Worldwide trends in the development of education and academic research, 15 - 18 June 2015

Trends in the Development of Higher Education in the Field of Service

Larisa Sumzina*, Alexander Maximov, Oleg Golubev, Anatoliy Litvinenko, Andrey Golubev

Russian State University of Tourism and Services Studies, 99 Glavnaya Street, Cherkizovo, Pushkin District, Moscow region, 141221, Russia

Abstract

The paper is dedicated to identifying the modern requirements for competencies that graduates of main educational programs in the direction of training "Service" have to possess. Competences of graduates are the research object, and their significance was evaluated by groups of respondents – representatives of the professional community, graduates, academic community of higher education institutions bringing into life the educational programs of the direction "Service".

The methodology of the research is based on using the experts evaluation empirical method carried out as questionnaire survey of a sampling of the respondents – representatives of the professional community, graduates, academic community.

Factors have been singled out that determine the designing of modern educational process technologies. Studies were conducted to reveal the requirements for graduates on the part of representatives of the professional community, graduates, academic community. The analysis of results of the study has demonstrated that applied orientation competencies – production and technological, service-related ones – are preferable in the professional activity in the sphere of service. Recommendations have been elaborated on using the research results in developing the educational programs and importance of partnership with profile companies in implementing the applied bachelor's degree educational programs is stressed.

© 2015 The Authors. Published by Elsevier Ltd.

Keywords: educational program; technology of education; competence; bachelor; service

1. Introduction

Technology of education significantly influences the quality of the educational process, the most efficient
and effective option should be selected by considering space-time and meaningful characteristics.

There are many different variants of the process of education, the sequence of its stages from the initial one to the completion; there are many options and combinations of specific tasks. Among the most important there are: the acquisition of knowledge, skills, development of experience, development of abilities, and mastering the skills of professional activity.

The technology of education describes various distribution of effort, attention and resources in the implementation of the educational process. All this indicates that given the multiple variants of the technology of the educational process, the choice of it is a determining factor in ensuring its effectiveness and quality.

The technology of education is a sequence of tools for deepening the students' knowledge, strengthening their long-term memory, controlling mastery of the material, ensuring the rhythm and intensity of the educational process, the potential distribution of teaching staff by types and areas of knowledge, and throughout the chain for preparation and presentation thereof. Technology of education determines the requirements for differentiation and integration of disciplines, including their volume ratio.

Priorities in teaching methods and selection of an instructional techniques combination also reflect the technological features of the educational process. Today we can observe the technological diversification of modern education. It manifests itself in the use and emergence of a variety of combined technological schemes of the educational process and expands the range of choices or a combination of such schemes.

We would like to provide a brief list of technological schemes which are the most common in modern educational process. First of all, they include the technologies of knowledge presentation and obtaining which are quite obvious in distance learning courses. However, more efficient technologies involve more than simply obtaining the knowledge but rather mastering it. They are inherent in full-time education to a greater extent. Although very often full-time education is not built on the principles of formation of professional consciousness by using the technological features, but merely on simplistic principles of knowledge supplying and control of obtaining thereof.

There are technologies of practical training which are very common abroad and have become increasingly popular in recent years in Russian higher education. Their main feature is acquisition and development of skills of efficient practical activity. Meanwhile, insufficient basic training becomes obvious that must be accompanied by practical training in the future professional career area.

In connection with the emergence of new technical means and trends of their use in the educational process, information and computer technology education are widely used. They have a great potential to improve the quality of education, but the efficient implementation of this potential remains an important issue.

There are technologies of self-education and distance learning the demand of which is now increasing due to the importance and necessity of continuing education throughout one's entire work activity. And it is not just self-study in the learning process; it is the process of consistent obtaining, supplementing or correcting the knowledge. It can also be seen as a kind of distance education and as a special self-development and self-improvement technology motivated in the usual educational process.

Educational institutions can implement both the subject professionalization technology and target education one. They differ in many features: in the set of disciplines, in procedures, and the monitoring system of the educational process.

Anyway, technological diversification of modern education is a reality and, apparently, the diversity of technological schemes of the educational process will increase in the future. Therefore, further complication of problems of alternatives choice, potential distribution, prioritizing, evaluating one's chosen occupation is to be expected.

The principle of systematic monitoring of the quality of education is based on the use of control points in studying subjects of professional cycle in the form of tests, business games, computer simulations, group projects performance and defense. In this way, formation of a certain level of professional competency of students is carried out on the basis of multi-criteria assessment.

2. Objectives, methodology and research design

The purpose of the study is to identify modern requirements for a set of required professional competencies of graduates of basic educational programs in service as the field of training.
The object of research is the competence of graduates the significance of which was evaluated by representatives of the professional community, graduates, academic community of higher education institutions that implement educational programs in the direction of service.

The research design is based on the use of empirical method of expert evaluations realized in the form of a questionnaire survey on a sample of respondents selected from the representatives of the professional community, graduates, and academic community of higher education institutions.

The stages of the research are as follows:
- Allocation of factors determining the design of modern technologies of the educational process;
- Consideration of the technological characteristics of the educational process on the basis of competency-based approach;
- Analysis of the current trends in the development of higher education in the field of service;
- Study in order to identify the requirements for graduates from the representatives of the professional community, graduates, academic community of higher education institutions that implement educational programs in the direction of service;
- Analysis of the results;
- Guidance on application of research results in the implementation of educational programs in the direction of service.

3. Discussion of the research outcomes

Based on the recent publications (Asrieva, 2013; Lozano, Boni, Peris & Hueso, 2012; Andreev, 2010), it is possible to identify a number of factors that determine the choice of technology and design of the educational process:

1. The levels of education and technological features of cycles for each of them. There have to be a fundamentally different technologies of education by specialty schemes for undergraduate and graduate students. They assume various technological approaches which are defined not only by time but also by meaningful and productive parameters. Often all the difference for undergraduate students and specialists is only seen in the duration of training and at the best - in the variety of disciplines. In fact, there should be various technologies of education focused on the different ways and means and the results of formation of professional consciousness.

2. The composition, nature and sequence of developing the disciplines of the educational program is also a major factor of the education technology. The system involves differentiation of professional knowledge not only in their areas of expertise but also in many other characteristics, such as the degree of formalization, teaching opportunities, role in professionalization, freedom of choice. These are also signs of disciplines distribution according to stages of the educational process. And it is on this that the distribution professional knowledge configuration formed in the human mind depends. Incorrect or erroneous technologies can distort professional consciousness at the very essence of professional activity. We should think about the harmony of professional consciousness and the relevance of current conditions and needs of efficient professional activity. It is also important for distribution of disciplines according to stages of professional consciousness formation among which the general cultural, methodological, general occupational, special, and functionally specialized stages can be listed.

3. The complexity of the educational process and the types of loads calculated on valeological ("valeo" – healthy in Latin) norms and psychological orientation for serious and productive work. For example, an insignificant weekly load with bad organization of independent work reduces the quality of education, and, conversely, the enormous load of the student and the teacher leads to the search of relief, easy variants of educational activities. It is very important that load be even for both, student and teacher.

4. Utilization of step-by-step control which involves testing of not only knowledge but also stability thereof, coupling of the accumulated knowledge, the possibility of their analytical use, the impact on the typology of thinking. Technology of modern education does not exist without the respective fund of assessment tools. Change and improvement of the assessment tools are one of the requirements of technology of education.

5. Rhythm of the educational process construction which manifests itself in the distribution of the teaching load, forms of employment, the frequency of monitoring, the number of academic disciplines, the volume of independent work of students. The intensity of the educational process, the possibility and the need to dive into the problems of academic disciplines is very close to this feature.
6. Methodical integration in the development of various disciplines of the curriculum. New advanced techniques, such as case studies, role-playing, group projects and other interactive forms are currently in use in some disciplines but they should be used in virtually all disciplines. This affects the technological characteristics of the educational process making it uneven in terms of development results.

7. The motivational component in the educational activity also plays an important role in selection and design of technology education.

Let us identify the main features of technology of education as a decisive factor in its implementation and the quality [4].

1. Volumetric, informative, methodical combination of knowledge from various educational fields: humanities, natural science, of general and special. The combination of fundamental and practical orientation allows for increase of quality indicators.

2. The sequence of development of the concept of professional practice, the formation of professional consciousness at all stages of theoretical and practical training.

3. Methodical diversification due to the goal of education rather than random attempts to develop new instructional techniques.

4. The system of monitoring the quality of education aimed at the formation of professional consciousness.

5. Subject and system of motivation of the educational process: motivation of both student and teacher; continuity, personality, teamwork, creativity, systemic thinking, culture, ethics, and other components.

6. Options of the educational process, availability of choice, correction of the educational trend.

7. Uniform loading of teachers and students throughout the entire period of study.

8. The rhythm of training load.

9. The complexity of the educational process, balanced valeological norms and psychological orientation for serious work.

10. The intensity, possibility and necessity to dive into the problems range of the educational course.

11. The priorities in the quantity of credits, methods, continuity of the disciplines.

The quality of higher education largely depends on the technology of the educational process. It reflects the essential characteristics of the formation of a complex of knowledge, professional identity, culture, and practical work experience (Baidenko, 2004). Some of the technological characteristics of the educational process are presented in Table 1.

<table>
<thead>
<tr>
<th>Educational Technology</th>
<th>The sequence of courses</th>
<th>The combination of disciplines</th>
<th>The methods of presentation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From general to particular</td>
<td>1. Knowledge and skills</td>
<td>1. Independent work</td>
<td>1. Duration</td>
<td></td>
</tr>
<tr>
<td>2. From particular to dedicated</td>
<td>2. Skills and abilities</td>
<td>2. Tutoring (consultation)</td>
<td>2. Load</td>
<td></td>
</tr>
<tr>
<td>3. From fundamental to the specific</td>
<td>3. Knowledge and skills</td>
<td>3. Classroom study</td>
<td>3. Distribution</td>
<td></td>
</tr>
<tr>
<td>5. From characteristics of the activity to professionalism</td>
<td>5. Education and skills</td>
<td>5. Control system</td>
<td>5. Rhythm</td>
<td></td>
</tr>
</tbody>
</table>

Modern education development trends of such a relatively new for our country direction of training as Service require the implementation of appropriate technologies which will ensure a level of training corresponding to the needs of the sphere of service.

It requires renovation of the system via the transition from the old system of stating to the new schematic of advancing interactive learning (Kudrina & Bedin, 2013). Implementation of the scheme should start with the profile of professionalization training. The problem is that trends and processes of formation of professional skills, professional approaches, and estimates can be given without special training. So one can have special knowledge but be unprepared for the efficient professional activity. The problem of the professionalization of training specialists is one of shortening his professional adaptation practices due to optimizing technology of the educational process. For example, in the direction of the service, education is required to teach the processes of design services in various areas of service. This kind of problem poses fundamentally new challenges in technology of education. This should be a practical understanding of the problems, the use of online forms, simulation case studies, acquisition of
knowledge in performance of group projects, undergoing all practice studies. Formation of such education technology reflects the needs of formation of professionalism for further work in the modern market.

Based on the above, we can formulate a number of principles for construction of modern educational technologies (Senashenko, 2009).

The principle of individualization of learning is based on the conversion of the obtained in the learning process information into a motivated professional intellectual consciousness. Knowledge cannot be efficient in one's professional activities unless accompanied by the formation of relevant skills. Professional knowledge must be formed in the process of students' intense individual mental work.

The principle of indirect non-formal education helps to activate the intellectual and creative thinking related to one's attitude towards the chosen profession.

The group principle (using multiple participants) of interactive educational technologies of training involves formation of the service specialist's learning process for identifying the skills and forming the demand for services, modeling, design, process design, performance evaluation of suppliers.

Knowledge of a specialist in the field of service may be varied in depth, depending on one's need for the profile of training and the system of interaction accompanied by obtaining practical skills. Each discipline of the curriculum should be focused on the end result of training and a specific function in the professional consciousness. Functional goals and differentiation of different knowledge play a very important role in ensuring the quality of education which is determined by combination of mentioned factors (Gushchin, 2012).

During the process of education a human forms a certain type of thinking. This occurs under the influence of the structure of knowledge, methods of development thereof, individual personality traits, education technology, and social attitudes. Some disciplines or groups form of knowledge in the form of a deep understanding of the subject, others only give a general idea, and yet others contribute to the development of creativity.

The result of education cannot be considered only by the parameters of knowledge, skills, and abilities. Among other things, the education process involves development of human capabilities. Abilities are natural, developed or well-acquired human qualities enabling one to effectively use the knowledge, skills and abilities. The result of education also consists in the extent to which one learns his personal capacity, has developed and acquired new abilities. Abilities are various, too, and are formed in various ways. The quality of education is manifested in the structure of developed and acquired abilities which include natural, developed, uncovered, and acquired, the ability to perform activities, as well as personalized abilities.

The results of education refer to the readiness for specific situations of professional occupation. This commitment is manifested in attitudes, psychological settings, the successful realization of opportunities or critical situations, and the formation of expectations. Being ready for anything is a psychological setting, awareness state, a set of expectations that can also be different, for example, to the kind (functions) of activities, to roles, to take risks, to stress, to a career, to power (authority) to communication (Zeer, Pavlova & Symaniuk, 2005).

Orientation of education to the end result such as the training of professionals in demand for today's job market is only possible on the basis of competency-based approach. The main task of formation of professional competence is the ability to understand and solve problems in such occupations in the service as management, research and development, production and technology; service (Sumzina, 2008; Ananieva et al., 2010).

In order to identify the requirements for results of implementation of educational programs in the direction of service, studies have been conducted to identify the requirements for graduates on the part of representatives of the professional community, graduates, academic community of higher education institutions that implement educational programs in the field of service.

The questionnaire given below was used as a main research tool for debate on the skills and competencies of graduates (Annex 1).

The survey provides fairly reliable information, since it includes specific questions the answers to which help rank competencies according to their relevance for the representatives of the professional community, graduates, academic community of higher education institutions.

The objectives of the questionnaire can be summarized as follows:

1. The necessity to assess the significance of competencies at the level of the professional community, graduates and academic community towards training in service.

2. The assessment of the degree of readiness of higher education institutions to build professional educational trend based on the competency-based approach, professional community and to choose the necessary competencies
of young specialists, graduates to assess the level of their training for professional work.

The questionnaire (Table 2) included 3 general professional competencies and 12 professional competencies that are divided into groups as follows:

1. General Professional Competencies – 20.0 % (3)
2. Professional Competencies – 80.0 % (12):
 - Organizational structure and management – 13.3 % (2);
 - Science and research – 20.0 % (3);
 - Production and technology – 13.3 % (2);
 - Service-related ones – 33.4 % (5).

The respondents were asked to suggest additional professional competencies which they deem necessary for the students.

The collection of information in the course of research was conducted from primary sources on the basis of the sampling method by decoding profiles in the survey of graduates, employers and the academic community of higher education institutions implementing a system of higher education in the field of service.

In order to improve the representativeness of the results of the study, the choice of universities participating in the survey was carried out according to their territorial and geographic location and the quantity of graduates in the field of service.

To join the survey, the universities participating in the study had to comply with the following requirements:

1. The questionnaire survey of representatives of the professional community involves the following objectives:
 - To obtain information from managers of service companies and their subdivisions;
 - To use of the selection criterion of the employer: it is already practiced by hiring or planned future invitation to work in this direction of university graduates completing their training in the field of service;
 - To maintain a balance between the different types and kinds of service activities of employers.

2. The questionnaire survey of graduates involves the following objectives:
 - To cover the graduates who have graduated from university during the latest 2-5 years, since the graduates who found employment right after graduation are the most interesting for our study;
 - To use a random selection method of graduates;
 - To receive information from the questionnaire provided by graduates.

3. The questionnaire survey of academic community involves the following requirement:
 - Each institution should provide information on the heads of departments, professors, and associate professors engaged in substantive graduate training in the field of service.

In the questionnaire survey, the respondents had to assign the degree of importance to each of the 15 professional competencies.

For answering, the respondents were offered the following rating scale of competencies:

1 - Almost irrelevant;
2 - Minor importance;
3 –Major importance;
4 –Extremely high importance.

The methodology of the research was based on the use of cluster sampling scheme, as the respondents from the academic community and service companies were combined into groups within their organizations.

The questionnaire survey was conducted during May – June 2013. It covered the total of 69 representatives of the professional community of the scope of service, 117 graduates, and 86 representatives of the academic community.

The method selected has allowed extending the questionnaire survey to the respondents located in various subjects of the Russian Federation who have similar dynamics of business activity in the sphere of service.

The areas under study included such cities and towns as Moscow, Saint-Petersburg, Chelyabinsk, Kaliningrad, Penza, Shakhty (Rostov Region), Belgorod, Petropavlovsk-Kamchatskiy, and Omsk. Higher education institutions performing training in the direction of Service took part in the survey, in particular: Russian state university of tourism and service, Moscow state machinery university (MAMI / MSMU), Saint-Petersburg state university of economics, South-Urals state university, Immanuel Kant Baltic federal university, Penza state university, the Service and business institute (a branch of Don state technical university), Belgorod university of
cooperation, economics and law, Petropavlovsk-Kamchatskiy branch of Russian state university of tourism and service, and Omsk state service institute.

In order to participate in the questionnaire survey, the higher education institutions had to comply with the following requirements: to conduct a poll and submit forms of not less than 7 employer organizations from the sphere of service, not less than 10 graduates of Service training direction having speciality work experience of not less than 2 years, and not less than 9 teachers engaged in the academic process in the direction Service.

The findings obtained by the average value of each of the groups of respondents are shown in Figure 1.

![Figure 1: The results of evaluation of competencies according to service representatives of the professional community, graduates and academic community](image)

The analysis of the results (Fig. 1) leads to a number of conclusions.

The highest point of the importance for all groups of respondents was given to competencies PC-5 PC-6, PC-7. As for the production and technological competencies PC-6 and PC-7, there was observed almost complete coincidence of views. Service-related competencies PC-9, PC-10, PC-11, and PC-12 are recommended by virtually everyone. Competencies PC-11, PC-12 with a total appreciation have shown a significant difference of opinion: they have been valued higher (average score of 3.8 and 3.7) by the professional community and lower – (scoring 3.36 and 3.42) by the academic community.

Therefore, we can conclude that the applied orientation competencies - production and technology, service-related ones - are preferred in professional activities according to all groups of respondents. These kinds of professional competencies are provided for in the program of applied bachelor's degree in the field of service, so it is necessary to develop this educational program. The opinion of representatives of employers means that graduates of applied bachelor's degree programs are in demand in today's job market.

The respondents have identified research competencies PC-3 and PC-4 as the least significant ones. This opinion indicates that it is advisable to form these competencies in master's programs. An exception was the competency of the PC 5 (readiness to perform innovative projects in service) which has received high evaluation by both representatives of professional and academic communities. Representatives of graduates appreciated this competency 15% lower, which means they have little experience in implementing the innovative projects in their professional activities.

Some respondents (only 91 out of 272 respondents) have supported the proposal to formulate a new professional competency. An analysis of the proposals shows that the greatest convergence of views was observed for three formulations of additional competencies: APC-1 - a willingness to planning, organization of the team and project management, the APC-2 - a willingness to use energy-saving and energy-efficient technologies in their
professional activities, APC-3 - readiness to the business organization in the field of service.

These additional competencies are in line with modern trends in the training of specialists in the field of service (Fedulin et al., 2007; Sumzina et al., 2012) and will be included in the curricula of undergraduate programs in the field of service.

4. Conclusion

The results of these studies have shown that competencies of applied orientation such as production, technology and service-related ones are preferred in professional activity according to representatives of the professional community, graduates, academic community of higher education institutions. These kinds of professional competencies are provided for in the program of applied bachelor's degree in the direction of service. Based on the results of the assessment of competencies in the direction of service by representatives of the professional community, graduates and academic community, we can conclude that there is the need in practically oriented programs of applied bachelor's degree. For the implementation of the programs of applied bachelor's degree, it seems appropriate to create multipurpose centers of applied qualifications based on universities in partnership with the relevant service companies.

Multifunctional centers for applied qualifications may be structural units of the university whose activities are focused on acquisition of practical skills by students in the production environment. This form of partnerships between universities and specialized companies allows ensuring practice-oriented training of students when implementing the basic educational programs of applied bachelor's degree in the field of high-tech multi-service, as well as other professional programs developed in accordance with professional standards.

Launching the centers of applied qualifications in various regions will contribute to the formation of clusters on the basis of educational resource optimization of regional systems of vocational education, thus creating conditions for implementation of investment projects.

For an efficient application of the centers of qualifications, it is crucial to integrate the qualified teachers and university experts with specialized service companies having many years of successful experience in practical work. Such an approach would create a regional infrastructure of training and retraining, ensure the expansion of the list of programs up to the needs of enterprises, solve the problem of training with the use of innovative educational and production technologies. Partnerships with companies specialized in the operation of applied qualifications centers will ensure coordination with industry employers, educational programs, modules, control and evaluation of funds and create conditions for the successful employment of graduates.

Appendix A.

Questionnaire for assessing the significance of professional competencies

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Wording of competency</th>
<th>Estimation of importance of the competency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>GPC-1</td>
<td>Ability to solve standard tasks of professional activities on the basis of the information and bibliographic culture using information and communication technologies and taking into account the basic requirements of information security, to use various sources of information on the service facility</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GPC-2</td>
<td>Willingness to develop service process technology, systems of customer relationships proceeding from the consumer’s requirements</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GPC-3</td>
<td>Willingness to organize the process of service, to carry out selection of resources and means to meet the consumer's requirements</td>
<td></td>
</tr>
</tbody>
</table>

Professional Competencies
<table>
<thead>
<tr>
<th>Organizational structure and management:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. PC-1 Readiness for organizing a contact zone of the service enterprise</td>
</tr>
<tr>
<td>5. PC-2 Readiness to plan production and economic activity of the service enterprise depending on market conditions and consumer demand change, including consideration of the state social policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science and research:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. PC-3 Willingness to study scientific and technical information, domestic and foreign experience in service activities</td>
</tr>
<tr>
<td>7. PC-4 Willingness to participate in research of consumer's social and psychological particularities, with national, regional and demographic factors borne in mind</td>
</tr>
<tr>
<td>8. PC-5 Readiness to implement innovative projects in the field of service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production and technology:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. PC-6 Readiness for the use of modern technology in providing services that meet customer requirements</td>
</tr>
<tr>
<td>10. PC-7 Readiness for the development of service delivery process, including in accordance with the requirements of the consumer, based on the latest information and communication technologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service-related competencies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. PC-8 Ability to diversify the service activities in line with the ethno-cultural, historical and religious traditions</td>
</tr>
<tr>
<td>12. PC-9 Ability to select and take into account the basic psychological particularities of consumers within service activities</td>
</tr>
<tr>
<td>13. PC-10 Readiness to perform examination and (or) diagnostics of service facilities</td>
</tr>
<tr>
<td>14. PC-11 Readiness to work in the consumer contact zone, to counsel, agree the type, form and scope of service process</td>
</tr>
<tr>
<td>15. PC-12 Readiness for performing the service process quality control, process variables, and resources used</td>
</tr>
</tbody>
</table>

* Respondents can suggest additional professional competencies.

References

oblastiservisa [Competence approach to the content of the state educational standards of higher professional education for educational programs in the field of service]. Moskva: Federalnoeagentstvopooobrazovaniyu, Rossiyskiygosudarstvennyuniversitetturizmainservisa.

