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Abstract

We give three equivalent conditions for weak convergence of almost orbits of an as-
ymptotically nonexpansive commutative semigroup acting on a nonempty bounded closed
convex subset of a uniformly convex Banach space whose dual has the Kadec property.
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1. Introduction

This paper is devoted to the study of weak convergence of almost orbits of
asymptotically nonexpansive semigroups of mappings. The main result is strictly
connected with theorems due to Lin [15] and Oka [16].
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2. Basic theorem

Let us start with some basic definitions and notations. Throughout this paper
we assume thatX is a real Banach space,X∗ is the dual space ofX, and
J :X → 2X∗

is the normalized duality mapping defined by

J (x) = {
f ∈ X∗: 〈x,f 〉 = ‖x‖2, ‖x‖ = ‖f ‖},

wherex ∈ X and 〈· , ·〉 denotes the pairing ofX and X∗. We will denote by
ωw({xn}) (ωw({xα}α∈I )) the set of all weak subsequential limits (all limits of
weakly convergent subnets) of a bounded sequence{xn} (of a bounded net
{xα}α∈I ) in X. The fact that{xα}α∈I tends weakly tox will be denoted either
by xα ⇀ x or byw- limt∈I xα = x.

Now we recall notions of the Kadec property and the Kadec–Klee property.

Definition 1 [5]. A Banach spaceX is said to have the Kadec property if for every
net{xα}α∈I in X the following implication holds:

xα ⇀ x

‖xα‖ → ‖x‖
}

⇒ ‖xα − x‖ → 0.

If we restrict this definition to sequences we get the definition of the Kadec–
Klee property.

Definition 2 [5]. A Banach spaceX is said to have the Kadec–Klee property if
for every sequence{xn}n∈N in X

xn ⇀ x

‖xn‖ → ‖x‖
}

⇒ ‖xn − x‖ → 0.

Clearly, the Kadec property means that the relative weak and norm topologies
agree on the unit sphere.

It is known (see [1, p. 113] and [11]) that within the class of reflexive spaces
the Kadec–Klee property is equivalent to the Kadec property.

The following lemma will be very useful.

Lemma 1 [3]. LetX be a real Banach space. Then forx, y ∈ X

‖x + y‖2 � ‖x‖2 + 2
〈
y, j (x + y)

〉
for all j (x + y) ∈ J (x + y).

The next lemma is due to Li and Sims [14] and is a generalization of the García
Falset lemma [4].
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Lemma 2. Let X be a real reflexive Banach space such that its dualX∗ has
the Kadec–Klee property. Let{xn}n∈N be a bounded sequence inX and x, y ∈
ωw{xn}. Suppose

lim
n→∞

∥∥axn + (1− a)x − y
∥∥

exists for alla ∈ [0,1]. Thenx = y.

Remark 1. In [4,7–9] one can find various applications of Lemma 2 in nonlinear
functional analysis.

Now we are ready to prove our basic theorem.

Theorem 2.1. LetX be a real reflexive Banach space such that its dualX∗ has the
Kadec–Klee property. Let{xα}α∈I be a bounded net inX andx, y ∈ ωw{xα}α∈I .
Suppose

lim
α∈I

∥∥axα + (1− a)x − y
∥∥

exists for alla ∈ [0,1]. Thenx = y.

Proof. For eachε > 0 there exists�α ∈ I such that∥∥axα + (1− a)x − y
∥∥� lim

α∈I

∥∥axα + (1− a)x − y
∥∥+ ε

for all α ��α. It follows that for allα ��α andj (x − y) ∈ J (x − y) we have〈
axα + (1− a)x − y, j (x − y)

〉
� ‖x − y‖

(
lim
α∈I

∥∥axα + (1− a)x − y
∥∥+ ε

)
.

Sincex ∈ ωw{xα}α∈I , we obtain

‖x − y‖2 = 〈
ax + (1− a)x − y, j (x − y)

〉
� ‖x − y‖

(
lim
α∈I

∥∥axα + (1− a)x − y
∥∥+ ε

)
,

and, lettingε → 0, we get

‖x − y‖ � lim
α∈I

∥∥axα + (1− a)x − y
∥∥. (2.1)

By Lemma 1,∥∥axα + (1− a)x − y
∥∥2 � ‖x − y‖2 + 2a

〈
xα − x, j

(
axα + (1− a)x − y

)〉
for all a ∈ (0,1] andj (axα + (1 − a)x − y) ∈ J (axα + (1 − a)x − y). Hence,
by (2.1), we see that

lim inf
α∈I

〈
xα − x, j

(
axα + (1− a)x − y

)〉
� 0.



568 W. Kaczor / J. Math. Anal. Appl. 272 (2002) 565–574

Therefore there exists a sequence{αn}n∈N such thatαm � αn for m � n and〈
xα − x, j

(
1

n
xα +

(
1− 1

n

)
x − y

)〉
� −1

n
(2.2)

for eachn ∈ N andα � αn. Put

I1 = {α: α � α1}.
Without loss of generality we can assume thatI = I1 since

ωw{xα}α∈I = ωw{xα}α∈I1

and

lim
α∈I

∥∥axα + (1− a)x − y
∥∥= lim

α∈I1

∥∥axα + (1− a)x − y
∥∥

for all a ∈ [0,1]. Next, for eachα ∈ I , we set

aα = inf

{
1

n
: α � αn

}
and consider two cases.

Case 1. α ∈ I andaα > 0. Putting

jα = j
(
aαxα + (1− aα)x − y

)
we obtain

〈x − y, jα〉 = ∥∥aαxα + (1− aα)x − y
∥∥2 − aα〈xα − x, jα〉 (2.3)

and

‖jα‖ = ∥∥aαxα + (1− aα)x − y
∥∥. (2.4)

So, by (2.2), we have

〈xα − x, jα〉 � −aα. (2.5)

Case 2. α ∈ I and aα = 0. In this case we can choose a subsequence
{j ((1/nk)xα + (1 − 1/nk)x − y)}k∈N which is weakly convergent, say toj , and
set

jα = j.

It then follows from (2.2) that

〈xα − x, jα〉 � 0. (2.6)

Next observe that

‖jα‖ � lim inf
k→∞

∥∥∥∥∥j
(

1

nk

xα +
(

1− 1

nk

)
x − y

)∥∥∥∥∥
= lim

k→∞

∥∥∥∥ 1

nk
xα +

(
1− 1

nk

)
x − y

∥∥∥∥= ‖x − y‖.
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On the other hand, we have

〈x − y, jα〉 = lim
k→∞

〈
x − y, j

(
1

nk

xα +
(

1− 1

nk

)
x − y

)〉

= lim
k→∞

(∥∥∥∥ 1

nk

xα +
(

1− 1

nk

)
x − y

∥∥∥∥
2

− 1

nk

〈
xα − x, j

(
1

nk

xα +
(

1− 1

nk

)
x − y

)〉)

= ‖x − y‖2. (2.7)

Therefore

‖jα‖ = ‖x − y‖ (2.8)

andjα ∈ J (x − y). (Let us mention here that by the Kadec–Klee property ofX∗,
the sequence{j ((1/nk)xα + (1− 1/nk)x − y)}k∈N tends strongly tojα.)

Now from the netI we choose a subnet{αβ}
β∈Ĩ

such that{xαβ }β∈Ĩ
converges

weakly toy ∈ ωw{xα}α∈I and{jαβ }β∈Ĩ tends weakly tõj . Then by (2.4) and (2.8),
we get

‖j̃‖ � ‖x − y‖
and, by (2.3) and (2.7),

〈x − y, j̃〉 = ‖x − y‖2.

Hencej̃ ∈ J (x − y). SinceX is reflexive andX∗ has the Kadec–Klee property,
the spaceX∗ has also the Kadec property and this implies that{jαβ }β∈Ĩ

converges
strongly toj̃ . It then follows from (2.5) and (2.6) that

〈y − x, j̃〉 � 0.

That is,

‖x − y‖2 � 0,

which givesx = y. This completes the proof.✷
The assumption that the dualX∗ of the reflexive Banach spaceX has the

Kadec–Klee property is essential and cannot be dropped from the above theorem
as the following example shows.

Example 1. Let X be a Cartesian productR × l2 furnished with thel1-norm. The
dual spaceX∗ can be identified with a Cartesian productR × l2 furnished with
the maximum norm and therefore does not have the Kadec–Klee property. Taking

xn =
{
(1, en) if n is odd,
(0,0) if n is even
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andx = (0,0), y = (1,0), we see thatx, y ∈ ωw{xn} andx �= y but

‖axn − y‖ = 1

for eachn ∈ N and alla ∈ [0,1].

An application of the above theorem will be presented in the next section.

3. Weak convergence of almost orbits of asymptotically nonexpansive
commutative semigroups

Let G be a commutative semigroup with 0. Define a binary relation� on G

by: a � b if and only if b = a + c for somec ∈ G. Then(G,�) is a directed
system and applying this system we get a limit limt∈G in the sense of Rodé [20].

In this sectionX is always a uniformly convex Banach space andC a nonempty
closed convex subset ofX.

Now letJ = {T (t): t ∈ G} be a family of self-mappings ofC. Recall thatJ is
said to be an asymptotically nonexpansive semigroup acting onC if the following
conditions are satisfied:

(i) T (t) :C → C for eacht ∈ G;
(ii) T (s + t)x = T (s)T (t)x for all s, t ∈ G andx ∈ C;
(iii) T (0) = I ;
(iv) There exists a net{kt }t∈G of positive numbers with

lim
t∈G

kt = 1

such that∥∥T (t)x − T (t)y
∥∥� kt‖x − y‖

for all x, y ∈ C andt ∈ G.

If kt = 1 for everyt ∈ G, thenJ is called a nonexpansive semigroup. The non-
empty set of common fixed points ofJ (see [10]) is denoted byF(J ).

The notion of an almost orbit of a nonexpansive mapping was introduced by
Bruck [2]. Kobayashi and Miyadera [12] extended the notion to the case of a one-
parameter semigroup of nonexpansive mappings. Later, Park and Takahashi [18]
extended it to the case of a general commutative semigroup.

We say that a functionu :G → C is an almost orbit ofJ if

lim
s∈G

(
sup
t∈G

∥∥u(t + s) − T (t)u(s)
∥∥)= 0.

Let ωw(u) denote the set of all weak subsequential limits of{u(t)}t∈G.
We also need the following auxiliary lemmas.
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Lemma 3 [16]. Suppose thatui , i = 1,2, . . . , are almost orbits ofJ . Then, for
anyε > 0 andn � 1 there existt0(ε) ∈ G ands0(ε, n) ∈ G, wheret0(ε) is inde-
pendent ofn andui (i = 1,2, . . . , n), such that∥∥∥∥∥T (t)

(
n∑

i=1

λiui(s)

)
−

n∑
i=1

λiT (t)ui(s)

∥∥∥∥∥< ε

for each t � t0(ε), s � s0(ε, n), and all nonnegativeλ1, . . . , λn such that∑n
i=1 λi = 1.

Lemma 4. Under the above definitions and assumptions the limit

lim
t∈G

∥∥αu(t) + (1− α)f1 − f2
∥∥

exists for every almost orbitu of J in a bounded closed convex subsetC of a
uniformly convex Banach spaceX,f1, f2 ∈ F(J ) and for eachα ∈ [0,1].

Proof. By our assumption about the semigroupJ and by Lemma 3, givenε > 0,
there existt0 ∈ G ands0 ∈ G such that

kt − 1<
ε

diamC + 1
,∥∥T (t)

(
αu(s) + (1− α)f1

)− αT (t)u(s) − (1− α)f1
∥∥< ε,

and

sup
t∈G

∥∥u(t + s) − T (t)u(s)
∥∥< ε

for all t � t0 ands � s0. Hence∥∥αu(t + s) + (1− α)f1 − f2
∥∥

� α
∥∥u(t + s) − T (t)u(s)

∥∥
+ ∥∥T (t)

(
αu(s) + (1− α)f1

)− αT (t)u(s) − (1− α)f1
∥∥

+ kt

∥∥αu(s) + (1− α)f1 − f2
∥∥

� 3ε + ∥∥αu(s) + (1− α)f1 − f2
∥∥

for all t � t0 ands � s0. This gives

inf
t∈G

sup
τ�t

∥∥αu(τ) + (1− α)f1 − f2
∥∥� sup

τ�t0

∥∥αu(τ) + (1− α)f1 − f2
∥∥

� 3ε + ∥∥αu(s) + (1− α)f1 − f2
∥∥

for all s � s0. Consequently,

inf
t∈G

sup
τ�t

∥∥αu(τ) + (1− α)f1 − f2
∥∥� sup

t∈G

inf
s�t

∥∥αu(s) + (1− α)f1 − f2
∥∥.
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Therefore

lim
t∈G

∥∥αu(t) + (1− α)f1 − f2
∥∥

exists. ✷
Finally, we recall the following theorem due to Oka [16].

Theorem 3.1. Under the above definitions and assumptions, ifu is an almost orbit
of J and

w- lim
t∈G

(
u(t) − u(t + s)

)= 0

for eachs ∈ G, then

ωw(u) ⊂ F(J ).

Using these facts we are able to prove a theorem on weak convergence of
almost orbits.

Theorem 3.2. SupposeX is a uniformly convex Banach space such that its dual
X∗ has the Kadec–Klee property,C is a bounded closed convex subset ofX,
J = {T (t): t ∈ G} (whereG is a commutative semigroup with an identity) is an
asymptotically nonexpansive semigroup onC, andu is an almost orbit ofJ . Then
the following conditions are equivalent:

(1) ωw(u) ⊂ F(J );
(2) w- limt∈G u(t) = x ∈ F(J );
(3) w- limt∈G(u(t) − u(t + s)) = 0 for eachs ∈ G.

Proof. (1) ⇒ (2) Let f1, f2 ∈ ωw(u) ⊂ F(J ) andα ∈ [0,1]. By Lemma 4 we
see that

lim
t∈G

∥∥αu(t) + (1− α)f1 − f2
∥∥

exists. So it is sufficient to apply Theorem 2.1 to getf1 = f2. Thus the setωw(u)

is a singleton.
(2) ⇒ (3) This is obvious.
(3) ⇒ (1) See Theorem 3.1.✷

Remark 2. Several results of a similar type can be found, for example, in [6,10,
13,19,21–23].

It is worth noting here that there exist uniformly convex Banach spaces which
have neither a Fréchet differentiable norm nor the Opial property but their duals
do have the Kadec–Klee property.
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Example 2 [4]. Let us takeX1 = R
2 with the norm defined by

|x| =
√

‖x‖2
2 + ‖x‖2

1

andX2 = Lp[0,1] with 1 < p < ∞ andp �= 2. The Cartesian product ofX1 and
X2 furnished with thel2-norm is uniformly convex, it does not have the Opial
property [5,17], and its norm is not Fréchet differentiable, but its dual does have
the Kadec–Klee property.
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