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a b s t r a c t

In this article, we will prove that the set of 4-dissimilarity vectors
of n-trees is contained in the tropical Grassmannian G4,n. We will
also propose three equivalent conjectures related to the set of m-
dissimilarity vectors of n-trees for the case m ≥ 5. Using a com-
puter algebra system, we can prove these conjectures form = 5.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let T be a tree with n leaves, which are numbered by the set [n] := {1, . . . , n}. Such a tree is called
an n-tree. We assume that T is weighted, so each edge has a length. Denote by D(i, j) the distance
between the leaves i and j (i.e. the sum of the lengths of the edges of the unique path in T from i to j).
We say that D = (D(i, j))i,j ∈ Rn×n is the dissimilarity matrix of T , or conversely, that D is realized by
T . The set of dissimilaritymatrices of n-trees is fully described by the following theorem (see Buneman
(1974) or Pachter and Sturmfels (2005, Theorem 2.36)).

Theorem 1.1 (Tree Metric Theorem). Let D ∈ Rn×n be a symmetric matrix with zero entries on the main
diagonal. Then D is a dissimilarity matrix of an n-tree if and only if the four-point condition holds, i.e.
for every four (not necessarily distinct) elements i, j, k, l ∈ [n], the maximum of the three numbers
D(i, j) + D(k, l), D(i, k) + D(j, l) and D(i, l) + D(j, k) is attained at least twice. Moreover, the n-tree
T that realizes D is unique.

If T is an n-tree, (D(i, j))i<j ∈ R(
n
2) is called the dissimilarity vector of T .
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We can reformulate the above theorem in the context of tropical geometry (see Speyer and
Sturmfels (2004, Theorem 4.2)). For some background, I refer the reader to Section 2.

Theorem 1.2. The set Tn of dissimilarity vectors of n-trees is equal to the tropical Grassmannian G2,n.

We can generalize the definition of dissimilarity vectors of n-trees. Let m be an integer with
2 ≤ m < n and let i1, . . . , im be pairwise distinct elements of {1, . . . , n}. Denote by D(i1, . . . , im)
the length of the smallest subtree of T containing the leaves i1, . . . , im. We say that the point D =
(D(i1, . . . , im))i1<···<im ∈ R(

n
m) is them-dissimilarity vector of T .

The following result gives a formula for computing the m-subtree weights from the pairwise
distances of the leaves of an n-tree (see Bocci and Cools (2008, Theorem 3.2)).

Theorem 1.3. Let n and m be integers such that 2 ≤ m < n. Denote by Cm ⊂ Sm the set of cyclic
permutations of length m. Let

φ(m) : R(
n
2) → R(

n
m) : X = (Xi,j) 7→ (Xi1,...,im)

be the map with

Xi1,...,im =
1
2
· min
σ∈Cm
{Xi1,iσ(1) + Xiσ(1),iσ2(1) + · · · + Xiσm−1(1),iσm(1)}.

If D ∈ Tn ⊂ R(
n
2) is the dissimilarity vector of an n-tree T , then the m-dissimilarity vector of T is equal to

φ(m)(D). So φ(m)(Tn) is the set of m-dissimilarity vectors of n-trees.

The description of the set of m-dissimilarity vectors of n-trees as the image of Tn under the map
φ(m) is not useful for deciding whether or not a given point in R(

n
m) is anm-dissimilarity vector. So we

are interested in finding a nice description of these sets as subsets of R(
n
m). The case m = 3 is solved

via the following result (see Bocci and Cools (2008, Theorem 4.6)).

Theorem 1.4. φ(3)(Tn) = G3,n ∩ φ
(3)(R(

n
2)).

In this article, we prove the following partial answer for the casem = 4.

Theorem 1.5. φ(4)(Tn) ⊂ G4,n ∩ φ
(4)(R(

n
2)).

To finish the article, we propose three equivalent conjectures for the case m ≥ 5. The case m = 5
is solved using a computer algebra system.

2. Tropical geometry

Consider the tropical semi-ring (R ∪ {−∞},⊕,⊗), where the tropical sum is the maximum
of two numbers and the tropical product is the usual sum of the numbers. Let x1, . . . , xk be real
variables. Tropicalmonomials xi11 . . . x

ik
k represent linear forms i1x1+· · ·+ikxk and tropical polynomials

⊕i∈Iaix
i1
1 . . . x

ik
k (with I ⊂ Nk finite) represent piecewise linear forms

max
i∈I
{ai + i1x1 + · · · + ikxk}. (1)

If F is such a tropical polynomial, we define the tropical hypersurfaceH(F) to be its corner locus, i.e.
the points x ∈ Rk where the maximum is attained at least twice.
Let K = C{{t}} be the field of Puiseux series, i.e. the field of formal sums c =

∑
q∈Q cqt

q in the
variable t such that the set Sc = {q|cq 6= 0} is bounded below and has a finite set of denominators.
For each c ∈ K ∗, the set Sc has a minimum, which we call the valuation of c and is denoted by val(c).
A polynomial f =

∑
i∈I fix

i1
i . . . x

ik
k over K gives rise to a tropical polynomial trop(f ), defined by

taking ai = −val(fi) in (1).

Theorem 2.1. If I ⊂ K [x1, . . . , xk] is an ideal, the following two subsets of Rk coincide:

1. the intersection of all tropical hypersurfaces T (trop(f )) with f ∈ I;
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2. the closure in Rk of the set

{(−val(x1), . . . ,−val(xk)) | (x1, . . . , xk) ∈ V (I)} ⊂ Qk.

Proof. See Speyer and Sturmfels (2004, Theorem 2.1). �

For an ideal I ⊂ K [x1, . . . , xk], the set mentioned in Theorem 2.1 is called the tropical variety
T (I) ⊂ Rk of the ideal I .
We say that {f1, . . . , fr} is a tropical basis of T (I) if and only if I = 〈f1, . . . , fr〉 and

T (I) = T (trop(f1)) ∩ · · · ∩ T (trop(fr)).

We are particularly interested in tropical Grassmannians Gm,n = T (Im,n). In this case, the ideal

Im,n ⊂ K [xi1...im |1 ≤ i1 < · · · < im ≤ n]

is the ideal of the affine Grassmannian G(m, n) ⊂ K(
n
m) parameterizing linear subspaces of dimension

m in K n. The ideal Im,n consists of all relations between the (m×m)minors of an (m× n)-matrix.

Remark 2.2. In the casem = 2, the Plücker relations

pijkl := xijxkl − xikxjl + xilxjk

(with i < j < k < l) generate the ideal I2,n. One can show that these polynomials also form a
tropical basis of I2,n; hence G2,n is the intersection of the tropical hypersurfaces H(trop(pijkl)). Note
that trop(pijkl) is equal to

(xij ⊗ xkl)⊕ (xik ⊗ xjl)⊕ (xil ⊗ xjk) = max{xij + xkl, xik + xjl, xil + xjk},

so we get Theorem 1.2 using Theorem 1.1.

3. The case m = 4: The proof of the main theorem

Remark 3.1. Let φ(4) : R(
n
2) → R(

n
4) be the map sending X = (X(i, j))i<j to (X(i, j, k, l))i<j<k<l, where

X(i, j, k, l) is the minimum of the three terms

X(i, j)+ X(j, k)+ X(k, l)+ X(i, l),
X(i, j)+ X(j, l)+ X(k, l)+ X(i, k),
X(i, k)+ X(j, k)+ X(j, l)+ X(i, l),

divided by 2. By Theorem 1.3, the map φ(4) sends the dissimilarity vector D of a tree T to its
4-dissimilarity vector (D(i, j, k, l))i<j<k<l.

We will now prove the main theorem.

Proof of Theorem 1.5. Since the inclusion φ(4)(Tn) ⊂ φ(4)(R(
n
2)) is evident, we only have to prove

φ(4)(Tn) ⊂ G4,n.
Let T be a tree with 4-dissimilarity vector

D := (D(i, j, k, l))i<j<k<l = φ(4)((D(i, j))i<j) ∈ φ(4)(Tn) ⊂ R(
n
2).

If M ∈ K 4×n, we denote by M(i, j, k, l) the 4 × 4 minor coming from the columns i, j, k, l of M . The
tropical Grassmannian is the closure in R(

n
4) of the set

S := {(−val(det(M(i, j, k, l))))i<j<k<l |M ∈ K 4×n} ⊂ Q(
n
4).

Assume first that all edges of T have rational length; henceD ∈ Q(
n
4). We are going to show that

D ∈ S.
Fix a rational number E with E ≥ D(i, n) for all i. Define a new metric D′ by

D′(i, j) = 2E + D(i, j)− D(i, n)− D(j, n)
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(a) Type I. (b) Type II. (c) Type III.

Fig. 1. The combinatorial types of 4-subtrees.

for all different i, j ∈ [n], in particular D′(i, n) = 2E for i 6= n. Note that D′ ∈ Tn and that D′ an
ultrametric on {1, . . . , n− 1}, so it can be realized by an equidistant (n− 1)-tree T ′′ with root r . Each
edge e of T ′′ has a well-defined height h(e), which is the distance from the top node of e to each leaf
below e. Pick random rational numbers a(e) and b(e) for every edge e of T ′′. If i ∈ {1, . . . , n−1} is a leaf
of T ′′, define the polynomial xi(t) (resp. yi(t)) as the sum of the monomials a(e)t2h(e) (resp. b(e)t2h(e)),
where e is an edge between r and i. It is easy to see that

D′(i, j) = deg(xj(t)− xi(t)) = deg(yj(t)− yi(t))

for all i, j ∈ {1, . . . , n− 1}.
Denote the distance from r to each leaf by F . Since

2F = max{D′(i, j) | 1 ≤ i < j ≤ n− 1} < 2E,

we have F < E. The metric D′ on [n] can be realized by a tree T ′, where T ′ is the tree obtained from T ′′
by adding the leaf n together with an edge (r, n) of length 2E − F . If we define xn(t) = yn(t) = t2E ,
we get that D′(i, j) = deg(xj(t)− xi(t)) = deg(yj(t)− yi(t)) for all i, j ∈ [n].
Consider the matrix

M ′ :=

 1 1 1 1 . . . 1
x1(t) x2(t) x3(t) x4(t) . . . xn(t)
x1(t)2 x2(t)2 x3(t)2 x4(t)2 . . . xn(t)2
y1(t) y2(t) y3(t) y4(t) . . . yn(t)

 .
We claim that deg(det(M ′(i, j, k, l))) = 2D′(i, j, k, l) for all i, j, k, l ∈ [n]. After renumbering the

leaves, we may assume that {i, j, k, l} = {1, 2, 3, 4} and that D′(1, 2) ≤ D′(1, 3) ≤ D′(1, 4). In Fig. 1,
all combinatorial types of the subtrees are pictured. Every edge in this picture may consist of several
edges of the tree T ′. Note that types I and II are different, since the top node v sits on a different edge
of the subtree. The type III case is special, since n ∈ {i, j, k, l} (before the renumbering).
The determinant ofM ′(1, 2, 3, 4) is equal to∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4
x21 x22 x23 x24
y1 y2 y3 y4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4
x21 x22 x23 x24
0 y2 − y1 y3 − y1 y4 − y1

∣∣∣∣∣∣∣
= (y2 − y1)(x4 − x1)(x3 − x1)(x4 − x3)
− (y3 − y1)(x4 − x1)(x2 − x1)(x4 − x2)
+ (y4 − y1)(x3 − x1)(x2 − x1)(x3 − x2). (2)

The degree of the term (y2 − y1)(x4 − x1)(x3 − x1)(x4 − x3) in (2) is

D′(1, 2)+ D′(1, 4)+ D′(1, 3)+ D′(3, 4),

which equals 2D′(1, 2, 3, 4) for each of the three types.
If v and w are nodes between r and i, we will denote the sum of the monomials a(e)t2h(e) for e

between v andw by xi,[v,w](t). Analogously, we define yi,[v,w](t).
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Fig. 2. Type I.

We are going to take a look at the type I case. In Fig. 2, the arrows stand for edges of T ′. For example,
the edge ev is adjacent to v and goes in the direction ofw.
Define x := x3,[v,u] − x1,[v,w], x12 := x2,[w,2] − x1,[w,1], x13 := x3,[u,3] − x1,[w,1], etc. Analogously, we

define y, y12, y13, . . . , y34. The determinant (2) equals

y12x34(x+ x13)(x+ x14)− x12(y+ y13)(x+ x14)(x+ x24)
+ x12(y+ y14)(x+ x13)(x+ x23). (3)

Since deg(x) = deg(y) is bigger than deg(xij) = deg(yij) for all i and j, we have that the degree of the
last two terms is equal to

deg(x12yx2) > 2D′(1, 2, 3, 4),
but the term x12yx2 vanishes in the determinant. So, the degree of the sum of the last two terms in (3)
is equal to

deg[x12(x2(y14 − y13)+ xy(x13 + x23 − x14 − x24))] = deg[x12(y34x2 − 2x34xy)]
= 2D′(1, 2, 3, 4).

We conclude that the determinant ofM ′(1, 2, 3, 4) has degree 2D′(1, 2, 3, 4). Indeed, the coefficient
of t2D

′(1,2,3,4) is equal to

(b(e′w)− b(ew))(a(e
′

u)− a(eu))(a(e
′

v)− a(ev))
2

+ (b′(eu)− b(eu))(a(e′w)− a(ew))(a(e
′

v)− a(ev))
2

− 2(b(e′v)− b(ev))(a(e
′

v)− a(ev))(a(e
′

w)− a(ew))(a(e
′

u)− a(eu)) 6= 0.

For types II and III, the first two terms in (2) have degree 2D′(1, 2, 3, 4) and the last termhas a lower
degree. Using the notation in Fig. 3, the coefficient of t2D

′(1,2,3,4) in det(M ′(1, 2, 3, 4)) is equal to
(a(e′v)− a(ev))

2
[(b(e′u)− b(eu))(a(e

′

w)− a(ew))− (b(e
′

w)− b(ew))(a(e
′

u)− a(eu))] 6= 0
for type II and

(b(e′u)− b(eu))(a(e
′

w)− a(ew))− (b(e
′

w)− b(ew))(a(e
′

u)− a(eu)) 6= 0
for type III.
LetM be thematrix obtained fromM ′ bymultiplying, for each i, the i-th columnofM ′ by (tD(i,n)−E)2.

We have

D(i, j) = D′(i, j)+ (D(i, n)− E)+ (D(j, n)− E)
= deg

(
tD(i,n)−E · tD(j,n)−E · (xi(t)− xj(t))

)
.

Using Remark 3.1, we get that 2D(i, j, k, l) = deg(det(M(i, j, k, l))). If we replace each t inM by t−1/2,
we have

D(i, j, k, l) = −val(det(M(i, j, k, l))),
and henceD ∈ S.
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Fig. 3. Types II and III.

Now assume that T has irrational edge weights. We can approximate T arbitrarily close by a tree
T̃ with rational edge weights. From the arguments above, it follows that the 4-dissimilarity vector D̃
of T̃ belongs to S; henceD ∈ G4,n. �

4. What about the casem ≥ 5?

The proof of Theorem 1.5 does not give an obstruction for the following to be true form ≥ 5.

Conjecture 4.1. φ(m)(Tn) ⊂ Gm,n ∩ φ
(m)(R(

n
2)).

Note that using the same arguments as in the proof of Theorem1.5, it suffices to show the following.

Conjecture 4.2. Let m ≤ n be integers and let T ′ be a weighted equidistant (n− 1)-tree with root r such
that all edges of T ′ have rational length. Denote the distance between r and each leaf of T ′ by d′.
Let T be the tree attained from T ′ by adding an edge (r, n) of length d′′ ∈ Q with d′′ > d′.
For each edge e of T ′, pick random numbers a1(e), . . . , am−2(e) ∈ C and denote the height in T ′ by

h(e). Let x(j)i (t) ∈ K (with i ∈ {1, . . . , n − 1} and j ∈ {1, . . . ,m − 2}) be the sum of the monomials
aj(e)th(e), where e runs over all edges between r and i, and define

x(1)n (t) = · · · = x
(m−2)
n (t) = t(d

′
+d′′)/2

∈ K .

Consider the matrix

M =



1 1 . . . 1
x(1)1 x(1)2 . . . x(1)n
(x(1)1 )

2 (x(1)2 )
2 . . . (x(1)n )2

x(2)1 x(2)2 . . . x(2)n
...

...
...

...

x(m−2)1 x(m−2)2 . . . x(m−2)n


∈ Km×n.

Let i1, . . . , im be pairwise disjoint elements in {1, . . . , n}. Then we have that D(i1, . . . , im) =
deg(det(M(i1, . . . , im))).

Remark 4.3. The matrix M arising in Conjecture 4.1 has a sort of asymmetry. However, if one were
to construct polynomials x(j)i as in the conjecture with j ∈ {1, . . . ,m} for each leaf i ∈ {1, . . . , n}, the
statement would fail for

N =


x(1)1 x(1)2 . . . x(1)n
x(2)1 x(2)2 . . . x(2)n
...

...
...

...

x(m)1 x(m)2 . . . x(m)n

 ∈ Km×n,
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Fig. 4. Equidistant 5-tree T .

even form = 3. Indeed, if the minimal subtree T̃ of the equidistant tree T ′ containing the three leaves
i1, i2, i3 does not contain the root r , the degree of the determinant of N(i1, i2, i3) is not equal to the
length of T̃ . Instead, it is equal to the length of the subtree of T ′ containing the leaves i1, i2, i3 and
the root r . The same happens for m = 4. So it seems that the row consisting of ones in the matrix M
is necessary for canceling the distance between the top node of T̃ and the root r . On the other hand,
the determinant of a maximal minor has to be homogeneous in the variables x(j)i of degree m (see
Theorem 1.3), so once we put a rowwith ones inM , there should be a row consisting of quadric forms
in the variables x(j)i , i.e. the third row ofM .
We can simplify Conjecture 4.2. Firstly, we can see that the tree T can be considered as an

equidistant n-tree, if we pick the top node to be the node on the edge (r, n) at distance (d′+d′′)/2 of n.
For example, in the proof of Theorem 1.5, the types II and III are in fact equivalent. Secondly, assume
I = {i1, . . . , im} is an m-subset of {1, . . . , n} and let TI be the minimal subtree of T containing the
leaves in I . The edges between the top node rI of TI and the root r of T do not give a contribution in the
determinant of M(I) = M(i1, . . . , im). Also, the edges of TI with 2-valent top node different from rI
can be canceled out in the computation of deg(det(M(I))). So we see that Conjecture 4.2 is equivalent
to the following.
Conjecture 4.4. Let T be an equidistant m-tree with root r such that all edges of T have rational length.
For each edge e of T , pick random numbers a1(e), . . . , am−2(e) ∈ C and denote the height in T by h(e).

Let x(j)i (t) ∈ K (with i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m − 2}) be the sum of the monomials aj(e)t
h(e),

where e runs over all edges between r and i. Then the degree of the determinant of

M =



1 1 . . . 1
x(1)1 x(1)2 . . . x(1)m
(x(1)1 )

2 (x(1)2 )
2 . . . (x(1)m )2

x(2)1 x(2)2 . . . x(2)m
...

...
...

...

x(m−2)1 x(m−2)2 . . . x(m−2)m


is equal to the length D of T .
We give an example to illustrate Conjecture 4.4 form = 5.

Example 4.5. Consider the equidistant 5-tree T of Fig. 4. In the boxes, the distances of the edges are
mentioned. Note that D = 37.
Following the notation of Conjecture 4.4, we have

x(j)1 (t) = aj(r, v) t
10
+ aj(v,w) t7 + aj(w, 1) t4,

x(j)2 (t) = aj(r, v) t
10
+ aj(v,w) t7 + aj(w, 2) t4,

x(j)3 (t) = aj(r, v) t
10
+ aj(v, 3) t7,

x(j)4 (t) = aj(r, u) t
10
+ aj(u, 4) t6,

x(j)5 (t) = aj(r, u) t
10
+ aj(u, 5) t6.
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Using a computer algebra system, one can see that the determinant of M is a polynomial of degree
37 in the variable t . Each of its coefficients is homogeneous of degree 5 in the numbers aj(e), with
j ∈ {1, 2, 3} and e an edge of T .
If we take the numbers aj(e) to be the first 24 = 3 × 8 prime numbers (i.e. a1(r, v) =

2, . . . , a3(u, 5) = 89), the determinant ofM has leading coefficient 3344.

Remark 4.6. In order to prove Conjecture 4.4 for a fixed value of m, one could follow the strategy of
Theorem 1.5. Indeed, the number t(m) of combinatorial types of equidistant m-trees is finite and for
each of these types, one can compute the determinant ofM and check whether its degree equals D.
In thisway,we can prove Conjecture 4.4 form = 5using a computer algebra system. For each of the

three combinatorial types of equidistant 5-trees, the determinant ofM can be computed, leaving the
randomnumbers aj(e) and the lengths l(e) of the edges as variables. This determinant (considered as a
polynomial in the variable t) has degree equal to the lengthD of the tree T and its leading coefficient is
a homogeneous polynomial cT of degree 5 in the numbers aj(e). If the tree T is binary, the polynomial
cT has 272 terms for the type corresponding to Example 4.5, and 144 terms for the other two types.
Note that the numbers aj(e) are sufficiently random if they don’t vanish for the polynomial cT . We can
conclude that the inclusion

φ(5)(G2,n) ⊂ G5,n ∩ φ
(5)(R(

n
2))

holds, i.e. Conjecture 4.1 form = 5.
On the other hand, the number t(m) grows exponentially, e.g.

t(4) = 2, t(5) = 3, t(6) = 6, t(7) = 11, t(8) = 23, t(9) = 46, t(10) = 98, etc.,

and for each of these types, the squarematrixM is of sizem; hence the computation of its determinant
gets more complicated when m grows. So this technique is not suited to proving Conjecture 4.4 for
everym. However, one can hope to find a proof by induction onm.
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