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that overlaps with a second host species. Thus, predicting future parasitism may depend
on how the ranges of the two hosts change in relation to each other. In this study, we tested
whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer)
accounts for predicted changes in parasitism of two other species from the family Cervidae,

g?r/:va(;rds' Alces alces (moose) and Rangifer tarandus (caribou), in North America. We used MaxEnt
Cervidae models to predict the recent (2000) and future (2050) ranges (probabilities of occurrence)
Climate change of the cervids and a parasite Parelaphostrongylus tenuis (brainworm) taking into account
Evolution range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range
Parasitism overlap between A. alces|R. tarandus and P. tenuis will decrease between 2000 and 2050, an

Synergistic effects outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and

not the parasites, themselves. Geographically, our models predicted increasing potential
occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial
overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate
climate-mediated southern contraction of A. alces and R. tarandus ranges but will have
limited influence on northward range expansion. Our results suggest that the spatial
dynamics of one host species may be the driving force behind future rates of parasitism
for another host species.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As species ranges shift to higher latitudes in response to changing climate, individuals may come into contact with new
species that differ in abundance or ecological function compared to those occurring in their historical range. As a result, new
interactions may arise that feedback to affect the degree to which range shifts directly tracks changing climate (Van der
Putten et al., 2010). It follows that novel interactions may lead to changes in the structure and function of contemporary
communities (Hobbs et al., 2006), as well as to the evolutionary processes by which they are governed (Hoffmann and
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Sgro, 2011; Chaianunporn and Hovestadt, 2015). However, there is substantial uncertainty related to how and where novel
interactions will arise and the extent of adaptive change that will underlie such novelty (Williams and Jackson, 2007;
Northfield and Ives, 2013). Therefore, effective forecasting of climate change responses depends upon whether range shifts
are associated with the strengthening or weakening of existing interactions, corresponding changes in novel interactions,
and how such interactions may vary through space and time. Depending on the characteristics of the species involved,
multiple outcomes are possible ranging from interactions facilitating, constraining, or overriding climate’s influence on range
expansion (Schweiger et al., 2012).

Interactions with parasites may be particularly important in aggravating extinction risk, especially for species that are
already in peril (e.g. Pounds et al., 2006). With climate change, parasitism may become more widespread if parasite ranges
expand further into the ranges of their hosts (Kutz et al., 2013). Predicting such an outcome is made more challenging when
parasite transmission to one host depends on the presence of another host of the same trophic level. For example, parasites
may be able to infect but not complete their life cycle in a particular host. Thus, transmission to these “dead-end” hosts can
only occur where they co-occur with “reservoir” hosts, species in which the parasite can reproduce. Therefore, in the context
of climate-driven shifts of species distributions, the effect of climate change on the reservoir host may have an important
role to play in mediating how climate change affects the interaction between a dead-end host and a parasite.

In this study, we evaluate the potential for reservoir host dynamics to drive range changes for Alces alces L. 1758 (moose)
and Rangifer tarandus L. 1758 (caribou) via parasitism from Parelaphostrongylus tenuis (Dougherty 1945) (brainworm). Many
A. alces and R. tarandus populations are declining in abundance in accord with global patterns of climate change (Vors and
Boyce, 2009; Lenarz et al., 2010). Parasitism-driven mortality, especially from P. tenuis is considered another key factor
contributing to A. alces population decline (Murray et al., 2006; Lankester, 2010). To date, parasites have not been broadly
implicated in the declines of natural R. tarandus populations, but they are expected to play an increasingly important role
(Albon et al., 2002; Vors and Boyce, 2009).

Although P. tenuis infect and kill R. tarandus and A. alces, they are transmitted primarily through Odocoileus virginianus
Zimmermann 1780 (white-tailed deer); transmission does not occur where R. tarandus or A. alces do not overlap with O.
virginianus (Lankester, 2001). Thus, O. virginianus expansion into northern ecosystems is hypothesized to be a catalyst of
future declines for both A. alces (Lankester, 2010) and R. tarandus (Vors and Boyce, 2009).

To test the hypothesis, we present a general framework that quantifies the influence of a reservoir host on parasitism
of a dead-end host (Fig. 1). If the reservoir host is important, then we would predict that climate change leads to increased
(or decreased) range overlap between parasites and dead-end hosts primarily because of changes in range overlap between
dead-end hosts and reservoir hosts (Fig. 1, future scenario (i)). Alternatively, if reservoir host dynamics are not as important,
then we would predict that climate change leads to increased (or decreased) range overlap between parasites and dead-end
hosts, even if range overlap between the dead-end and reservoir hosts does not change or changes very little (Fig. 1, future
scenario (ii)). Here we take “range” to mean the locations (e.g. grid cells) a species occurs across space and the probability a
species occurs at those locations based on the environment (what is sometimes termed the “niche”; Warren et al., 2008).

Regardless of mechanism, changes in range overlap between parasites and dead-end hosts will influence how dead-
end host ranges track climate change. Parasitism may hasten the effects of climate change. If so, we would find that
locations of increased habitat suitability for parasites coincide with locations of decreased habitat suitability for dead-end
hosts. In other words, the synergy between climate change and parasitism accelerates dead-end host range contraction:
locations of declining suitability because of climate change are even more unsuitable once parasite occurrences are included.
Alternatively, parasitism may impede the effects of climate change. If so, we would find that locations of increased habitat
suitability for parasites coincide with locations of increased habitat suitability for dead-end hosts. In other words the synergy
between climate change and parasitism slows dead-end host range expansion: locations of increasing suitability because of
climate change are made less suitable once parasite occurrences are included. Of course, parasitism might occur throughout
the species range, thereby muting range expansion and exacerbating range contraction.

If the synergistic effects of climate change and parasitism on dead-end host species ranges are constrained by the reservoir
host, then being freed from that constraint could lead to a different picture of dead-end host range expansion and contraction.
In particular, if parasites could evolve to complete their life cycle in the current dead-end host, then the part of the dead-end
host’s range susceptible to parasitism would be larger than previously anticipated (see Fig. 1, future scenario (iii)). Host
switching and other evolutionary changes in parasitism have been suggested to have occurred during past climatic changes
(Brooks and Hoberg, 2007; Hoberg and Brooks, 2008, 2015) though whether host-switching happens in any given system is
highly speculative. Nonetheless, creating spatially explicit predictions of where such evolution might occur is a necessary
first step toward eventually testing the hypothesis that climate change can affect parasite life-cycles (Kutz et al., 2013, 2014)
and feedback to affect hosts at large scales. Hence, in our study, we first determine where in the ranges of A. alces and R.
tarandus parasitism is most likely to occur and then recalculate the same but include parts of the range that do not overlap
with O. virginianus. We call these areas potential evolutionary hotspots.

2. Materials and methods
2.1. The parasite

Parelaphostrongylus tenuis develops into adults and successfully breeds inside a cervid definitive host (sensu
Haydon et al., 2002). In North America, Odocoileus virginianus (white-tailed deer) is the primary definitive host. Upon
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Fig. 1. We contrast two ways in which a reservoir host (solid black) transmits a parasite (grey) to a dead-end host (dashed black). In one possible future
scenario (i), range overlap of the parasite and dead-end host increases primarily because range overlap of the reservoir and dead-end host increases. In a
second possible future scenario (ii), parasitism increases because the parasite range moves further into the range of the dead-end host irrespective of the
reservoir host’s range shift (or lack thereof). A third scenario (future scenario (iii)) illustrates the outcome of host-switching, whereby the parasite evolves
to complete its life cycle in the dead-end host and, thus, expand its range (cross-hatching).

excretion from O. virginianus, the parasite develops further inside a gastropod host (Anderson, 1963). It is then transmitted
to grazing cervids where it develops into adults. However, A. alces and R. tarandus are considered dead-end hosts because
P. tenuis never successfully reproduces inside them. In contrast, because the parasite can reproduce in O. virginianus, that
cervid is called a reservoir host.

Due to this complexity, a full life-cycle accounting of parasitism must include the intermediate hosts. While more than
20 gastropod species are described as intermediate hosts of the larval stage of P. tenuis, we focus on those considered as the
main reservoirs of infection: the meadow slug Deroceras laeve (Miiller 1774) and snails Discus cronkhitei (Newcomb 1865)
and Zonitoides arboreus (Say 1817).

2.2. Modelling species ranges

Following Pickles et al. (2013), we created separate species distribution models for the parasite (i.e. based on all recorded
occurrences, regardless of host), its gastropod hosts, and its cervid hosts. We used the program MaxEnt (Phillips and
Dudik, 2008) to model probabilities of occurrence across each species’ range. We chose MaxEnt because it outperforms
other presence-only modelling techniques (Elith et al., 2006), and recent evidence demonstrates that range limits derived
from MaxEnt models correspond well with constraints on population growth and persistence (Lee-Yaw et al., 2016; Searcy
and Shaffer, 2016). We obtained presence data for each species using a literature search of the Global Mammal Parasite
Database (www.mammalparasites.org; Nunn and Alitzer, 2005), Manisnet (www.manisnet.org), the Global Biodiversity
Information Facility (GBIF; www.gbif.org), and a Google Scholar search. For the parasite data, in particular, records come
from observations inside mammalian hosts or their faeces. We assume these occurrence records come from within the
parasite’s range.

Where latitude and longitude information was lacking, we georeferenced locality based on the description of the
collection site using Google Earth 5.0 and Biogeomancer (Guralnick et al., 2006). We transferred all occurrence data onto
a 10 km x 10 km grid cell map of the United States and Canada, using ArcGIS 10.0 (ESRI, 2010), which matches the resolution
of the environmental data (see below). Hence, georeferenced data could be imprecise up to a circle with a radius of 5.6 km.
We used the 10 km x 10 km grid cell resolution for all species distribution projections. We used Albers equal area projection
for all mapping and projected all coordinates accordingly. We only ever had one occurrence record per grid cell (see Fig. S1
& Fig. S2 for occurrence records used in the modelling).

Presence records obtained from GBIF or similar sources can be biased given collection patterns favouring sites closer to
human settlements (Phillips et al., 2006). We addressed the potential for disparity in sampling intensity among different
regions using two methods: a bias grid that down-weighs the importance of presence records from areas with more intense
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sampling (i.e., areas with a high density of presence records, Elith et al., 2010) and spatial thinning that removes records if
they are within a certain distance of another record (Boria et al., 2014; Aiello-Lammens et al., 2015). Importantly, there is
little evidence that any one method is inherently better at removing bias than another (Fourcade et al., 2014).

For the bias grid, we weighed each grid cell by the number of sampling localities within a neighbourhood, which we
defined as a Gaussian kernel with a standard deviation of 200 km. The value of each grid cell was a sum of the inverse of
distance of the samples in the neighbourhood. The weighted grid became the bias file that was entered into the MaxEnt
analysis. To reduce the influence of highly sampled outlier cells, we reclassified the grid into 20 classes (Pickles et al., 2013).
By applying a bias grid, we assumed that any spatial clumping of our presence data was not based on patterns of occurrence
or habitat selection for either species. We feel that this is an accurate judgement given the form of opportunistic sampling
(i.e. museum collections, etc.) that occurred to map these localities.

To thin cervid data sets, we used the package spThin (Aiello-Lammens et al., 2015) in R. We specified a nearest neighbour
distance of 100 km and ran the spThin algorithm five times. Each time, the algorithm removes, one-by-one, the locality with
the most number of nearest neighbours. Ties will result in different final grids. The thinned grid used in further analysis is
the final grid with the most occurrence records (Aiello-Lammens et al., 2015).

We did not find any major differences between the modelled cervid distributions using a bias grid or thinned data
(Fig. S3). Hence, we use the distributions modelled with the bias grid for all further analyses.

To predict species occurrences, we used the set of 19 bioclimatic variables from WorldClim, which provides climatic
data averaged over the years 1950-2000 (Hijmans et al., 2005). We removed highly correlated environmental variables
by conducting pairwise Pearson correlation tests on the entire set, noting which pairs were correlated at r > 0.85, and
keeping the most biologically relevant of the correlated pair (sensu Milanovich et al., 2010). In addition to the bioclimatic
data, we used soil drainage, compound topographical index (a measure of wetness), and pH from the Food and Agriculture
Organisation’s Harmonized World Soil Database (HWSD) (www.fao.org/nr/land/soils/harmonized-world-soil-database/en)
because they have been shown to influence P. tenuis transmission (Lankester, 2001; Pickles et al., 2013). We also used land
cover classes from the European Space Agency (http://due.esrin.esa.int/page_globcover.php) and deciduous and coniferous
forest layers (DeFries et al., 2000) because O. virginianus are known to be strongly associated with deciduous forest. We list
all the environmental data we used in our models in Table S1 of the Supporting Information.

We built MaxEnt models for cervid, gastropod, and parasite species using background records sampled from within the
species’ range and a 500 km buffer; using such restricted backgrounds (i.e. excluding areas that have not been surveyed for
the target species) can improve the performance of the initial model (Elith et al., 2011). We downloaded mammal species
range data from NatureServe (Patterson et al., 2007). For the parasite and gastropods, we created species range maps by
drawing a minimum convex polygon around all occurrence points. Although these maps had fairly large extents, there is
still the possibility of projecting into an environmental space more extreme than what was used to train the models (i.e.
the selection of training points consistently misses some environmental values). MaxEnt addresses this problem through
clamping, where variables beyond the training range are treated as though they were at the limit of the training range.
Comparing probabilities of occurrence maps with and without clamping demonstrates that clamping had minimal influence
on our projections (Fig. S4).

For each species, we built models using several regularization multipliers (1-7), which can affect model fit around
presence records (Radosavljevic and Anderson, 2014). We selected the model (i.e. regularization multiplier) to use for
inference and analysis as the one with the highest adjusted Area Under the Curve (AUC) statistic (Hijmans, 2012). We
calculated adjusted AUC using presence testing data and background data that are within a similar distance from the presence
training data. This creates a conservative estimate of model performance, and helps prevent inflated AUCs merely due to the
fact that test and training presence data are closer to each other in space than background data and training data (Hijmans,
2012). These adjusted AUC values are also more appropriate as a means to compare fit across species that have differing
spatial bias in presence locations. In the adjusted AUC calculation, we applied a threshold value of 0.33, and selected three
background samples for every testing data record from a random set of 10 000 background samples (see Hijmans, 2012). We
performed a 10-fold cross-validation procedure (where we randomly split the data into training and test sets 10 different
times) to create the MaxEnt models and calculate adjusted AUC statistics, which we present in Table S2.

To further assess model performance, we compared our AUC values against those generated from a null model. Following
Raes and Ter Steege (2007), we selected points at random from within the species range, modelled them with our
environmental variables, and calculated an AUC value. We repeated the procedure 10 times and averaged the AUC among
the models; we found that our observed AUC values exceeded the null average (Table S2).

We modelled occurrence probabilities for 1950-2000 (hereafter called 2000) and 2050. For the latter, we used a climate
grid averaged from three different general circulation models (GCMs): the Canadian Centre for Climate Modelling and
Analysis model CGCM2, the Commonwealth Scientific and Industrial Research Organization model CSIRO mk 2, and the
Hadley Centre for Climate Prediction and Research’s model HadCM3. For each GCM we used the upper carbon emission
scenario to provide the most realistic, current projection of global carbon emissions (see Raupach et al., 2007; Beaumont
et al., 2008). While the climate models have recently been updated, the change has not been so substantial as to alter
projections of species distributions (Wright et al., 2016). We downloaded climate grids in WorldClim format for each GCM
from the Climate Change, Agriculture and Food Security (CCAFS) website (www.ccafs-climate.org). In each future projection,
we included the environmental variables mentioned above, as well as soil and tree cover data as static variables to improve
predictive accuracy (Stanton et al., 2011).
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For the resulting species distribution models for all species, we considered any grid cell with a predicted occurrence
probability below the fixed cumulative value of 10 logistic threshold supplied by MaxEnt as being unoccupied (Milanovich
et al., 2010). The cumulative output of MaxEnt is best interpreted as predicted omission rate (where omission rate is the
proportion of presence records that would be classified as being located in unsuitable habitat based on a binary map). Thus,
using a fixed cumulative value of 10 to use as a threshold for our maps should correspond to a predicted omission rate
of 10%.

2.3. Modelling parasite occurrences

To account for the full parasite transmission cycle in current and future climates, we generated separate probability
of occurrence maps for the parasite’s free-living larval stage, intermediate hosts, and final hosts. Because multiple species
could act as intermediate hosts (i.e. the gastropods Deroceras laeve, Discus cronkhitei, and Zonitoides arboreus), we defined
intermediate host occurrence probability as the maximum of the three species’ occurrence probabilities in each grid cell
(Pickles et al., 2013). Because P. tenuis needs O. virginianus to complete its life cycle, we equated the final host’s probability
of occurrence to that of O. virginianus.

At this point, we had occurrence probabilities from each stage in the transmission cycle for each grid cell. We defined
the overall risk of transmission in each grid cell as the minimum of all the occurrence probabilities (Pickles et al., 2013).
Hence, the parasite could only occur in cells that were also climatically suitable for their intermediate and reservoir host.
(If any host is absent, its occurrence probability is zero and this becomes the occurrence probability of the parasite). We
defined this output as the restricted parasite occurrence map. However, one goal of our study is to quantify the contribution
of the reservoir host to changes in range overlap between the parasite and the dead-end host. Hence, we calculated the
parasite’s unrestricted occurrence map, i.e. what it would be if it could complete its life cycle in any of the cervid hosts.
We calculated the unrestricted map by equating the final host’s probability of occurrence to the maximum of O. virginianus,
A. alces, or R. tarandus in each grid cell. We created parasite occurrence maps (restricted and unrestricted) for 2000 and 2050,
the difference of which we used to calculate temporal change in range overlap (see below).

2.4. Analysing range overlap

We calculated range-wide risk of transmission by quantifying overlap between the dead-end host and the parasite
occurrence probability maps in 2000 and 2050. We quantified overlap with Schoener’s D (Schoener, 1968; Warren et al.,
2008) using the dismo package (Hijmans et al., 2015) in R 3.3.0 (R Development Core Team, 2016). Schoener’s D ranges from
0 (no overlap among range models) to 1 (models identical). We quantified the temporal shift in overlap (AD) by subtracting
the Schoener’s D value in each grid cell in the 2000 map from the 2050 map, expressing the difference as a percent of the
2000 map. We ran the range overlap analysis using both the unrestricted and restricted parasite ranges. We compared the
change in range overlap values between the two range types.

We assessed the importance of the reservoir host by applying the following rationale. We quantified temporal change
in range overlap between the dead-end host and parasite in a hypothetical context as if the parasite did not depend on
the reservoir host for transmission (unrestricted range overlap). We compared this value to the temporal change in range
overlap assuming that the parasite’s range is restricted to locations also occupied by the reservoir host (restricted range
overlap). If host-host range dynamics drive changes in parasitism, then we predict a difference in the unrestricted and
restricted values. For example, if range overlap between the dead-end and reservoir host increases with climate change,
then we would expect temporal change in restricted range overlap to be greater than temporal change in unrestricted range
overlap. If host-parasite range dynamics drive changes in parasitism, then we predict little difference in unrestricted and
restricted values, i.e. parasitism intensifies or diminishes even if the range overlap between the two hosts remains relatively
static.

We assessed whether the shifting A. alces and R. tarandus species ranges were more or less likely to encounter parasitism
by a three stage process. First, we subtracted each grid cell’s occurrence probability in 2000 from 2050. Second, we stratified
the outcome into grid cells with an increase in the probability of occurrence between 2000 and 2050 and grid cells with
a decrease in the probability of occurrence between 2000 and 2050. Third, for each of these categories, we calculated the
proportion of the cells in which our models predicted an increased parasite occurrence between 2000 and 2050. As above,
we conducted the analysis considering the restricted and unrestricted parasite ranges. We suggest that cells within the
unrestricted range but outside the restricted range could be where parasites could evolve to complete their life cycle within
the dead-end hosts assuming that (1) infected A. alces and R. tarandus disperse to areas not occupied O. virginianus, and
(2) those environments select for novel traits. We call these locations potential evolutionary hotspots.

3. Results
3.1. Temporal change in range overlap

We found that potential climate-driven changes to parasitism of dead-end hosts are influenced primarily by changes
in range overlap between the dead-end hosts (A. alces and R. tarandus) and the reservoir host (O. virginianus), rather
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Fig. 2. The proportion of the range of Alces alces and Rangifer tarandus (defined by the number of grid cells) that do not overlap with Parelaphostrongylus
tenuis, overlap with cells of increasing probability of P. tenuis occurrence, and overlap with cells of decreasing probability of P. tenuis occurrence. Hotspots
are cells within the cervid range that overlap with increasing probability of P. tenuis occurrence but do not overlap with Odocoileus virginianus.

than between the dead-end hosts and their parasite (P. tenuis). Our models predicted a decrease in range overlap from

year 2000 to 2050 between A. alces and O. virginianus (AD = —0.043 [—12.89%]) and R. tarandus and O. virginianus
(AD = —0.035 [—46.15%]). Likewise, our models predicted a decrease in range overlap between O. virginianus and P.
tenuis (AD = —0.062 [—10.20%]), A. alces and P. tenuis (AD = —0.011 [—5.78%]) and R. tarandus and P. tenuis (AD =

—0.014 [—38.67%]). However, if we relaxed the assumption that P. tenuis needs O. virginianus to be transmitted, then our
models predicted an increase in range overlap for A. alces and the parasite (AD = 0.028 [12.53%]). Our models still predicted
a decrease in range overlap between R. tarandus and P. tenuis (AD = —0.0097 [21.75%]), though less than if we restricted
the parasite’s range to where it co-occurs with O. virginianus. Thus, the reduced range overlap between the dead-end hosts
and parasite reflects the reduced range overlap between the dead-end hosts and O. virginianus.

Our models predicted that the majority of the dead-end hosts’ ranges would not spatially overlap with the range of P.
tenuis (13.86% overlap with A. alces; 10.37% overlap with R. tarandus [Fig. 2]). However, where they did overlap, we predicted
that more of the cervids’ contracting (cells of decreasing probability of occurrence) than expanding range (cells of increasing
probability of occurrence) would coincide with P. tenuis expansion (cells of increasing probability of occurrence). For A. alces,
our models predicted that 22.65% of its contracting range would overlap with cells of increasing probability of occurrence of
P. tenuis (Fig. 2). Meanwhile, our models predicted that 2.29% of its expanding range would overlap with cells of increasing
probability of occurrence of P. tenuis (Fig. 2). For R. tarandus, our models predicted that 14.41% of its contracting range would
overlap with cells of increasing probability of occurrence of P. tenuis (Fig. 2). Meanwhile, our models predicted that 0.82% of
its expanding range would overlap with cells of increasing probability of occurrence of P. tenuis (Fig. 2). Geographically, our
models suggest that overall, parasitism for both cervid species will occur primarily along their southern range boundaries
in Canada’s Hudson Plains and Boreal forest, and, for A. alces, additionally in its most southern locations in the US: the
Appalachians, mountainous areas of the US southwest, and the Pacific coast (Fig. 3).

3.2. Identifying possible evolutionary hotspots

If evolution takes place such that P. tenuis is able to complete its life cycle in what are currently dead-end hosts then
our models predict the phenomenon to be most pronounced in central Quebec (Fig. 4). Furthermore, the negative effects of
evolution (i.e. increased parasitism) would affect A. alces both where it is expected to increase (2.62% of its expanding range
that does not overlap with O. virginianus [Fig. 2]) and decrease (5.21% of its contracting range that does not overlap with O.
virginianus). Likewise, parasitism arising through evolution would affect R. tarandus where it is expected to increase (1.59%
of its expanding range that does not overlap with O. virginianus) and decrease (3.80% of its contracting range that does not
overlap with O. virginianus).
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Fig. 3. Range expansion, contraction, and parasitism for A. alces (a) and R. tarandus (b). Range expansion refers to those grid cells where our species
distribution models predicted an increase in the probability of cervid occurrence between 2000 and 2050. Range contraction refers to those grid cells
where our species distribution models predicted a decrease in the probability of cervid occurrence between 2000 and 2050. Parasitism refers to those
grid cells where models predicted an increase in the probability of occurrence for the parasite P. tenuis between 2000 and 2050 and co-occurrence with
0. virginianus.

4. Discussion
4.1. Future parasitism to one host may depend on another host

One of the greatest challenges in forecasting the effects of climate change on species ranges concerns predicting future
species interactions (Van der Putten et al., 2010). This challenge is made more difficult when complex ecological communities
comprise multiple species interactions spanning several trophic levels (Gilman et al., 2010), as is the case when one host
mediates the interaction between another host and a common parasite. Predicting the eventual outcome of parasitism
depends on how all actors (including intermediate hosts (Pickles et al., 2013)) respond to climate change. We proposed two
ways in which independent climate change driven range shifts may combine to characterize parasitism from the perspective
of a dead-end host: (1) range overlap between the host and parasite may change after accounting for the range shift of the
main reservoir of the parasite or (2) range overlap between the host and parasite may remain invariant after accounting for
the range shift of the reservoir host.

In our A. alces and R. tarandus study system, where transmission of P. tenuis requires O. virginianus to complete its life
cycle, we found support for the first scenario. We found that if we ignored O. virginianus, our models predicted range
convergence between the dead-end hosts and P. tenuis, whereas after restricting the P. tenuis range to where it co-occurs
with O. virginianus, our models revealed divergence or very little convergence between the ranges of the dead-end hosts and
P. tenuis. This pattern mimics the predicted range divergence between dead-end hosts and O. virginianus. Thus, the pattern



8 R.E. Feldman et al. / Global Ecology and Conservation 9 (2017) 1-10

Evolutionary hotspots
Cenvid.increasing
Cenvid.decreasing

Cervid range
Cenid.increasing
Cenvid.decreasing

Evolutionary hotspots
Cenvid.increasing
Cenid.decreasing

Cervid range

i Cenid.increasing
WY | Cenvid.decreasing

Fig. 4. Potential evolutionary hotspots across the ranges of A. alces (a) and R. tarandus (b). Range expansion refers to those grid cells where our species
distribution models predicted an increase in the probability of cervid occurrence between 2000 and 2050. Range contraction refers to those grid cells where
our species distribution models predicted a decrease in the probability of cervid occurrence between 2000 and 2050. Evolutionary hotspots are those grid
cells where models predicted an increase in the probability of occurrence for the parasite P. tenuis between 2000 and 2050 but fall outside the grid cells
occupied by O. virginianus.

of O. virginianus range shift relative to that of dead-end hosts accounts for much of the modelled variability in parasitism
through time.

Our forecasts of range divergence between P. tenuis and A. alces/R. tarandus implies that parasitism might increase where
those hosts are most at risk from climate change, specifically along their southern range edges. Thus, the likely deleterious
effects of P. tenuis will aggravate patterns of range contraction already occurring for both A. alces and R. tarandus (Vors and
Boyce, 2009; Lenarz et al., 2010).

We also predicted extensive parasitism in northwestern Alberta and the Rockies (see also Pickles et al., 2013), a region
currently beyond the western limits of P. tenuis’ distribution. The finding underscores the fact that our models highlight
future suitable habitat but not whether dispersal will lead to actual occupancy. Importantly, however, our models suggest
the presence of a potential dispersal corridor: we predicted patches of suitable habitat connecting the enzootic region of
southern Manitoba to northwestern Alberta through the otherwise unsuitable prairies. We suggest that the region should
be monitored closely for P. tenuis infection in local O. virginianus populations.

Our knowledge of A. alces ecology allows us to paint a picture of how climate change and parasitism might act
synergistically to affect range dynamics. For A. alces, warming temperatures may lead to heat stress and reduced body
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condition, which can contribute to immunosuppression and thereby aggravate susceptibility to parasite infection (Murray
et al., 2006). In turn, this may affect A. alces productivity or survival even via sublethal effects, and thereby contribute to
population decline. It follows that parasite-driven fitness declines may reduce A. alces populations below their carrying
capacity, thereby shifting the factors that drive population growth from those that are primarily density-dependent to those
that are density-independent. Such changes may render A. alces populations increasingly susceptible to future environmental
changes and demographic stochasticity (Ebert et al., 2000; Murray et al., 2006).

4.2. The influence of climate change on the evolution of parasitism

We suggest that one potential outcome of host-host range divergence is increased selection for parasites to complete
their life cycles in what are currently dead-end hosts. Theory predicts that hotspots in host-parasite evolution will arise
in areas where environments are changing rapidly, such as those undergoing climate change (Hoberg and Brooks, 2008,
2015; Northfield and Ives, 2013). Through time, a mosaic of evolutionary hotspots and coldspots will arise that reflects
localized environmental conditions affecting evolutionary interactions (Thompson, 1999). Whether such evolution takes
place is highly speculative: we cannot identify the particular genetic changes that would permit transmission to A. alces or R.
tarandus—nor do we suggest that such a transmission necessarily follows climate change. That being said, our results establish
a spatially-explicit framework for assessing potential changes in the functional genomics of cervids and their parasites
across the North American landscape, especially in the context of potential evolutionary responses. In particular, our models
predicted that portions of the A. alces and R. tarandus species ranges would be climatically suitable for the parasites, but not
for O. virginianus. Thus, we might expect the parasites to be carried out of the O. virginianus’s range by dispersing A. alces and
R. tarandus (sensu Kutz et al., 2014) but persist only if they are able to develop into adults and produce eggs in those hosts.
Overall, the new habitat would expand the parasite’s range, which otherwise is predicted to contract because of declining
overlap with O. virginianus.

It is possible that new transmission pathways could develop even without genetic changes (Gienapp et al., 2008). Climate-
driven increases in range overlap may provide the novel conditions that promote the expression of pre-existing traits, such
as those that allow persistence in multiple hosts (Janz, 2011). While we emphasize that a change in parasite life-cycles is
speculative, our goal here has been to demonstrate that host-switching may also be a mechanism by which interactions
feedback to affect the way species ranges track rapid climate change. For example, when we ignored host-switching, our
models predicted that the northward expansion of boreal A. alces and R. tarandus populations would be largely unaffected
by parasitism from P. tenuis. However, when we included potential for evolution, then we predicted that the northward
expansion of the cervids could be under constraint from parasitism. Thus, we advocate that evolution or, at least, change
in phenotypic expression, must be included in community frameworks that assess the effect of climate change on species
interactions (e.g. Gilman et al., 2010).
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