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One calls 8 = {xi):-, (a = --00 or b = fc0 is permitted) an E-$seudn- 
orbit for a homeomorphism f: X -+ X if the xi E X and satisfy 

d( f% f %+I) < E for all i E [a, b - 1). 

A point .I” E X S-traces x if 

d(fQ, Xi) < 6 for all i E [n, b]. 

Knowing that pseudo-orbits can be traced is useful information for under- 
standing the dynamics off. This idea will be used here to study the w-limit 
sets of Axiom Jl diffeomorphisms. We will also relate pseudo-orbits to known 
stability properties of these diffeomorphisms. 

1. w-IJMIT SETS 

A homeomorphismfi X -+ X is an abstract w-limit set if there is a homeo- 
morphism g: Y--f Y on a compact metric space and a y E I’ so that g j w(y) 
is topologically conjugate tof: X + X. Here 

w(y) = (z E Y: g”“y ----f z some n, -+ +co). 

THEOREM 1. A homeomorphism f: X-t X of a compact metric space is 
an abstract w-limit set ifl there is no open subset V of X with 

(a) U+ 0,X 

and 

(b) f(u) C int U. 

Proof. If fi X -+ X is an abstract w-limit set, then we may actually pick 
g: Y---f Y with XC Y, X = w(y) with y E Y, and f = g i w(y). Suppose V 
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was an open subset in X satisfying (a) and (b). Let 2~ = d(X\ U, f( rr>) > 0. 
Pick S < E so that 

4Yl) YJ -=c s * 49YlP gY*) < 6. 

Now there is an N so that d(gny, X) < S for all n > N, otherwise one could 
find a point in w(y)\X. Pick M > N with d(gAfy,f( g)) < E. Then 
d(g*y, x) < S for some x E X and then d(x, f( 0)) < 2~ and so x E i7. Then 

4Pf1Y, f(Q) < 4ghf+1Y,fX) < E- 

Inductively d(gmy, j(u)) < E for all m > M. This implies 

(x\U) c-l 4~) = 0, 

a contradiction. 
Now assume that f: X --+ X has no open subset U satisfying both (a) and 

PI- 

Claim 1. Let E > 0. For any x’, X” E X there is an I = [a, b] and an 
E-pseudo-orbit (xi}:==, with x, = x’ and xb = x”. 

Proof. Fix x’ and let V be the set of all x” for which the claim is true. 
Then V is open. Furthermore, if {x& is an E-pseudo-orbit with x, = x’ 
and x, near x E r, then (.v~}~~~ is an e-pseudo-orbit where xb+r = f (z); 
hence f (v) C V. We must now have V = 0 or X, V = X as x’ E V. 

Claim 2. Let E, E’ > 0. For any x E X there is an E-pseudo-orbit (x&~ 
with x, = xB = x and the set {xi : a < i < b} <‘-dense in X. 

Proof. Let ys = x, yr ,..., ym = x be &-dense in X. Then one can find 
e-pseudo-orbits {xi]:& with xai = yj and xb = yj+r for 0 < j < m. Rein- 
dexing we may assume bj = aj+l . Then {x~}?&: is what we want. 

Claim 3. Let E > 0. There is an E-pseudo-orbit _x = {x~}im,~~ with 

d(f~~,x~+r)-+Oas]iI-tco 

and w(z) = +c) = X. Here 

w(g) = {x E X: xi, -+ z some i, -+ +a}, 

a(g) = {.2 E x: xi, +,zsomei,+ --co>. 

Proof. Pick x E X. Let {xi}Fh be an e-pseudo-orbit with xarn = xr,, = x 
which is l/j m / + 1 - dense in”X. We may assume b, = a,, for every 
m E 2. Then {x~}E-~ works. 
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Claim 4. f: X -+ X is an abstract w-limit set. 

Proof. Let d be as in claim 3. For i E Z define 

(xi , l/Pi + 1)) 
pi = [(xi, l/-2i) 

for i >, 0 
for i < 0. 

Let Y=(Xx(0))~{p,:i~Z)CXx[0,1] and define g:Y-+Y by 
g(% O) = (fxl O>P A Pi) = Pi+1 * The properties of z imply that g is a homeo- 
morphism and w( p,,) = a( pa) = X x (0). 

Remark. The condition off says that f admits no nontrivial filtrations 
(see [9]). The above shows thatf: X -+ X is an abstract w-limit iff it is an 
abstract a-limit set. 

2. AXIOM A DIFFROMORPHISMS 

Let f: M-t M be a diffeomorphism of a compact manifold satisfying 
Smale’s Axiom A9 (see [9]). For 01 > 0 and x E M let 

WE+) = (y E M: d( fyv, f”X) < OL v n 3 01, 

np(~) = :y E: M: d(f-y,f-nx) d a v n 3 0). 
Then there are constants c > 0 and h E (0,1) so that when x E Q> the non- 
wandering set of x, one has (for small a) 

and 

y E Fv~s(x), n > 0 * d(fny,fnx) < cPd(y, x) 

y E Fvayx), n > 0 =s- d( f-ray, f-“x) < cA”d(y, x). 

This is part of the stable manifold theory of Hirsch and Pugh [5]. Further- 
more, for each small 01 > 0 there is a /3 > 0 so that 

Was(x) r\ W,“(y) consists of a single point and 

lies in D whenever x, y E 8 with d(x, y) < /3. 

This is a statement of canonical coordinates [9, p. 7811. 

LEMMA. Let f be an Axiom A di#eomorphism. For each S > 0 there is an 
E > 0 so that every +seudo-orbit g off j Q is S-traced by some x E 62. 
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PYOO~. Let a > 0 be determined later and /3 > 0 as in canonical 
coordinates above; assume j3 < 0~. Pick M large enough that cX% < 1312 
and then E > 0 so small that 

if {Y~}~:~ is an e-pseudo-orbit for f 1 Q, 

then d(fjy,, , yj) < p/2 for all j E [0, M]. 

Consider first an e-pseudo-orbit {~~}~~a with Y > 0. Define zcLM for K E [O, r] 
recursively by ~a’ = x,, and 

x(k+l)M = ttTmu(fM&) n ~$‘ms(“(k+l)M) E Q. 

This makes sense: d( f MxkM , f”xbhf) < ck% < /3/2 since 

and d(f”x,, , XQ,.+~)~) < /3/2 by the choice of E; so d(f”‘xLM , x(~+~)~) < j3 
and we can apply canonical coordinates. Now let x = f-‘“xiM . For 
i E [0, YM] pick s with i E [sM, (S + l)M). Then 

d(j?x, fi-SMx;M) < i d(f i--f.Mx;M ,fi-tM+M~;t-l,M) 
t=s+1 

T 

< c CaXtM-i < 
Cd 

t=s+1 
I--h’ 

where we use xiM E W,“( f hfx;t-uM). As 

X,M E wu”(xsM), d( f i--sM(X;M), fi-S*4xsM) < a; 

by the choice of E one has 

d( f i-“‘lfx,M , xi) < ,612. 

By the triangle inequality 

d(f%, xi) < 01 + /3/2 + colh/(l - h). 

For small a, this is less than 6. 
Now any E-pseudo-orbit {xJ&, extends to I = [0, YM] when 1-M > TZ 

by letting xi = fi+~, for i E (n, YM]. An x which S-traces this extended 
pseudo-orbit will S-trace the original one on [0, n]. If {x~}~==, is an <-pseudo- 
orbit, then {xj+,>j~~ is also and x a-tracing this one yields f -% which S-traces 
the first. Thus every c-pseudo-orbit on a finite interval is S-traced. Finally, if 
{xi}i”,-, is an c-pseudo-orbit, then let .1c fin) S-trace (xJ~=-~ and let x be the 
limit of some subsequence of the x(“)‘s. Then x S-traces (x~}:=-~ . 



w-LIMIT SETS FOR AXIOM A 1)IFFEOMORPHISWS 337 

Remark. The above result was stated by Sinai [8, p. 381 for the case of an 
Anosov Meomorphism and the proof in that case is a variation of something 
in [l]. The above proof is really in [2, p. 301 and [3, p. 3811. The above 
lemma is closely related to the specification property [3] which is relevant to 
the entropy theory off. 

THEOREM 2. Let f: M -+ M be an Axiom A difleomorphism and X C 52 
a compact f-invariant set which is an abstract dimit set. Then X = w(x) for 
some x E 8. 

Proof. Let _x be an c-pseudo-orbit forf 1 X as constructed in the proof of 
theorem 1 with w(x) = X. For 6 > 0, provided E is small enough, one can 
find x E Q S-tracing x by the lemma. Because d( fxi , xi+J + 0 as i--f ,xX), 
for any iV > 0 one can find a K so that 

d(fi+jx, f'Xi) < 26 for all j E [--JV~ N] 

whenever i > K. Now 2s is an expansive constant for f j 9 when 6 is small 
(i.e., when x # y are in Q, there is an IZ E 2 with d( f “x, f “y) > 26); this is 
what the statement W&(x) n W.&(,u) = (x} says. From expansiverress, for 
any 01 > 0 there is an N = N(U) so that 

y, z E Q, d(f:y, fiz) < 26 vj E [-Iv, N] 

=s d(y, x) < a. 

One sees now that d( f ix, xi) -+O as i -+ co. From this follows W(X) = 
w(g) = x. 

We remark that if f satisfies the no-cycle property (see [lo]), then any 
abstract w-limit set in M actually is in 53 and so the above theorem applies 
to it. Whether or notfhas cycles, all actual w-limit sets forfare contained in Q. 
If X, Y are abstract w-limit sets lying inside a single basic set J& of Q (see f9])$ 
then using the transitivity off j Q, one can get x E Qi with E(X) = Y and 
w(x) = x. 

We next see how to use pseudo-orbits to recover the fundamental neigh- 
borhoods of [4]. 

THEOREM 3[4]. Let f: M -+ M be an Axiom A difleomorphism. Tlzen Sz has 
a neighborhood U so tlzat n,,ZfnU = Q. 

Proof. Let 6 > 0 be small and pick e > 0 as in the lemma. Pick y < ~12 
so that 

x, y E M, d(r, y) < y 3 d(fx, fy) < c/2. 
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Let U = {z E A4: d(z, Q) < r}. If x E flnEZfnU, pick 4 ED so that 

qfiz, x,.) < y. 

Then 

d(fXi ) Xi+J < d(fx, , f”‘“?z) + d(f”‘%, xi+l) < 6; 

that is, {x~}:-~ is an e-pseudo-orbit. Let x E Q a-trace it. Then 

d( fix, fix) < y + 6 < 28 for all i 

and so 

z E J4Qx) n W&(x) = {x], 

i.e., x = x E Q. 
Pseudo-orbits can be viewed as orbits which arise when one adds stochastic 

perturbations to f or alternately if f is only approximately well-defined. That 
is, after applying f to the point xi one allows a small perturbation of fxi to 

%+1- In the Anosov case the average behavior of c-pseudo-orbits tends in 
some sense to a certain Gibbs measure as E-+ 0 [S, p. 37-39](this Gibbs 
measure is the smooth invariant measure if one exists). One expects similar 
behavior for Axiom A diffeomorphisms without cycles. Here, for any neigh- 
borhood U of Q’, there is an E > 0 so that every e-pseudo-orbit {xJF=-~ 
eventually lies in U(x, E U for large i), and then is S-traced by some point 
x E 9. Most pseudo-orbits should eventually be near attractors; a paper of 
Ruelle [7] makes it seem hopeful that the result of [8] mentioned above can 
be extended to attractors. 

Pseudo-orbits are related to stability theorems. Let U be a small neigh- 
borhood of Q and g: &I-+ A4 be a homeomorphism Co-near the Axiom A 
diffeomorphism f. Then for y E cl(g) = fin., f no one picks xi(y) E Q near 

f iy. Then {x~(Y>>~~=-~ will be an e-pseudo-orbit for f 152; this is just like the 
proof of Corollary 2. Let h(y) E Q S-trace fx~(y)}im_-, . Becausef ] Q is expan- 
sive, h(y) will be uniquely determined provided 6 is small enough. From 
expansiveness will also follow that h: A(g) + .Q is continuous. It is easy to 
check that fh = ?zg. Nitecki [6] showed that h is a surjection. Walters [l l] did 
this first for Anosov f; in this case one can conclude that lz is surjective 
because it is CO-near the identity and defined on all of the manifold il4. 

In case g is Cl-nearf, g is also Axiom A. Because the stable and unstable 
manifolds of g vary Cr-continuously as g varies Cl-continuously [5], the same 
E’S and S’s above can be used for g also. One then gets h*: D = fl( f) -+ A(g). 
Now x’ = Ah*(x) E 52 has the property that 

d( f i(x), fi(x’)) is small for all i; 



w-LIMIT SETS FOR AXIOM A DIFFEOMORPHISMS 339 

by expansiveness x’ = X. Similarly h*h = id,(,) and we conclude that 
h: ./l(g) + Sz is a homeomorphism. This is the local part of Q-stability 
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