-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com _—
scmnce@l)mec-r" JOURNAL OF

Algebra

ELSEVIER Journal of Algebra 284 (2005) 627—-644 ___
www.elsevier.com/locate/jalgebra

Semistability and Hilbaé~Kunz multiplicities
for curves

V. Trivedi

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India
Received 10 March 2004
Available online 7 December 2004

Communicated by Paul Roberts

1. Introduction

Let (R, m) be a Noetherian local ring of dimensidrand of prime characteristje > 0,
and let/ be anm-primary ideal. Then one defines thiilbert—Kunz functiorof R with
respect tal as

HKg 1 (p") = ¢(R/1),
where

1P") = nth Frobenius power of

= ideal generated by"th powers of elements df.

The associateHlilbert—Kunz multiplicityis defined to be

HKg.1(p™)

HKM(R, 1) = lim_ o

Similarly, for a nonlocal ringR (of prime characteristip), and an ideal € R for
which¢(R/1) is finite, the Hilbert—Kunz function and multiplicity make sense. Henceforth

E-mail addressvija@math.tifr.res.in.

0021-8693/$ — see front mattér 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2004.10.016


https://core.ac.uk/display/82250512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

628 V. Trivedi / Journal of Algebra 284 (2005) 627-644

for such a pairR, I), we denote the Hilbert—Kunz multiplicity a® with respect tal by
HKM(R, I), or byHKM(R) if I happens to be an obvious maximal ideal.

Given a pair(X, £), whereX is a projective curve over an algebraically closed field
of positive characteristip, and£ is a base point free line bundizon X, define

HKM(X, £) = HK multiplicity of the section ringB with respect to the idea?; B,

where B = @, HO(X, £®") and By = H%(X, £). Note that whenZ is very ample,
giving an embedding — P}, thenHKM (X, £) equals the HK multiplicity of the “homo-
geneous coordinate ringd = @ A,,, with respect to its maximal idegp A,-o, whereA
is the image of the natural majp induced byZ,

P HO(P . Op () S D) HO(x, £=").

n=>0 n=>0

To discuss HK multiplicity of singular curvegre need to also consider the HK multiplicity
of B with respect to the ideal generated WyC HO(X, £), whereW is a base point free
linear system, which we denote by

HKM(X, £, W) = HK multiplicity of B with respect to the ideal generated By

Notation 1.1. Now given(X, £, W) as above, wher& is a nonsingular projective curve
overk, consider the following short exact sequence

0=V, (W)->W0O0x—L—0, (1.2)

whereV (W) is a vector bundle of rank = vector-space dimension & — 1 and is the
kernel of the surjective may @ Ox — L. If W = HO(X, £) then we denot&/, (W)
by V..

In Section 2, we prove (see Proposition 2.5 and Remark 2.6) thidt ils strongly
semistable (i.e., the pullback & under every iterated Frobenius map is semistable) then

HKM (X, £) = the HK multiplicity of the section ring with respect
to its graded maximal ideal

(which may not be true in general without theomg semistability condition). We also give
a lower bound foHKM (X, £, W) in terms of degC and dimW, which is achieved when
V(W) is strongly semistable. Later (see Theorem 4.14) we prove the converse of this.
One consequence of Proposition 2.5 is that for giggnL), if HKM(X, £) does not
achieve the lower bound, thédi: is not strongly semistable. For a plane cuXeand
L= 0x (1), if X isnonsingular or singular with certafonditions on singularities then the
referee provided a proof (Propositio3Corollaries 3.5 and 3.6) th&j: is semistable.
In Section 4, which has been rewritten as per the suggestions of the referee, we prove
that, for an arbitrary base-point free ample line bundlen a nonsingular curvel
of genusg (hence for any irreducible projective cur¥g), there is an expression for
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HKM(X, £, W) (for HKM(C, O¢(1))) in terms of the ranks and degrees of the vector
bundles occurring in a “strongly stable Harder—Narasimhan filtration” (in the sense of re-
cent work of A. Langer [6]) of some Frobenius pullbacklgf(W) (see Theorem 4.12).
Though this seems difficult tase in actually computing thdK multiplicity, except when
V(W) is strongly semistable, it does imply that it is a rational number, for instance. We
also prove the converse to Section 2 result mentioned above.

In Section 5, we discuss plane curves. In general, Theorem 5.3 gives a formula (and
hence bounds) for the HK multiplicity of an arbitrary plane cutvef degreed over a
field of characteristipp > 0. In particular (Corollary 5.4) i is a nonsingular plane curve
of degreel then

3d 2
HKM(X, Ox(l)) = 7 + W

where 0< ! < d(d — 3), and! is an integer congruent tad (mod 2), and > 1 (we allow
s = 00) is such thatF¢=Y*V, 4, is semistable and**Vp (1) is not semistable (here
s = oo means thaVp, (1) is strongly semistable).

The formulas (for singular and nonsingular plane curves) also imply thap for0
(for example wherp > d(d — 3)), one can recover the numberand!/, where!/ is the
measure of how mucl**Vp, (1) is destabilized, in the sense thatdf C F**Vp, 1 is
the Harder—Narasimhan filtration then slape= slopeF**Vp, 1y +1/2. So in this case,
we have a simple numerical characterizataf semistability of the kernel bundle under
the Frobenius map via HK multiplicity.

Using this, and Monsky’s results [8,10], which are explicit computations for certain
nonsingular quartics, we prove the following (see Proposition 5.10): for any iniegdr,
there exist explicit rank 2 vector bundl&®son nonsingular curves of genus 3 over a field
of characteristic 2 or 3, such th&**V is semistable, buf "+1*V is not semistable.
Moreover, wherp = 3, the result also holds far= 0.

| would like to thank P. Monsky for his encouragement, as well as interesting ques-
tions, and for sending me several of his as yet unpublished papers. | would also like to
thank R. Buchweitz for his kind words. | would like to thank V. Srinivas for stimulating
discussions, and helpful suggestions.

Finally I would like to thank the referee for his detailed comments and very useful
suggestions and proofs.

Some of our results, particularly the formula for HK multiplicity in Theorem 4.12, are
also contained in an equivalent form in a regereprint of H. Brenner [1]. Our results here
have been obtained concurrently, and independently. The rationality of the HK multiplic-
ity of a smooth plane curve had been also proved by Monsky (unpublished), by different
methods (private communications).

2. Semistability and HK multiplicity

We first recall the notion of semistability. f is a vector bundle of rankon a projective
curveX, recall that dey :=deg A" V), and slopéV) := u(V) =degV/rankV.
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Definition 2.1. Let V be a vector bundle of rank on a projective curve&X. ThenV is
semistablef for any subbundleg/’ — V, we have

n(V') <p(v).

Definition 2.2. A vector bundleV on X is calledstrongly semistablé F**V is semistable
for thesth iterate of the absolute Frobenius map,: X — X, forall s > 0.

Remark 2.3. If W is a line bundle then it is semistable, and/ifis a semistable bundle
thenso arg/Y andV @ W.

From now onwardsX is a nonsingular (projective) curve of gengis 2 over an alge-
braically closed fieldk of characteristipp > 0 and/£ is a base point free line bundle 6h
unless stated otherwise. Recall the notatiofX, F) := dim; H (X, F), for any coherent
sheafF on X, andi =0, 1.

Lemma 2.4. Let X be a nonsingular projective curve of gengi®nd V be a semistable
bundle onX of rankr and degreei. Then

(1) If degW < 0theni®(X, W) =0.
(2) If degW > r(2g — 2) thenh'(X, W) =0andh®(X, W) = degW — r(g — 1).
(3) If 0< degW < r(2g — 2) thenh®(X, W) < rg.

Proof. Statement (1) follows from the defiion of semistable vector bundle.

By Serre duality, we have! (X, W) = h%(X, wx @ WY). Sincewy ® W" is semistable,
we geth%(X,wx @ WY) =0 if degW > r(2g — 2), hencehl(X, W) = 0. This, and the
Riemann—Roch formula

KX, W) — hY(X, W) =degW + r(1—g),

implies statement (2).

To prove statement (3), we choose a line bunfljegiven by an effective divisor of
degree 1, and an integer> 0 such that dedV ® £") < r(2g — 2) and degW ® £"+1) >
r(2g — 2). Now

ROX, W) <n®(X, w @ L") =t (X, W ® L") + degd W @ L") +r(1—g)
=dedW L") +r+r(l-g) <rg.

This proves statement (3).0

Proposition 2.5. Let X be a nonsingular projective curve of gengignd letL be a base
point free line bundle of degrekon X. If V. (see(1.1))is strongly semistable then

dh
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wherer = h%(X, £), B = @, H%(X. L") andm =P, H%(X, L") is the graded
maximal ideal ofB.

Proof. Let B, = H%(X, £™). Consider the Frobenius twisted multiplication map,
Hie,n - B]Eq) ® By—kq — Bn

given byr ® r' — r4r’, wherer € By andr’ € B,_iq andB,Eq) = By as an additive group
with k-action on it given by, - r = 297 for A € k andr € Bx. Now

¢(B/m@) = Xn:z<3n/2im Mk,n>.

Consider the short exact sequence
0— Vy - HYX, L) ® Ox — L — 0.
This gives
0— F*Vp ® L®" — HOX, L) ® L& — £Z"F1 0,

whereq = p* andF : X — X is the Frobenius map.
Hence we have a long exact sequence of cohomologies

HO(X, FS*V, ® L&) — HO(X, £)P ® HO(X, £®") — HO(X, LZ")
— HYX, F*V, ® L"),

where the second arrow is given by the mag, .
Now rankV, =h — 1, and

deq F**V, ® L") =ded F**V,) + (h — 1) degl" = g degV + (h — D)n(d)
=(—g+ (h—Dn)d.

Case 1. Supposer < g/(h — 1). Then degF**V, ® L") < 0. Hence by Lemma 2.4, the
mapi1,n+4 IS injective.

Moreovem +qg —kg <q/(h—1)+q—kq <0, if k > 2. In particular imuy 44 = O for
k > 2. Hence in this rang&(B,+4/ Zk im(lka,n+q)) =4{(Bp+q/ im(l’«l,n+q)) =LU(Bp+q) —
€(B1) - €(By).

Case2. Supposer > g/(h— 1)+ (2¢g — 2)/d. Then degF**V, ® L") > (h — 1)(2g — 2),
hence by Lemma 2.4, the mag , is surjective, which implieg(B,,1,/im(u1,,+4)) =0.
Hencee(BnJrq/ Zk im(H«k,n+q)) =0.
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Case 3. Supposey/(h—1) <n<gq/(h—1)+ (2¢g—2)/d. Then
0<ded F**V, QL") < (h —1)(2g - 2),

and therefore

lg/(h—1)+(2g—2)/d]

, 2g —2
hO(X, F“*VL®£")<(h—1)g< gd +1).
n=\q/(h—1))

Therefore we have

HKM (X, £) = HKM(B, m) = lim i2e<i)

q—00 g2 =6 im(z41,)
1 By )
=1lm 5 Y o —"t
qqun; (Im(m,n+q)
= lim iz > (hO(x. L) — hOX, LYRO(X, L) + hO(X, F**V, ® L")

q—>0
—q<n

q

= lim iz > KO(x. L) = kX, L)RO(X, L")
174" <n<q /-1

= lim ~ dooxxeny-n o Y x(x.LY
174" 0cngq/h-1+q 0<n<q/(h-1)

— (dh)/2(h — ).

|

This proves the proposition.O

Remark 2.6. In the above proof, replacing the complete linear system by any base point
free linear systeni of L, of vector-space dimensiont 1 (and replacing by r +1 every-
where), one sees thatWi: (W) is strongly semistable the#kKM (X, £, W) =d(r + 1)/2r.

3. Applicationsand examples

In this sectionX is a nonsingular curve andis a base point free line bundle éh and
Vr is the kernel vector bundle given by the natural map

0— V[;—)HO(X,ﬁ)@OX—)ﬁ—)O.

We use the following notation in this and in the forthcoming sections.
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Notation 3.1. C denotes an irreducible curve of degree 1, over an algebraically closed
field of characteristip andx : X¢ — C is the normalization of’, whereg is the genus of
Xc andLe = 7*Oc (1) andWe = HO(C, O¢(1)). Note thatWe ¢ HO(X¢, Lc) is a base
point free linear system. Hence this gives a natural short exact sequefige ahodules

0= Vec—Wec®0x.— Lc—0, (3.1
whereVe = V. (Wc) following our earlier Notation 1.1.

Remark 3.2. Sincer is a finite birational map, by Lemma 1.3 in [7], Theorem 2.7 in [13]
or in [2], we have

HKM(C, O¢(1)) = HKM(X¢, Lc, We).

Here we discuss some exampl@s, £) for which the vector bundlé/, is strongly
semistable. But before that we need to chéuk first necessary condition, i.e., that the
vector bundlé/, is itself semistable. The referee has provided the proofs of Proposition 3.4
and its Corollaries 3.5 and 3.6. Before coming to that we recall the following definition.

Definition 3.3. Thegonalityof a nonsingular curvé is the least integet, for which there
exists a line bundle of degrelewith a base point free complete linear system of projective
dimension 1 (in other words a line bundle of degdeehich induces a nonconstant map
X — PD.

Proposition 3.4. If X¢ has gonality> d/2 thenV, is semistable.

Proof. If V. is not semistable, then neitherlig’. Hence there exists a quotient line bundle
L3 0f Vi suchthap(£1) < n(V)) =d/2. SinceV/ is globally generated, the line bundle
L1 is globally generated. NowZ; cannot be the trivial bundle; otherwise we will have
Ox < V, which would imply thatH%(X, V) # 0. Soh%(X, £1) > 2. So it follows that

X has a line bundle, of degree d/2, with a linear system of vector-space dimension
> 2, hence a line bundle of degreed /2 with a base point free complete linear system of
vector-space dimension 2. In other words the gonalit) et d/2, which contradicts the
hypothesis. This proves the propositiora

Corollary 3.5. If X is a nonsingular plane curve, thev,, whereL = Ox (1), is semi-
stable.

Proof. A classical result of M. Noether (see [4, Theorem 2.1]) implies that the gonality of
X isd — 1, whered is the degree ok. Now the proof follows from Proposition 3.4.0

Coroallary 3.6. Suppose is an irreducible projective plane curve of degeésuch that the
only singularities ofC are nodes and cusps, that> 4 and the number of singularitiel
satisfiesl < § <d — 2. ThenV¢ is semistable.



634 V. Trivedi / Journal of Algebra 284 (2005) 627-644

Proof. Theorem 2.1 of [3] implies (fok = 1 in their notation) that the gonality df¢ is
> d — 2. Hence once again the proof follows from Proposition 3.2

In this context, we would also like to recall the following result given in [12], which
was the main ingredient in proving a conjecture of Monsky (see Remark 5.6 of this paper).

Proposition 3.7. Let C be an irreducible projective plane curve of degrewiith a singu-
larity of multiplicity r > d /2. Then

(1) if r =d/2thenV¢ is strongly semistable,
(2) if r > d/2thenV¢ is not semistable and its destabilizing line bundle is of degred.

4. HK multiplicitiesfor base point freeline bundles

In this section, we consideAKM (X, £, W) where X is any nonsingular projective
curve of genug over an algebraically closed fieldof characteristicy > 0, and. is a
line bundle onX of degreed with base point free linear systei. We derive an expres-
sion for the HK multiplicity in this case, involving terms which seem to be very difficult
to compute, but which shows that it is a rational number, with a denominator of a partic-
ular form. As a consequence (see Remark 3.2) the rationality of the HK multiplicity of an
irreducible projective curve follows.

As mentioned in the introduction, this reswlas obtained independently by H. Brenner
[1]. The tools, both in Brenner's proof and auare Lemmas 2.4, 4.10, and a recent result
of A. Langer [6] (Theorem 4.5). We shall also give a converse to our Remark 2.6.

Definition 4.1. Given a vector bundl& on X, a filtration by vector subbundles
O=EoCE1C---CE, CE1=E
is called aHarder—Narasimhan filtratiofHN filtration) if

(i) E1, E2/E1,..., E;y1/E; are semistable vector bundles,
(i) w(Er) > p(E2/Er) >---> pu(Ery1/Er).

Remark 4.2. Note that such a filtration exists and is unique (see [5, Lemma 1.3.7]). More-
over, ifr > 1, then

w(E) > u(E;/E;_1), forall2<i<r+1
The case whett is semistable correspondsite- 0.

Notation 4.3.1f0 Cc E1 C --- C E; C E;4+1 = E is the HN filtration of E then we write

pmax(E) = u(E1) and umin(E) = u(E/E).
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Definition 4.4. A filtration of subbundles
O=FEoCE1C---CE,CE1=E

of E is astrongly stable HN filtrationf it is a HN filtration andE1, E2/E1, ..., E;11/E;
are strongly semistable vector bundles.

Note that wheneveE has a strongly stable HN filtration then the HN filtration of
F**(E) is

0C F(Ep) € F¥(Ep) -~ ¢ FM(E)) € F¥(Ei41) = FM(E).
Now recall the crucial result of Langer [6] hich we state for the special case of curves.

Theorem 4.5 (A. Langer) If V is a vector bundle on a nonsingulprojective curve defined
over an algebraically closed field of characterispic> 0, then there exist > 0 such that
FS*(V) has a strongly stable HN filtration.

Definition 4.6. For a vector bundl& on X, and an ample line bund}é on X, we define

o (V)= hO(F*(V)® L")+ Y hH(F*(V)®L").

n<0 n>0

Lemma 4.7. If V is a strongly semistable vector bundle of rankand degreez, and
degl =d, then

2
a 2s s
V)y=— .
os(V)=5—p +0(p*)
Proof. Suppose for example that> 0. We are given that**(V) ® L" is semistable of
degreep®a + rdn. We choose > 0 such that2g — 2)/d < p*a/rd. Then

o(V)= Y X F*(V)®L")+ > mO(X, FS*(V) ® L")

e BB
:

n<rd rd XV T g

+ Y X FFWRL)+ Y KX PV eL").

— S
B2 22 <o -0

Now applying Lemma 2.4 to this equation we get

o(V)=Co+ Y. hX.F*V)®L")

2%-2 pS
222 g0

=Co+ Y. x(X.Frv)ecL"),

— S
22 Pt _,<0
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where 0< Co < rg((2g — 2)/d + 1). This giveso; (V) = ;r—ilpzs + O(p*). The argument
fora <Oissimilar. O

Notation 4.8. To generalize Lemma 4.7 to an arbitrary vector buridlen X, we shall
attach a rational number(V) to V, as follows. We choose: > 0 such that the vector
bundle F"*V has a strongly stable HN filtration (this is possible by Theorem 4.5),
OCE1CExC---CE/ CEi41=F™V.
Recall that, for any: > 0,
0C F™"E1 C F™EyC--- C F™E, C F"™E; 1= F"t*y,

is the strongly stable HN filtration of ™*V . We set

a; =p "dedE;/E; 1), ri=rankE;/E;_1)

a(V) =Y (af/ri). (4.1)

1

Remark 4.9. Note that these numbers are independent of the choieg ahd that

Zai =a and Zri =r.

Lemma 4.10. Let0 - U — V — W — 0 be an exact sequence of vector bundlesfon
Suppose thal/ and V admit strongly stable HN filtrations, and that

pmin(U) — pmax(W) > max0, 2g — 2).

Thenoy (V) =0, (U) + o5 (W) for all s.
Proof. It suffices to show that

RO(X, FS*(V) ® L") = h%(X, F**(U) ® L") + h°(X, F*(W) ® L")
for all s andn. Consider the canonical long exact sequence

0— HO(F*(U)® L") — HO(F** (V) ® L") — H°(F™* (W) ® L")

— HY(F*U)® L") — .

Now

Mmin(FS*(U) ® ﬁn) - Mmax(FS*(W) ® ﬁ") =p (Mmin(U) - Mmax(W)) >2g—2
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Therefore, eithefimax(F**(W) ® L") < 0, in which casé%(F*(W) ® £") =0, or
fmin(F**(U) ® L") > 28 — 2,

in which case, we haviel(F**(U) ® £") = 0, by Serre duality. Hence the lemma follows,
by the above long exact sequencel

Corollary 4.11. For any vector bundlé’ on X,

\%4
oy (V)= %pk + 0(p%).

Proof. Taking large enough Frobenius pullbacks, i.e. o8> 0, we can make sure that
OCE1CEsC---CE;CE;11=F™V
is the strongly stable HN filtration of "*V and
W(Ei/Ei-1) — n(Ei+1/Ei) > r(28 — 2),
hence, by Remark 4.2,
W(Ei) — u(Eiy1/Ei) > r(2g — 2).

Moreover,E; 1/ E; is strongly semistable and®@ E; C - - - C E; is the strongly stable HN
filtration of E;. Hence applying Lemma 4.10, for— m > 0 we get

Os—m(Ei+1) = 05—m(Ei) + 05—m(Eit+1/E;).
Now, fors —m > 0, by induction
05 (V) =05—m(Er+1) = 05—m(E1) + 05—m(E2/E1) + -+ - + 05—m(Er+1/ Er).
Now the corollary follows from Lemma 4.7.0

Theorem 4.12. Let X C P" be a nonsingular projective curve ovkrand let£ be a line
bundle onX of degreed, with a base point free linear systeil. Then

HKM(X, £, W) = (1/2d)(d? + (Ve (W))).
In particular HKM(X, £, W) is a rational number.

Proof. Let B be the section ringp,, -, HO(X, £"), andI be the ideal o8 generated by

W - B. We only need show that the HK multiplicity & with respect td is (1/2d)(d? +
a (Ve (W))). Making use of the various exact sequences

0— F*(VeW) ®L" = L@ - & L' — LT -0,
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one finds that

B . ) n »
dim - = D (0(X. F* (VW) @ £7) = (r + DIO(X. L7) + h%(X. £477)).

Now each term in this sum is unchanged wtéris replaced by:!. So the sum is
o5 (Ve (W) — (r + Doy (Ox) + 05(L).

Sincea(Ox) = 0 andx (L) = d?, by Corollary 4.11, we have

dim(B/1718) = - (a(VeW) +d2)p® + O (p").
This proves the theorem.

Remark 4.13. We have

b2 2 (b+0)?  (cs—b1)?

s t s+t st(s+1)

Soifs, >0,

b2+c_2> (b +c)?

s r 7 s+t

with equality if and only ifb/s = c/t. It follows thata(V,(W)) > d?/r with equality if
and only if V(W) is strongly semistable. Together with Theorem 4.12, this gives:

Theorem 4.14. For a nonsingular projective curv& with a line bundleC of degree/ and
a base point free linear systeW, of £, of dimension,

HKM(X, L, W) >d(r +1)/2r,
and
HKM(X, £, W) =d(r + 1)/2r
if and only if V(W) is strongly semistable.
Now, Remark 3.2 implies the following
Corollary 4.15. If C € P" is an irreducible projective curve of degrdehen

HKM(C, Oc (D) = (1/2d)(d? + a(V()).
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which is a rational number. Furthermore
HKM(C, Oc (1)) > d(r + 1)/2r,
with equality if and only ifV¢ is strongly semistable.

Corollary 4.16. If X is a nonsingular projective curve of gengs> 2 and wy is the
canonical sheaf oK then

HKM(X, wx) > g,

with equality if and only iV, is strongly semistable.

5. HK multiplicity for plane curves

In this section we use Notation 3.1, whefeis an irreducible plane curve of degree
d > 1, over an algebraically closed field of characterigti¢tience we have a natural short
exact sequence @x.-modules

0= Ve—->W®0Ox, = Lc—0,

whereVe = V(W) is a rank two vector bundle.
Remark 5.1. For a rank two vector bundIl€, either the bundle is strongly semistable or
some iterated Frobenius pullback has HN filtration given by a line bufidteF**V such
that F**V /L is also a line bundle. In other words the HN filtration ©f*V is a strongly

stable HN filtration. Hence the result of Langer is obvious.

The following lemma is proved in [11, Corollary’R(see also [6]). We sketch another
proof.

Lemma5.2. Let X be a nonsingular curve of gengsover an algebraically closed fielkd
of characteristicp > 0. Let V be a vector bundle of ranR over X. Suppose there exists
an exact sequence

0— L1— F*V - M1— 0,
such thatZq, M are line bundles, and
degl1 — degMj > max(2g — 2,0).

ThenV is not semistable.



640 V. Trivedi / Journal of Algebra 284 (2005) 627-644

Proof. If g =0andV is semistable theR* (V) is semistable. This contradicts the hypoth-
esis that deg; — degM; > 0. So we may assume that- 0. Hence deg1 — degM1 >
2g — 2. Then there is a canonical connectnF*(V) — F*(V) ® wx given locally by

V(F*(en) = V(F*(e2)) =0,

where{e, ez} is any local basis foV. Let f = po V|z,, wherep: F*(V) @ wxy — M1®
wy is the obvious map. Let ands be local sections aPy and£1 respectively. Then

flas)=p(s®da+aVs)=paVs)=af(s).

Hencef: L1 — M1 Q® wy is anOx-linear map.

If f s 0 then dedC; < degMj + (2¢ — 2) which would contradict the hypothesis.
Hence f = 0. Now, note that locally£1 is a freeOx-module of rank 1 inF*V, gen-
erated by a section of the forn=aF*e; + F*ep, or of the forms = F*ey + bF*es.
Without loss of generality one can assume- a F*e; + F*ep. Then f(s) = 0 implies
F*e1 ® da € L1 ® wx. Hence we can find a local sectianof wy such thatF*eq ® da =
(aF*e1+ F*e2) ® w, which impliesw = 0 andda = 0. Henceu = a” for some local sec-
tiona of Ox. Thisimpliesa F*e1 4 F*ez = F*(ae1+e2). Hencely = F* L) for some line
subbundlel) of V. Since ded™*(£}) > 1/2degF*(V) we have ded] > (W), which
implies thatV is not semistable. O

Theorem 5.3. Let C be an irreducible plane curve of degrée> 1. Let X¢ = C be the
normalization ofC. Let V¢ be the rank two vector bundle given by the natural map

0— Ve — H(C,0c(1)) ® Ox — L — 0.
Then one of the following holds

(1) V¢ is strongly semistable. In this case HKW) = 3d/4.
(2) Vc is not semistable. Then
3ad I’
HKM(C) = — + —,
(&) 7 T

where0 < I < d and! is an integer congruent td (mod 2.
(3) V¢ is semistable but not strongly semistable. ket 1 be the number such that
FO—D*y. is semistable and™* V¢ is not semistable. Then

3d 12
HKM(C) = 7T 0

wherel is an integer congruent tpd (mod 2 with 0 <! < 2g — 2, so that in partic-
ularO<I1<d(d — 3).
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Proof. (1) follows from Remark 2.6 withr = 2.
(2) Given thatV¢ is not semistable, we have

O—-L1—>Vc—>M1—0

where

d 1 d 1
n(L1) =degly = —5+3 and p(Mjy) =degMy = 35
for somel > 0 and! is an integer congruent t (mod 2). Since this is the strongly stable
HN filtration (see Remark 5.1), by Theorem 4.12

3d I’
HKM(C) = — + —.
) 7 T
Since an irreducible plane curve of degtkee 1 has HK multiplicity < d, we have < d.
This proves the statement (2).
(3) If L1 is the destabilizing bundle df**V then there exists a short exact sequence

0— L1— F"*Ve— M1 —0,

such that for some positive integer

/

d l d
deg/\/llz—ips ~3 and de@lz—zps + >

Since FY~D*V, is semistable, by Lemma 5.2, we have
degl; —degM=1<2g —2.

Since 0C £1 C F**V¢ is the strongly stable HN filtration, Theorem 4.12 and a calculation
like that made in case (2) gives the desired valugli (C). This proves the theorem.o

If X is a nonsingular plane curve, then by Corollary 3.5, the buviglg,) is semistable,
and so Theorem 5.3 gives the following corollary.

Corollary 5.4. Let X be a nonsingular plane curve of degrdeover an algebraically
closed field of characteristip > 0, andOx (1) the corresponding very ample line bundle.
Then

d 2
HKM(X, Ox(l)) = 7 + W’

wheres > 1 is a number such thaf“~D*V, 1) is semistable and**Vp, (1, is not
semistablgif F"*Vp, (1) is semistable for all > 0, we takes = 0o) and! is an integer
congruenttopd (mod 2 with0 <1 <d(d — 3).
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Remark 5.5. If all the singularities of an irreduciblerojective plane curve of degrde> 1
are nodes and cusps, and the number of singulariti€siis- 2, then, by Corollary 3.6, it
follows that case (2) of Theorem 5.3 cannot occur.

Remark 5.6. SupposeC is an irreducible projective plane curve with a singularity of mul-
tiplicity » > d/2. Monsky conjectured

3d  (2r —d)?
HKM(C)=Z+%.

We proved this in [12]; note that it is an immediate consequence of cases (1) and (2) of
Theorem 5.3, combined with Proposition 3.7.

Remark 5.7. Let C be an irreducible plane quartic.df is singular, the last remark shows
thatHKM(C) is 3 if C has a point of multiplicity 2, and is %3 if C has a triple point.

If C is nonsingular, then we are either in case (1) of Theorem 5.3, or in case (3) of the
same theorem with= 2 or 4. SOHKM(C) is either 3, 3+ (1/p°®) or 3+ (1/4p%), for
somes > 1. This result had been conjectured by Monsky.

In particular, wherC is nonsingular, we havelKM(C) < 3+ (1/p?). The referee in-
forms us that whep = 2, we haveHKM (C) < 3+ (1/16).

We recall some results of Monsky [8,10ksalso [9]), about nonsingular quartics of a
certain type.

Theorem 5.8 (Monsky). Let R, = k[x, y, z]/(g«), Wherechark = 2 and
go =ax?y? + 24+ xy? + (3 + %)z,
with @ € k \ {0}. Then
HKM(R,) = 3+ 47",
where, fors € k such thaix = A2 + A, we definen(«) as follows

deg ofr overZ/27 if « is algebraic ovelZ/2Z,
00 if & is transcendental ovet/27Z.

m(a) = {
Theorem 5.9 (Monsky). LetR; = k[x, y, z]/(f1), wherechark = 3 and
H=2t—xy+y)(x +ay),
with . € k\ {0, 1}. Then

1
HKM(R;) = 34+ ——,
240
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whered = d()) is the degree ok overZ/37Z (andd = oo if X is transcendental over
7./37).

Note thatX, = ProjR, LPlisa nonsingular plane quartic of genus 3. We also note
that, given any integer > 2 there exists ar € F» such thatn(«) = n. Similarly given
anyn > 1 there exists. € F3 such that/ () = n.

Applying Corollary 5.4 to Theorem 5.8, we see that'~b*V, is semistable and
F't1xy, is not. (The referee has shown th&t*V, is semistable.) Hence we get the
following.

Proposition 5.10.

i) Given any integen > 2, there exists a nonsingular quartic curig, < P2 , given by
the equation 2

ax?y? + 24+ xyz? + (x3+ %)z =0
wherem («) = n, such that the vector bundle
Vo = 25|,
is a semistable vector bundle df, of rank2 and degree-4, and the iterated Frobe-
nius pullbackF"*V,, is not semistable, whil&"~D*V, is semistable.

i) Given any integen > 1, there exists a nonsingular quartic curig, < P2 , given by
q F
the equation :

= xy(x+y)(x +Ay)
whered () = n, such that the vector bundle
VA. = SZ;Z'X;L

is a semistable vector bundle dfy, of rank2 and degree-4, and the iterated Frobe-
nius pullbackF”*V; is not semistable, whil&*~D*V; is semistable.

Remark 5.11. Let R, be as in Theorem 5.9, but with > 3. Monsky [10] has given a
practical algorithm involving the iteration of a rational function, for calculathgM (R;.).
Together with our results, this lets one calculate the smallest powgr dhat destabi-
lizes V.
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