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Abstract

We give three equivalent conditions for weak convergence of almost orbits of an as-
ymptotically nonexpansive commutative semigroup acting on a nonempty bounded closed
convex subset of a uniformly convex Banach space whose dual has the Kadec property.
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1. Introduction

This paper is devoted to the study of weak convergence of almost orbits of
asymptotically nonexpansive semigroups of mappings. The main result is strictly
connected with theorems due to Lin [15] and Oka [16].
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2. Basictheorem

Let us start with some basic definitions and notations. Throughout this paper
we assume thak is a real Banach spac&* is the dual space ok, and
J : X — 2X" is the normalized duality mapping defined by

Jy={fex* (. f=IxI? lxI=1£1},

wherex € X and (-, -) denotes the pairing ok and X*. We will denote by
wyw({x,}) (0w ({xe}eer)) the set of all weak subsequential limits (all limits of
weakly convergent subnets) of a bounded sequdngg (of a bounded net
{xa}aer) In X. The fact that{x,},<; tends weakly tor will be denoted either
by xy, — x or by w-lim,¢; x4 = x.

Now we recall notions of the Kadec property and the Kadec—Klee property.

Definition 1 [5]. A Banach spacg is said to have the Kadec property if for every
net{xy}ocs in X the following implication holds:

Xog — X
= |lx¢ —x|| — 0.
HMH%HMI} e = x
If we restrict this definition to sequences we get the definition of the Kadec—
Klee property.

Definition 2 [5]. A Banach spac« is said to have the Kadec—Klee property if
for every sequencex, }ey in X

Xp — X
Hh”ﬁﬂﬂ|} = =l =0

Clearly, the Kadec property means that the relative weak and norm topologies
agree on the unit sphere.

It is known (see [1, p. 113] and [11]) that within the class of reflexive spaces
the Kadec—Klee property is equivalent to the Kadec property.

The following lemma will be very useful.

Lemma 1[3]. Let X be a real Banach space. Then fory € X
b+ y1I2 < x4+ 2{y, j (x + )

forall j(x +y)e J(x +y).

The nextlemma is due to Li and Sims [14] and is a generalization of the Garcia
Falset lemma [4].
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Lemma 2. Let X be a real reflexive Banach space such that its ddalhas
the Kadec—Klee property. Lék,},cn be a bounded sequence ¥handx, y €
wy{x,}. Suppose
lim ||ax,, +A—-a)x — yH
n—o0

exists for alla € [0, 1]. Thenx = y.

Remark 1. In [4,7-9] one can find various applications of Lemma 2 in nonlinear
functional analysis.

Now we are ready to prove our basic theorem.

Theorem 2.1. Let X be a real reflexive Banach space such that its défahas the
Kadec—Klee property. Ldtc, }oc; be a bounded net i andx, y € wy{xq}acr-
Suppose

lim Haxa +A—a)x — y”
ael
exists for alla € [0, 1]. Thenx = y.
Proof. For eache > 0 there exist& € I such that
Haxa—i—(l—a)x —y” < IirT}Haxa—f—(l—a)x —y” +¢
ae
forall « > . It follows that for alle >« andj (x — y) € J(x — y) we have
(axe + A —a)x —y, j(x —y))
< — i — —
<l =yl (limfary + @ —a)x =] +e).
Sincex € wy{xq}aer, We obtain
lx = ylI2=(ax + A —a)x —y. j(x — y))
<l =yl (limfare + @ —ayx =y +e).
and, lettings — 0, we get
||x—y|I<gg}llaxa+(1—a)x—yll- (2.1)
By Lemmal,

laxe + (1 —a)x — y|> < llx — yI? + 2a(xy — x, j(axqe + (L —a)x — y))

forall a € (0,1] and j(axqy + (1 —a)x — y) € J(axq + (L —a)x — y). Hence,
by (2.1), we see that

liminf {x — . j (@ + (1 - a)x —y)) > 0.

[0S
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Therefore there exists a sequefeg},cn such thaty,, < «, form < n and

(remmi(t (1 3)s-))5 -2 2

for eachn € N anda > «;,. Put
I ={o. a>a1}.
Without loss of generality we can assume that /7 since

ww{Xalaer = 0y {Xa}aell

and

lim ”axa +A—-a)x — yH = lim ”axa +A—-a)x — yH
ael aely

for all a € [0, 1]. Next, for eachx € I, we set

(1
ag=infl— a>a,
n

and consider two cases.
Case 1la € I anda, > 0. Putting

Jo :j(aaxa + (1 —an)x — y)

we obtain

(x = ¥, jo) = ||aare + L= a)x — y|° = da(xa — %, ju) (2.3)
and

ljall = ||aaxe + (1 —ag)x — y. (2.4)
So, by (2.2), we have

(X¢ — X, jou) = —aq. (2.5)

Case 2 a € I anda, = 0. In this case we can choose a subsequence
{7 (Y np)xe + (1 —1/n1)x — y)}ren Which is weakly convergent, say g and
set

ja = J
It then follows from (2.2) that
(Xa — X, ja) 2 0. (2.6)

Next observe that
1 1
nk ni

1 1
—xgt|1——Jx—y[=Ilx—yl.
ng ni

[l jell < liminf
k—o00

= lim

k— 00
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On the other hand, we have

. . 1 1
(x =y, jou) = lim {x—y,;j Xt (1o Jx—y
k—o00 ng ng
. 1 1 2
=lm{|—x¢+(1——)x—y
k—oo\ || Nk ng

_ %<xa—x,j(%xa+ (l_ %)x_y)»

= lx = yII%. 2.7)

Therefore

eIl = llx — ¥l (2.8)
and j, € J(x — y). (Let us mention here that by the Kadec—Klee property tf
the sequencgj ((1/ng)xq + (L — 1/nx)x — y)}ren tends strongly tgy,.)

Now from the netl we choose a subne&ﬂ} i such thafx,,}, ; converges
weakly toy € wy {xy}aer and{Jaﬂ}ﬂ jtends Weakly tg. Then by (2 4)and (2.8),
we get

171 < lle =y
and, by (2.3) and (2.7),
(x =y, ) =lx—yl>
Hencej € J(x — y). SinceX is reflexive andx* has the Kadec—Klee property,

the space™ has also the Kadec property and this implies (b@g}ﬂel converges
strongly to;. It then follows from (2.5) and (2.6) that

(y —X, .]> /O
Thatis,
Ilx — ylI> <0,

which givesx = y. This completes the proof.0

The assumption that the dudl* of the reflexive Banach spacé has the
Kadec—Klee property is essential and cannot be dropped from the above theorem
as the following example shows.

Example 1. Let X be a Cartesian prodult x /2 furnished with thét-norm. The
dual spaceX* can be identified with a Cartesian prodiittc /2 furnished with
the maximum norm and therefore does not have the Kadec—Klee property. Taking

|, e, ifnisodd,
n = (0,0) if niseven
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andx = (0,0), y = (1, 0), we see that, y € w,{x,,} andx # y but
lax, —yll=1

for eachn € N and alla € [0, 1].

An application of the above theorem will be presented in the next section.

3. Weak convergence of almost orbits of asymptotically nonexpansive
commutative semigroups

Let G be a commutative semigroup with 0. Define a binary relatioon G
by: a < b if and only if b = a + ¢ for somec € G. Then (G, ) is a directed
system and applying this system we get a limit;lignin the sense of Rodé [20].

In this sectionX is always a uniformly convex Banach space énanonempty
closed convex subset af.

Now let 7 = {T'(¢): t € G} be a family of self-mappings af. Recall that7 is
said to be an asymptotically nonexpansive semigroup actin@ibthe following
conditions are satisfied:

() T(@):C — C foreachr € G,

(i) Ts+)x=T(s)T(t)x foralls,z € G andx € C;
(i) T =1,
(iv) There exists a ndf; };<g of positive numbers with

teG
such that
|T@®x —T@)y| <kllx -yl
forall x,y € C andt € G.
If k, =1 for everyr € G, thenJ is called a nonexpansive semigroup. The non-
empty set of common fixed points ¢f (see [10]) is denoted b¥ (7).
The notion of an almost orbit of a nonexpansive mapping was introduced by
Bruck [2]. Kobayashi and Miyadera [12] extended the notion to the case of a one-
parameter semigroup of nonexpansive mappings. Later, Park and Takahashi [18]

extended it to the case of a general commutative semigroup.
We say that a function: G — C is an almost orbit of7 if

im (suplute +) = T ) =o.

Let wy, (1) denote the set of all weak subsequential limit$ug®)}; <.
We also need the following auxiliary lemmas.



W. Kaczor / J. Math. Anal. Appl. 272 (2002) 565-574 571

Lemma 3 [16]. Suppose that;, i =1, 2, ..., are almost orbits of7. Then, for
anye > 0 andn > 1 there existg(e) € G andso(e, n) € G, wherergp(e) is inde-
pendentof: andu; (i =1,2,...,n), such that

T(r)(zxiuim) = LT (®ui(s)

i=1 i=1

<é

for eacht > 19(e), s > so(e,n), and all nonnegativery,..., A, such that
Yicahi=1.

Lemma 4. Under the above definitions and assumptions the limit
lim |eu() + (A—a) f1 — f2
teG

exists for every almost orbit of 7 in a bounded closed convex subgebf a
uniformly convex Banach spaég f1, f> € F(J) and for eachx € [0, 1].

Proof. By our assumption about the semigra@pnd by Lemma 3, givea > 0,
there existg € G andsg € G such that

&
= diamC +1’
17 @) (culs) + A —a) f1) —aT @Ouls) — (L—a) f1] <e,

ki —

and

Surﬂu(t +5) — T(t)u(s)“ <e
teG
for all r > rp ands > sg. Hence

low +s5)+@Q—a) fr— fo
Lalu@+s) —TOuls)|
+ | T (culs) + (L— ) f1) —aT (Ouls) — (L— o) f1
+ki|au(s) + A—a) fr — fo
<3e+ |ouls) + L—a) f1— f2

forall t > tp ands > sg. This gives

|nfsuq|au(r)+(1 @) fi— f2] < Sup||ozu(t)+(1 o) fi— f2

1€G 1 ¢ =10
<3e+ ”otu(s) +(1-a)f1— fz”
for all s > so. Consequently,

inf sud\au(r)+(1 oz)fl—fZH<Sup|nf”au(s)+(l a) f1— f2|-

1€G 1>



572 W. Kaczor / J. Math. Anal. Appl. 272 (2002) 565-574

Therefore
lim [eue(t) + (L= @) fr — f2
teG

exists. O
Finally, we recall the following theorem due to Oka [16].

Theorem 3.1. Under the above definitions and assumptionsj#an almost orbit
of 7 and

w-lim(u(t) —u(t +s)) =0
teG
for eachs € G, then
wy(u) C F(J).

Using these facts we are able to prove a theorem on weak convergence of
almost orbits.

Theorem 3.2. SupposeX is a uniformly convex Banach space such that its dual
X* has the Kadec—Klee property; is a bounded closed convex subsetxof

J ={T(): t € G} (whereG is a commutative semigroup with an identity an
asymptotically nonexpansive semigroup@@randu is an almost orbit of7. Then

the following conditions are equivalent

(1) ww(u) C F(J);
(2) w-lim;cgu(t) =x € F(J);
(3) w-lim;cg(u() —u(t +s)) =0foreachs € G.

Proof. (1) = (2) Let f1, fo € wy(u) C F(J) anda € [0, 1]. By Lemma 4 we
see that

lim fau( + 1 - fo = fo

exists. So it is sufficient to apply Theorem 2.1 to get= f>. Thus the seb,, (1)
is a singleton.

(2) = (3) This is obvious.

(3) = (1) See Theorem 3.1.0

Remark 2. Several results of a similar type can be found, for example, in [6,10,
13,19,21-23].

It is worth noting here that there exist uniformly convex Banach spaces which
have neither a Fréchet differentiable norm nor the Opial property but their duals
do have the Kadec—Klee property.
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Example 2 [4]. Let us takeX1 = R? with the norm defined by

i 12 2
x| =/ llxlIz + llxlIf

andXo = LP[0, 1] with 1 < p < oo andp ## 2. The Cartesian product &f; and

X furnished with the?-norm is uniformly convex, it does not have the Opial
property [5,17], and its norm is not Fréchet differentiable, but its dual does have
the Kadec—Klee property.
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