View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF DIFFERENTIAL EQUATIONS 18, 333-339 (1975)

w-Limit Sets for Axiom A Diffeomorphisms
Rurus BoweN

Depariment of Mathematics, University of California, Berkeley, California 94720
Received November 10, 1973

One calls ¥ = {x;}?_, (@ = —0 or b = o0 is permitted) an e-pseudo-
orbit for a homeomorphism f: X — X if the x; € X and satisfy

d(fx;, x;4) < € forall iefa, b— 1)
A point x € X S-traces x if
d(fix, x;) <6 forall 7elq, b].

Knowing that pseudo-orbits can be traced is useful information for under-
standing the dynamics of f. This idea will be used here to study the w-limit
sets of Axiom 4 diffeomorphisms. We will also relate pseudo-orbits to known
stability properties of these diffeomorphisms.

1. w-Livrr Sers

A homeomorphism f: X — X is an abstract w-fmit set if thece is a homeo-
morphism g: ¥ — Y on a compact metric space and a y € Y so that g | w(3)
is topologically conjugate to f: X — X. Here

w(y) = {g € Y: g™y — 2 some n, — -+0}.

Treorem 1. A homeomorphism f: X — X of a compact metric space is
an abstract w-limit set iff there is no open subset U of X with

U+ 2,X
and
b) F(U) Cint U.
Proof. If f: X — X is an abstract w-limit set, then we may actually pick
gY—>YwithXCY, X =o(y)withyeY, and f = g| w(y). Suppose U
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was an open subset in X satisfying (a) and (b). Let 2¢ = d(X\U, f(UT)) > 0.
Pick 8§ < €50 that

d(y1,y2) <& = d(gyy,gy,) < e

Now there is an N so that d(g?y, X) << 8 for all # >> N;; otherwise one could
find a point in w(y\X. Pick M > N with d(gMy, f(U)) < e Then
d(gMy, x) < 8 for some x € X and then d(x, f(U)) < 2¢ and so x € U. Then

d(gMy, f(0)) < d(gM+ly, fx) < e.

Inductively d(g™y, f(U)) < e for all m > M. This implies

EU) N w(y) = 2,

a contradiction.
Now assume that f: X —> X has no open subset U satisfying both (a) and

(b)-
Claim 1. Let € > 0. For any &', " € X there is an [ = [q, §] and an
e-pseudo-orbit {x;}?_, with x, = &’ and x, = a”.

Proof. Fix x" and let V be the set of all " for which the claim is true.
Then V is open. Furthermore, if {x;}?_, is an e-pseudo-orbit with x, = &’
and x, near ze€ V, then {x;)2'} is an e-pseudo-orbit where x,,, = f(2);

hence f(V)C V. Wemustnowhave V = g or X; V = Xasa' e V.

Claim 2. Let e, ¢ > 0. For any x € X there is an e-pseudo-orbit {x;}?_,
with x, = x, = x and the set {&; : @ < 7 <{ b} ¢'-dense in X.

Proof. Let yo = %, ¥y yesy Y = % be €’-dense in X. Then one can find
e-pseudo-orbits {x;};%, with x, = y; and x, = y;,, for 0 <j < m. Rein-
dexing we may assume b; = a;,; . Then {x,.}’;:;; is what we want.

Claim 3. Let € > 0. There is an e-pseudo-orbit ¥ = {x;};- . with
d(fx;, x;)—0as 2| — 0
and w(x) = ofx) = X. Here
w(x) = {3 € X: x; ~—> = some i, — -0},
o(x) = {z € X: x; — = some i, — —00}.
Proof. Pick x e X. Let {x; :.’;"am be an e-pseudo-orbit with ¥, = x, =«

which is 1/} m | + 1 — dense in X. We may assume b,, = a,,,, for every
me Z. Then {x;};? _,, works.
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Claim 4. f: X — X is an abstract w-limit set.

Proof. Let x be as in claim 3. For { € Z define

Cf(x, 1Qi+1)  for i=0
e (x5, 1/—27) for 7 < Q.

Tet V=X x{0)U{p;:ieZ}CX x[0,1] and define g: Y —Y by
g(x, 0) = (fx, 0), g( p)) = Pis1 - The properties of x imply that g is a homeo-
morphism and w( pg) = o po) = X X {0}

Remark. The condition of f says that f admits no nontrivial filtrations
(see [9]). 'The above shows that f: X — X is an abstract w-limit iff it is an
abstract a-limit set.

2. AxioM A4 DIFFEOMORPHISMS

Let f: M — M be a diffeomorphism of a compact manifold satisfying
Smale’s Axiom 4 (see [9]). For « > Q0 and x € M let

Wix) ={yeM:d(f™y, fx) < aVn =0}
Wi(x) = {yeM:d(fy, f"x) < aVn >0}

Then there are constants ¢ > 0 and A (0, 1) so that when x & 2, the non-
wandering set of x, one has (for small «)

ye Wi (x), n =0 = d(f, frx) < cA"d(y, x)
and
y € WH(x), n = 0 = d(f~"y, f~"x) < cA"d(y, ).

This is part of the stable manifold theory of Hirsch and Pugh [5]. Further-
more, for each small « > 0 thereis a § > 0 so that

W3 (x) N W () consists of a single point and
lies in 2 whenever x, v € Q with d(x, ¥) < 8.

This is a statement of canonical coordinates [9, p. 781].

LevMa. Let f be an Axiom A diffeomorphism. For each 8 > O there is an
€ > 0 so that every e-pseudo-orbit x of | 82 is 3-traced by some x € Q.
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Progf. Let o >0 be determined later and B >0 as in canonical
coordinates above; assume f < «. Pick M large enough that cAMa < 8/2
and then e > 0 so small that

if {¥}, is an e-pseudo-orbit for f| 2,
then d(f%y, , y;) < B/2 for all j [0, M].

Consider first an e-pseudo-orbit {x,};% with » > 0. Define x},, for k & [0, r]
recursively by x,” = x, and

Xyne = W' (FM%ar) O W (g ar) € 2.
This makes sense: d( fMxy,, , fM¥a) << cAMa <C B2 since
x;cM € I{las(ka)

and d(fMxiy , Xrna) << B/2 by the choice of €; s0 d(fMxy,, , Xgom) < B
and we can apply canonical coordinates. Now let x = f~"Mx/, . For
1[0, rM] pick s with i € [sM, (s + 1)M). Then

,_
Afin M) < Y A Miar, S )
t=s+1

7
< Z caAtM——z <
t=s+1

caA
1—2A°

where we use x;,, € W, “( fMx{;_y)p)- As
Xorr € Woi(%sng), ACF T Man)s fManr) < o3
by the choice of € one has
d(frMxg,, , %) < B[2.
By the triangle inequality
d(fix, x;) < o+ B2 + cad/(1 — A).

For small «, this is less than 3.

Now any e-pseudo-orbit {x;}!, extends to I = [0, »M] when vM = n
by letting x; = f*~"x, for i€ (n, ¥M]. An x which S-traces this extended
pseudo-orbit will 8-trace the original one on [0, #]. If {x,}2_, is an e-pseudo-
orbit, then {x;, ,}2=§ is also and x 8-tracing this one yields f~%x which 3-traces
the first. Thus every e-pseudo-orbit on a finite interval is 8-traced. Finally, if
{%}2 . is an e-pseudo-orbit, then let x'™ &-trace {x;};*_,, and let x be the

limit of some subsequence of the x(™)’s. Then x 8-traces {x; )50 ., -
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Annany diffeamaornhism and the nroof i
LAIEJOUY WLUUIIL\ILFLLLULLL CAALMA Liiw tJL\I\lJ. i

in [1]. The above proof is really in [2, p. 30] and [3, p. 381]. The above
lemma is closely related to the specification property {3] which is relevant to
the entropy theory of f.

Remark. The above result was stated by Sinai [8, p. 38] for the case of an
n that case is a variation of something

TusoreMm 2. Let f: M —> M be an Axiom A diffeomorphism and X CQ
a compact f-invariant set which is an abstract w-limit set. Then X = w(x) for
some x € £2.

Proof. Let x be an e-pseudo-orbit for f| X as constructed in the proof of
theorem 1 with w(x) = X. For § > 0, provided ¢ is small enough, one can
find x € £ S-tracing x by the lemma. Because d{ fx;, x,;) — 0 as i — 0,
for any N > 0 one can find a K so that

d(fitix, fin) <25  forall je[—N,N]

whenever £ 2> K. Now 28 is an expansive constant for f| {2 when § is small
(i.e., when x = y are in £, there is an # € Z with d( ", f*y) > 28); this is
What the statement Wj(x) N WZ(x) = {x} says. From expansiveness, for
any a > 0 there is an N = N(a) so that

y, 2€8, d(fiy, fiz) <28Vjie[—N, N]
=>d(y, 2) < a

One sees now that d(fix, x;)—0 as ¢ — co. From this follows w(x) =
w(x) =

We remark that if f satisfies the no-cycle property (see [10]), then any
abstract w-limit set in M actually is in £ and so the above theorem applies
to it. Whether or not f has cycles, all actual w-limit sets for f are contained in .
1f X, Y are abstract «-limit sets lying inside a single basic set £2; of @2 (see [9]),
then using the transitivity of f|Q; one can get x € 2; with «(x) = ¥ and
w(r) =

We next see how to use pseudo-orbits to recover the fundamental neigh-
borhoods of [4].

Tureorem 3(4]. Let f: M — M be an Axiom A diffeomorphism. Then Q has
a neighborhood U so that (\,.zf"U = Q.

Proof. Let 8 > 0 be small and pick ¢ > 0 as in the lemma. Pick y < ¢/2
so that

v, yeM, d(xy) <y =d(fx fy) < 2.
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Let U= {zeM:d(z, Q) <y} If 2€ ez f"U, pick %, 2 so that
d(fiz, x;) <.

Then
d(fasy %y4q) < d(fag, fi42) + d(fiHl2, x;4) < e

that is, {x,}; _, is an e-pseudo-orbit. Let x € 2 8-trace it. Then
d(fix, fiz) <y +6 <28 forall ¢

and so
z € Was(x) N Wiy(x) = {x},

le., 2 =xecf.

Pseudo-orbits can be viewed as orbits which arise when one adds stochastic
perturbations to f or alternately if f is only approximately well-defined. That
is, after applying f to the point &; one allows a small perturbation of fx; to
%;,4 - In the Anosov case the average behavior of e-pseudo-orbits tends in
some sense to a certain Gibbs measure as e — 0 [8, p. 37-39](this Gibbs
measure is the smooth invariant measure if one exists). One expects similar
behavior for Axiom 4 diffeomorphisms without cycles. Here, for any neigh-
borhood U of £, there is an € > 0 so that every e-pseudo-orbit {x;}7
eventually lies in U(x; € U for large 7), and then is 8-traced by some point
x € 2. Most pseudo-orbits should eventually be near attractors; a paper of
Ruelle [7] makes it seem hopeful that the result of [§] mentioned above can
be extended to attractors.

Pseudo-orbits are related to stability theorems. Let U be a small neigh-
borhood of 2 and g: M — M be a homeomorphism CP®near the Axiom 4
diffeomorphism f. Then for y € A(g) = (V,ezf™U one picks x,(y) € 2 near
fy. Then {x,( )} _ Will be an e~-pseudo-orbit for f| 2; this is just like the
proof of Corollary 2. Let &(y) € £2 6-trace {x,(¥)}i-._, - Because f | £ is expan-
sive, A(y) will be uniquely determined provided 8 is small enough. From
expansiveness will also follow that %: A(g) — £2 is continuous. It is easy to
check that f& = Ag. Nitecki [6] showed that % is a surjection. Walters [11] did
this first for Anosov f; in this case one can conclude that % is surjective
because it is C-near the identity and defined on all of the manifold M.

In case g is Cl-near f, g is also Axiom A. Because the stable and unstable
manifolds of g vary Cl-continuously as g varies C-continuously [5], the same
€’s and 8’s above can be used for g also. One then gets 2%: 2 = A( f) — A(g).
Now & = hh*(x) € £2 has the property that

d( fi(x), fi(x")) is small for all 7;
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by expansiveness &’ = x. Similarly A%k = id,,) and we conclude that

h:

A(g)~—> 2 is a homeomorphism. This is the local part of Q-stability

(10}, [51.

j )

10.
1.
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