j)}(t) \in K$ (with $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, m-2\}$) be the sum of the monomials $a_{j}(e) t^{h(e)}$, where e runs over all edges between r and i. Then the degree of the determinant of

$$
M=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1}^{(1)} & x_{2}^{(1)} & \ldots & x_{m}^{(1)} \\
\left(x_{1}^{(1)}\right)^{2} & \left(x_{2}^{(1)}\right)^{2} & \ldots & \left(x_{m}^{(1)}\right)^{2} \\
x_{1}^{(2)} & x_{2}^{(2)} & \ldots & x_{m}^{(2)} \\
\vdots & \vdots & \vdots & \vdots \\
x_{1}^{(m-2)} & x_{2}^{(m-2)} & \ldots & x_{m}^{(m-2)}
\end{array}\right]
$$

is equal to the length D of T.
We give an example to illustrate Conjecture 4.4 for $m=5$.
Example 4.5. Consider the equidistant 5 -tree T of Fig. 4. In the boxes, the distances of the edges are mentioned. Note that $D=37$.

Following the notation of Conjecture 4.4, we have

$$
\begin{aligned}
x_{1}^{(j)}(t) & =a_{j}(r, v) t^{10}+a_{j}(v, w) t^{7}+a_{j}(w, 1) t^{4}, \\
x_{2}^{(j)}(t) & =a_{j}(r, v) t^{10}+a_{j}(v, w) t^{7}+a_{j}(w, 2) t^{4}, \\
x_{3}^{(j)}(t) & =a_{j}(r, v) t^{10}+a_{j}(v, 3) t^{7}, \\
x_{4}^{(j)}(t) & =a_{j}(r, u) t^{10}+a_{j}(u, 4) t^{6}, \\
x_{5}^{(j)}(t) & =a_{j}(r, u) t^{10}+a_{j}(u, 5) t^{6} .
\end{aligned}
$$

Using a computer algebra system, one can see that the determinant of M is a polynomial of degree 37 in the variable t. Each of its coefficients is homogeneous of degree 5 in the numbers $a_{j}(e)$, with $j \in\{1,2,3\}$ and e an edge of T.

If we take the numbers $a_{j}(e)$ to be the first $24=3 \times 8$ prime numbers (i.e. $a_{1}(r, v)=$ $\left.2, \ldots, a_{3}(u, 5)=89\right)$, the determinant of M has leading coefficient 3344 .
Remark 4.6. In order to prove Conjecture 4.4 for a fixed value of m, one could follow the strategy of Theorem 1.5. Indeed, the number $t(m)$ of combinatorial types of equidistant m-trees is finite and for each of these types, one can compute the determinant of M and check whether its degree equals D.

In this way, we can prove Conjecture 4.4 for $m=5$ using a computer algebra system. For each of the three combinatorial types of equidistant 5 -trees, the determinant of M can be computed, leaving the random numbers $a_{j}(e)$ and the lengths $l(e)$ of the edges as variables. This determinant (considered as a polynomial in the variable t) has degree equal to the length D of the tree T and its leading coefficient is a homogeneous polynomial c_{T} of degree 5 in the numbers $a_{j}(e)$. If the tree T is binary, the polynomial c_{T} has 272 terms for the type corresponding to Example 4.5, and 144 terms for the other two types. Note that the numbers $a_{j}(e)$ are sufficiently random if they don't vanish for the polynomial c_{T}. We can conclude that the inclusion

$$
\phi^{(5)}\left(\mathcal{G}_{2, n}\right) \subset \mathcal{G}_{5, n} \cap \phi^{(5)}\left(\mathbb{R}^{\binom{n}{2}}\right)
$$

holds, i.e. Conjecture 4.1 for $m=5$.
On the other hand, the number $t(m)$ grows exponentially, e.g.

$$
t(4)=2, \quad t(5)=3, \quad t(6)=6, \quad t(7)=11, \quad t(8)=23, t(9)=46, \quad t(10)=98, \text { etc. }
$$

and for each of these types, the square matrix M is of size m; hence the computation of its determinant gets more complicated when m grows. So this technique is not suited to proving Conjecture 4.4 for every m. However, one can hope to find a proof by induction on m.

References

Bocci, C., Cools, F., 2008. A tropical interpretation of m-dissimilarity maps. Preprint. arXiv:0803.2184.
Buneman, P., 1974. A note on the metric properties of trees. J. Combin. Theory 17, 48-50.
Pachter, L., Sturmfels, B., 2005. Algebraic Statistics for Computational Biology. Cambridge University Press, New York. Speyer, D., Sturmfels, B., 2004. The tropical Grassmannian. Adv. Geom. 4, 389-411.

[^0]: E-mail address: Filip.Cools@wis.kuleuven.be.
 ${ }^{1}$ The author is a postdoctoral fellow of the research foundation Flanders (FWO). Tel.: +32 16327011; fax: +3216327998.

