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SUMMARY

Transparency in the eye lens is maintained via
specific, functional interactions among the structural
bg- and chaperone a-crystallins. Here, we report the
structure and a-crystallin binding interface of the
G18V variant of human gS-crystallin (gS-G18V),
which is linked to hereditary childhood-onset cortical
cataract. Comparison of the solution nuclear mag-
netic resonance structures of wild-type and G18V
gS-crystallin, both presented here, reveal that the
increased aggregation propensity of gS-G18V re-
sults from neither global misfolding nor the solvent
exposure of a hydrophobic residue but instead in-
volves backbone rearrangement within the N-termi-
nal domain. aB-crystallin binds more strongly to
the variant, via a well-defined interaction surface
observed via chemical shift differences. In the
context of the aB-crystallin structure and the finding
that it forms heterogeneous multimers, our structural
studies suggest a potential mechanism for cataract
formation via the depletion of the finite aB-crystallin
population of the lens.

INTRODUCTION

The crystallins are the primary protein components of the eye

lens, reaching concentrations higher than 400 mg/ml in humans

(Tardieu et al., 1992). Short-range ordered interactions between

crystallins at high concentrations are thought to maintain trans-

parency while providing the refractive index gradient required to

focus light on the retina (Delaye and Tardieu, 1983; Ponce et al.,

2006). Perturbations to the intercrystallin interactions concomi-

tant with the formation of high molecular weight aggregates can

lead to lens opacification during aging and cataractogenesis.

Characterizing the interactions between members of the two

crystallin superfamilies, a- and bg-crystallins, is critical to un-

derstanding cataract formation, because insoluble aggregates

of crystallins from both have been found in cataractous lenses

(Takemoto and Sorensen, 2008). The a-crystallins (aA and aB)
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act as holdase chaperones, binding to but not refolding struc-

tural bg-crystallins for which solubility is compromised due to

damage or mutation. Because of the extremely low protein turn-

over in lens fiber cells, the intercrystallin interactions are thus

the first line of defense against aggregation. Mutations in either

the a- or bg crystallin genes can alter these critical attractive

interactions (Fu and Liang, 2003). In the case of gC-crystallin,

a-crystallins do not recognize all known disease-related vari-

ants (Moreau and King, 2012). Likewise, in gD-crystallin, both

the E107A and R76S variants are implicated in early-onset cata-

ract, but the former exhibits increased a-crystallin attraction

(Banerjee et al., 2011), whereas a-crystallin interactions with

the latter remain unchanged (Ji et al., 2012). Here, we focus

on interactions between aB- and gS-crystallins: aB is the

more versatile chaperone, abundantly expressed in tissues

outside the eye lens (Iwaki et al., 1990), upregulated by various

stressors (Klemenz et al., 1991), and implicated in several

neuropathological diseases (Iwaki et al., 1989; van Noort

et al., 1995; Ousman et al., 2007); whereas gS is the most abun-

dant of the structural bg-crystallins in the human lens cortex

and is highly conserved across several species (Chang and

Chang, 1987; Quax-Jeuken et al., 1985; van Rens et al., 1989,

1991).

At present, there are four known cataractogenic mutations in

human gS-crystallin: the gS-V42M variant, which distorts the

compact b sheet packing in the core of the N-terminal domain

and causes severe congenital cataract in children (Vendra

et al., 2012); the Coppock-cataract-associated gS-D26G

variant, which leads to decreased protein stability but apparently

has little effect on the overall molecular architecture (Karri et al.,

2013); the gS-S39C variant, which is linked to microcornea and

cataract (Devi et al., 2008) and which is hypothesized to have

an exposed cysteine available for disulfide crosslinkage and

aggregation; and the gS-G18V variant, which is implicated in

childhood-onset cortical cataract (Sun et al., 2005). Although

the decreased thermodynamic stability of gS-G18V relative to

wild-type (gS-WT) (Ma et al., 2009) has been established, addi-

tional experiments indicated that it is aggregation prone well

below its unfolding temperature, suggesting an aggregation

mechanism more complex than simple denaturation (Brubaker

et al., 2011). In order to better understand how structural

changes in the cataract-related G18V variant of gS-crystallin

lead to altered intermolecular interactions, we have solved the
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Figure 1. Structural Detail of Wild-Type and Variant g-S Crystallin

(A and B) A licorice depiction of the average solution NMR structures of gS-WT

(green) and gS-G18V (blue) is shown in (A). Both proteins are highly structured,

with the double Greek key fold typical of structural crystallins, although the

variant protein displays structural changes in the N-terminal (N-term.) domain

(left) relative to wild-type (WT). The red circle indicates the region that is shown

in greater detail in (B). Here, the affected loop remains essentially intact; in gS-

WT (left) the a proton from G18 is angled slightly askew from the R19 amide

proton. In gS-G18V, the orientation of the V18methyls forces the amide proton

into alignment with the valine side chain, altering the V18 J angle. C-term.,

C-terminal.

(C) The overlaid structures of gS-WT (green) and gS-G18V (blue) with the side

chains from F16, V18, and R20 shown, indicating the details of selected

structural changes, particularly the dramatic shift in the position of R20.

(D) The addition of V18 and its effect on the backbone angles the former b

strand outward and twists it, moving R20 inward, where it displaces Y11 and

forces the tyrosine away from F16, placing it flat against the surface of the first

Greek key motif. Although each of these structural changes is minor and has

primarily local impact, taken in aggregate, they result in significant perturba-

tions to the N-terminal domain, potentially providing sites for altered inter-

molecular interactions and recognition by aB-crystallin.

See also Figures S1–S4 and Tables S1 and S2.

Table 1. A Tabular Summary of the NMR Structures for gS-WT

and gS- G18V Structures, Calculated Using Full Restraint Sets as

Described in the Experimental Procedures

Restraint Summary and Structure

Statistics gS-WT gS-G18V

Restraint Summary

Total NOE restraints 7,444 4,682

Intraresidue 1,547 1,329

Interresidue

Sequential (ji � jj = 1) 1,559 972

Medium range (ji � jj % 5) 1,286 709

Long range (ji � jj R 6) 3,052 1,672

Total angular restraints 408 450

RDCs 156 147

Dihedral (3J coupling) – 57

Dihedral (TALOS+) 252 246

H-bond restraints 46 90

Structure Statistics (20 Lowest Energy Structures)

Restraint violations

NOE > 0.3 Å 0.6 ± 0.8 0.7 ± 1.1

Dihedral > 5� 1.1 ± 1.3 1.6 ± 0.9

RMSD from ideal covalent geometry

Bonds (Å) 0.005 ± 0.000 0.004 ± 0.000

Angles (�) 0.582 ± 0.011 0.537 ± 0.016

Impropers (�) 0.503 ± 0.013 0.481 ± 0.016

Restraint RMSD

NOE (Å) 0.034 ± 0.025 0.024 ± 0.002

Dihedral (�) 0.914 ± 0.137 0.893 ± 0.114

RDC (Hz) 0.238 ± 0.021 0.188 ± 0.018

Average pairwise RMSD (residues 5–178)

Backbone RMSD (Å) 0.4 0.5

Heavy atom RMSD (Å) 0.8 0.9

RDC statistics

R-factor (%) 0.642 ± 0.055 0.459 ± 0.046

R-factor (free) (%) 0.817 ± 0.073 0.556 ± 0.052

See also Figures S1–S4 and Tables S1 and S2.

Structure

Binding of aB-Crystallin to Variant gS-Crystallin
solution nuclear magnetic resonance (NMR) structures of human

wild-type and gS-G18V and elucidated the binding interface be-

tween aB-crystallin and gS-G18V.
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RESULTS

The G18V Mutation Causes Structural Perturbation
Like the highly homologous murine protein (Wu et al., 2005) and

other mammalian structural crystallins, gS-WT has a double

Greek key fold. A comparison of the gS-WT and gS-G18V struc-

tures reveals local shifts in the backbone but little change in the

overall fold. The average heavy-atom root-mean-square devia-

tion (RMSD) between the two structures is 1.62 Å for the N-termi-

nal domain and 1.13 Å for the C-terminal domain. (Figure 1; Table

1; Figures S1 and S2 and Tables S1 and S2 available online).

Because G18 is located on a surface-exposed loop, solvent

exposure of the valine side chain might be expected to provide

a plausible mechanism for the solubility impact of this mutation;

however, the structural data indicate that it is buried, with the

backbone occupying an unusual conformation at this position.

Many examples of residues stabilized by hydrogen bonds in
All rights reserved



Figure 2. 15N-1H HSQCs of gS-WT and gS-G18V Bound to aB-Crystallin

(A and B) 15N-1H HSQCs of (A) 15N-labeled gS-WT with (green) and without (black) aB and (B) 15N-labeled gS-G18V with (pink) and without (black) aB. Dashed

lines indicate cross-peaks that shift, whereas solid lines indicate cross-peaks that disappear with respect to the samples without aB. An asterisk indicates cross-

peaks that belong to the alternate structure of gS-G18V. (Brubaker and Martin, 2012)

See also Table S1.

Structure

Binding of aB-Crystallin to Variant gS-Crystallin
unfavorable Ramachandran angles (Jia et al., 1993; Gunase-

karan et al., 1996) have been found in the context of enzyme

active sites in which the conformation is required for activity

(Jia et al., 1993; Pal and Chakrabarti, 2002). Here, the configura-

tion of V18 is stabilized in part by the pi-stacking interactions

between R20 and F16 (Figure 1C). The dihedral angles shift

from f = 79.3�, c = �146.4� for G18 to f = 103.0�, c = �134.0�

for V18. Presumably because of steric clashes with side chains

on the opposing side of the affected loop, the methyls of V18

are angled toward the C-terminal end of the polypeptide chain,

locking the R19 amide proton into place centered between the

V18 methyls (Figure 1B). Additional structural calculations indi-

cate that the V18 side chain remains buried even on exclusion

of all distance restraints to V18, and the adoption of a favorable

backbone dihedral angle configuration would require the elimi-

nation of restraints from several surrounding residues, producing

an extensive structural disruption to the surrounding loop region

that is not supported by the NMR data (Figure S3). The effect

propagates down the polypeptide chain through more than half

of the N-terminal domain of gS-crystallin. Despite these local

differences, the overall folds of both structures are very similar

(Figure 1A), consistent with previous circular dichroism and UV

fluorescence data. Both gS-WT and gS-G18V were monomeric

under the conditions used for structural NMR (Figure S4).

aB-Crystallin and gS-G18V Interact to Form Large
Complexes
Because gS-G18V is implicated in early-onset cataract forma-

tion and has an altered structure in solution, we hypothesized

that the molecular chaperone aB would interact more strongly

with the disease-related variant than with wild-type gS. In order

to assess the extent of binding, dynamic light scattering (DLS)

measurements were performed at 25�C on samples of aB, gS-

WT, and gS-G18V individually and as mixtures at pH 6.9. The

DLS data are shown in Figure S5. These results are consistent

with previous findings; human aB-crystallin spontaneously forms
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spherical multimers 80 to 180 Å in diameter with a variable num-

ber (�24–32) of subunits (Haley et al., 1998; Jehle et al., 2010).

gS-WT has an average hydrodynamic diameter of 50.40 ±

0.28 Å, which is in agreement with reported values for other

monomeric g-crystallins (Liu et al., 1998). gS-G18V forms large

multimers with diameters up to 289.2 ± 8.8 Å at pH 6.9. Mixtures

of aB with gS-WT or gS-G18V have apparent hydrodynamic

diameters up to 155.88 ± 0.46 and 478.2 ± 2.3 Å, respectively.

The size of the particles in the aB + gS-WTmixture is similar to

that of aB alone, likely because there are only weak interactions

between the two proteins, and the DLS size of the mixture thus

reflects the much larger aB complexes. Conversely, the particle

size of the aB + gS-G18V mixture is much larger than that of

either gS-G18V or aB alone. This result indicates that aB is inter-

acting more strongly with gS-G18V than with gS-WT and is

consistent with the conclusions drawn by Abgar et al. (2001)

that a-crystallin binds destabilized proteins to prevent nonspe-

cific aggregation and that the resulting complex reorganizes

into large particles in order to remain soluble.

aB-Crystallin Interacts More Strongly with gS-G18V
To localize the regions of gS-crystallin involved in interactions

with aB, we performed heteronuclear single quantum coherence

(HSQC) NMR spectroscopy on mixtures of 15N-labeled gS-WT

and gS-G18V with aB at pH 6.9. Solution NMR is sensitive to

small changes in the electronic environment of the detected

nuclei; therefore, binding interactions between aB and gS should

result in shifts or disappearances of relevant cross-peaks. The

addition of aB to 15N-labeled gS-WT leads only to minor chem-

ical shift changes in the 15N-1H HSQC spectrum recorded at

25�C (Figure 2A). Residues corresponding to cross-peaks that

undergo minor chemical shift changes include S35, W47, E66,

G92, F122, and H123—all surface residues. Furthermore, the

lack of cross-peak disappearance in the presence of the molec-

ular chaperone supports the conclusion that aB only weakly in-

teracts with native gS in dilute solution, which is consistent
27, December 3, 2013 ª2013 Elsevier Ltd All rights reserved 2223
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with the results of a past 1H-NMR spectroscopic study of bovine

a- and gS-crystallin (Cooper et al., 1994). In contrast, on addition

of aB to 15N-labeled gS-G18V, nearly 50% of the cross-peaks

broadened below the noise threshold of the 15N-1H HSQC,

presumably due to the formation of large aB/gS-G18V com-

plexes in solution (expected to be >300 kDa). Using 15N-1H

transverse-relaxation optimized spectroscopy (TROSY)-HSQC

spectroscopy, we acquired a two-dimensional spectrum of the

aB/gS-G18V mixture. Analysis of the resulting TROSY-HSQC

of gS-G18V (Figure 2B) reveals the disappearance of several

N-H cross-peaks; T9, Y11, D13, N15, F16, R19, Y21, C23,

C25, C27, Y33*, L34, S35*, R36, C37, N38, I40, W47ε, G65,

Y67, S82, S85, and G91. These residues are located in the N-ter-

minal domain except for G91, which is situated in the linker be-

tween the two domains. It is interesting that the majority of

cross-peaks that lose signal intensity correspond to g-G18V res-

idues that occupy different positions (and whose cross-peaks

therefore shift) with respect to gS-WT. Y33* and S35* corre-

spond to cross-peaks from a minor alternate conformation of

gS-G18V, also previously assigned (Brubaker and Martin,

2012). There are several cross-peaks that slightly shift in the

gS-G18V/aB mixture, including Y33, A56, G57, W73ε, S105,

E110, I118, Q121, M124, G147, I161, W163ε, A165, and V170.

These peaks are distributed throughout the protein andmay shift

due to altered surface interactions with aB and gS or due to

changes in the local chemical environment resulting from the

binding of aB and the associated formation of larger complexes.

Thermally Stressed gS-WT Does Not Recruit aB-
Crystallin
Previous studies investigating the solubilizing capabilities of

a-crystallin using g-crystallin mixtures purified from bovine

lenses have shown that a-crystallin can prevent the thermal

aggregation of g-crystallins (Horwitz, 1992). A similar study

noted that the rate of protein aggregation was dependent on

a-crystallin concentration and that, with a 3:2 a-:g-crystallin

ratio, using combinations of bovine a-crystallin and bovine

gA-D, aggregation of the mixture occurred after heating at

72�C (Wang and Spector, 1995).

In light of these results and the finding that only weak binding

was observed between human aB and gS-WT at 22�C, we set

out to characterize the interactions between aB and g-WT

upon heating. An 15N-1H HSQC spectrum was taken every 5�C
as gS-WTwas heated between 22�C and 47�C, with and without

aB. Sample precipitation and loss of signal occurred at temper-

atures above 47�C, consistent with our previous observation that

wild-type gS-crystallin forms aggregates well below its unfolding

temperature (Brubaker et al., 2011). In the spectra obtained for

both gS-WT and the mixture of gS-WT + aB (shown overlaid in

Figure 3), several cross-peaks of gS-WT shift due to temperature

change. A direct comparison between the spectra of gS-WT in

the presence and absence of aB (Figure 3A) reveals slight shifts

and significant line broadening of the cross-peaks, which

decrease with increasing temperature. However, no disappear-

ance of cross-peaks is observed. The line broadening is due to

weak transient interactions between aB and gS-WT, and its

decrease with increasing temperature is attributed to acceler-

ated molecular tumbling. Our observations of protein precipita-

tion in the gS-WT/aB mixture at higher temperatures and the
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lack of disappearing cross-peaks in the HSQCs indicates that

aB-crystallin does not recognize thermally unfolded gS-crystal-

lin. Human aB crystallin retains its native secondary structure

up to 70�C, although its chaperone activity is greatest near phys-

iological temperatures (van Boekel et al., 1999; Reddy et al.,

2000; Datta and Rao, 1999). This finding also suggests that ther-

mal denaturation of native gS-crystallin is not a realisticmodel for

cataract formation in this system.

DISCUSSION

Several three-dimensional (3D) structures of crystallins have

been reported in the past decade, revealing the double Greek

key fold as a common feature of bg-crystallins (Jaenicke and

Slingsby, 2001; Mills et al., 2007). The high stability and solubility

of the crystallins is critical to their function because protein

degradation and synthesis do not occur in mature differentiated

lens fiber cells. Our results indicate that the relativelyminor struc-

tural changes in gS-G18V result in a perturbation to the delicately

balanced set of weak interactions between crystallins. The large

body of structural investigations and interaction studies on b-

and g-crystallins suggests that specific interactions between

them are functionally important (Slingsby et al., 1991). Weak in-

teractions of individual bg-clusters with a-crystallinsmay be rele-

vant at the high protein concentrations in the eye lens, coupling

these clusters to the structural dynamics of the polydisperse

a-crystallin oligomers and preventing the formation of insoluble

aggregates. Our observation of weak interactions between

wild-typegS-crystallin andaBsupports this hypothesis, because

interactions should be weak, even at millimolar concentrations,

to ensure an optimal level of exchange dynamics in the eye lens.

The spectra of the aB/gS-WT sample exhibited only minor

chemical shift changes, and the affected residues are widely

distributed throughout the structure (Figures 4A and 4B), con-

firming the presence of nonspecific interactions. In this context,

we expect the protein interfaces to exhibit very weak binding at

the relatively low concentrations investigated here. Conversely,

aB interacts more strongly with the disease-related variant gS-

G18V as evidenced by loss of cross-peak intensities and shifts

due to the interactions with the chaperone. More quantitative

comparison of the binding affinities presents experimental chal-

lenges, because binding to wild-type gS-crystallin is mainly

characterized by line broadening rather than chemical shift

differences. Furthermore, because aB-crystallin forms polydis-

perse oligomers alone and on binding to aggregation-prone sub-

strates, its binding towild-type andG18V gS-crystallin cannot be

correctly described by a single dissociation constant. However,

based on the NMR data, the interaction surface of gS-G18V that

is recognized by aB-crystallin can be determined and is shown in

Figures 4C and 4D. Residues of gS-G18V, whose cross-peaks

lose intensity, are localized to the N-terminal domain, coincident

with the greatest structural changes due to the V18 substitution.

The additional weak interactions may play an important role in

maintaining the solubility of the larger aB/gS-G18V complex.

In recognition of the results obtained with heat-denatured gS,

as well as recent mass spectrometry analyses (Lampi et al.,

2012), it appears that during the lifetime of the organism,

the chaperone activity of a-crystallins is required to account

for accumulated posttranslational modifications, such as
All rights reserved



Figure 3. Solution NMR Data Indicating the Minor Conformational Changes in gS-WT on Heating and Its Weak, Nonspecific Interaction with

aB-Crystallin

(A) 15N-1H HSQC temperature series from 22�C–47�C of gS-WT (top) and gS-WT + aB (bottom).

(B) Overlay of the gS-WT (black) and gS-WT + aB (blue) temperature series.

(C) Change in 15N and 1H resonances by residue of gS-WT between 22�C and 47�C.

Structure

Binding of aB-Crystallin to Variant gS-Crystallin
deamidation or oxidation, rather than protein unfolding per se.

Naturally occurring disease-related mutations represent a

good model for this type of aggregation. Here, aB-crystallin in-

teracts only weakly with gS-WT but more strongly and specif-

ically with gS-G18V, as indicated by the differences in the

NMR spectra between the two mixtures.

The stronger binding of aB to the variant is consistent with the

hypothesis that the mechanism of cataractogenesis from the

G18V mutation in gS-crystallin may be related to the depletion

of the finite amount of a-crystallin in the eye lens. Given the

deoptimization of binding strength in the gS-WT interactions,

we speculate that many disease-related modifications or muta-

tions cause the formation of tighter complexes with a-crystallins.

In this way, a-crystallins perform a holdase chaperone function,

preventing unfavorable interactions among b- and g-crystallins.

Additionally, disease onset may be accelerated due to both

larger gS-G18V and aB–gS-G18V particles, which may be

more prone to aggregation and precipitation. Similar effects

were observed by others, reporting an increase in particle size

after mixtures of a-crystallin and g-crystallins from D. mawsoni,

T. obesus, and B. taurus were heated extensively (Kiss et al.,

2004). The exact mechanism that leads to this increase is yet un-

known, but recruiting larger amounts of aB to the ‘‘sick’’ protein
Structure 21, 2221–22
is likely, since an aggregation-prone or stability-relevant area

requires additional protection by a-crystallin on top of any

normal interactions. In this model, one role that a-crystallins

may play in the eye lens is that of contributing a polydispersity

principle preventing the formation of larger, more regular, and,

ultimately, insoluble aggregates.
EXPERIMENTAL PROCEDURES

Sample Preparations

gS-WT, gS-G18V, and aB-crystallin were produced in E. coli and purified as

described elsewhere (Brubaker et al., 2011; Brubaker and Martin, 2012; Jehle

et al., 2010). NMR samples for structural work were at protein concentrations

of 2.11 mM and 1.50 mM, respectively, in 10 mM acetate buffer, pH 4.5, 10%

D2O, 0.05% sodium azide, and 2 mM TMSP. Samples of gS-WT and gS-G18V

under these conditions have remained stable and monomeric for over a year,

showing no change in NMR spectra, when stored at 4�C. Samples for NMR

studies with aB were at protein concentrations of 1.5 mM for both gS-WT

and gS-G18V in 10 mM phosphate buffer, pH 6.9, 10% D2O, 0.05% sodium

azide. Mixed samples with aB-crystallin consisted of an aB:gS molar ratio of

2:1. All experiments except for 15N in-phase, antiphase (IPAP) spectra and

the spectra observing the aB/gS thermal interactions were collected at 22�C.
For residual dipolar coupling (RDC) measurements, the DIOTPC/DIOHPC

bicelle system (Ottiger and Bax, 1999) at 10% (w/v) lipid concentration was

used to align the protein samples. DIOTPCandDIOHPCdisolved in chloroform
27, December 3, 2013 ª2013 Elsevier Ltd All rights reserved 2225



Figure 4. Residues of gS-WT Involved in Weak Transient Interac-

tionswith aBand gS-G18V Involved in Both Binding and Transient In-

teractions with aB

(A and B) Residues of gS-WT involved in weak transient interactions with aB

are shown in blue on the surface of gS in two views: (a) view from the front and

(b) with the N-terminal domain rotated forward.

(C and D) Residues of gS-G18V involved in binding interactions (orange) and

transient interactions (blue) with aB shown on the surface of gS in two views:

(C) from the front and (D) with the N-terminal domain rotated forward.

Structure

Binding of aB-Crystallin to Variant gS-Crystallin
(Avanti Polar Lipids) were mixed at a molar ratio of 3:1 DIOTPC:DIOHPC and

dried under a stream of nitrogen gas. The residual chloroform was removed

by lyophilization. A 270 ml protein sample in 10 mM acetate buffer, pH 4.5,

10%D2O, 0.05% sodium azide, and 2mM TMSPwas added to the lyophilized

lipids. The sample was cycled several times between an ice bath and room

temperature over the course of a few hours, with gentle mixing between

each incubation to fully rehydrate the lipids and mix the bicelle sample.

Hydrogen-deuterium (H-D) exchange samples were prepared by concen-

trating the gS samples to saturation in centrifugal concentrator columns

(with gS at a concentration of approximately 270 mg/ml at saturation) in a vol-

ume of approximately 60 ml and adding 99.9% D2O to a total volume of 300 ml

immediately before starting the data collection.

NMR Experiments

NMR experiments were performed on a Varian UnityINOVA system operating

at 800 MHz equipped with a 1H/13C/15N 5 mm tri-axis PFG triple-resonance

probe. Decoupling of 15N nuclei was performed by a GARP sequence (Shaka

et al., 1985). 1H shifts were referenced to TMSP, and 13C and 15N shifts

were referenced indirectly to TMSP. Heated samples of aB/gS mixtures

were equilibrated for several minutes before data acquisition. NMR

data were processed using NMRPipe and analyzed using Sparky. H-D ex-

change spectra were taken at intervals of approximately 30 min for the first

4 hr following the addition of D2O and then at intervals of 1 hr for the next

20 hr. Additional spectra were collected at intervals of several days. For

each collection period, a one-dimensional proton spectrum was collected

and nonexchanging methyls in the protein were used to adjust for differences

in shimming between data collections.

Restraints

Nuclear Overhauser effect (NOE) restraints were assembled by manually pick-

ing slices from 13C-filtered and 15N-filteredNOE spectroscopy (NOESY) exper-

iments corresponding to the 13C and 15N HSQC cross-peaks. The manually

picked peaks were assigned in a binned fashion using three sets of chemical

shift tolerances of decreasing stringency to minimize NOE cross-peak assign-
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ment ambiguity, and restraintswere generated inCCPNMRAnalysis. Duplicate

and redundant restraints were eliminated from the exported restraint lists, and

only unambiguous NOE restraints were used in the final structure calculations.

IPAP spectra of isotropic gS-WT and aligned gS-G18V were acquired at

32�C and 30�C. Each IPAP data set was processed into two spectra, each

containing only one of the two doublet peaks so that all peaks could be easily

resolved. For the RDCs, peaks were manually picked for all cross-peaks in the

spectra, and the difference between the J splittings and the J+D splittings were

computed for each resonance using a spreadsheet program. The starting error

for all of the RDCs in the angular restraint table was set as the SD of the

measured J splittings, 2.47 Hz and 3.01 Hz for gS-WT and gS-G18V, respec-

tively. RDC experiments yielded 156 and 147 couplings for gS-WT and -G18V,

respectively, including the side chain tryptophan Nε protons, corresponding to

nearly every visible peak in the 1H-15N HSQC, which are included in the re-

straints deposited in the Protein Data Bank (PDB) (see Tables S1 and S2).

H-D exchange experiments yielded a total of 46 and 90 hydrogen bonding

restraints used to refine the final structures for gS-WT and -G18V, respectively.

Dihedral angle restraints were calculated using the TALOS+ program (Shen

et al., 2009) for gS-WT and for both the major and minor chemical shift sets of

gS-G18V.

3J HN-HA couplings were calculated from peaks in a 3D H-N-HA experi-

ment and were used as restraints in structure calculations for the gS-WT

and gS-G18V structures (Table 1).
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