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Abstract

Letf :X → Y be a perfectn-dimensional surjective map of paracompact spaces andY aC-space.
We consider the following property of continuous mapsg :X → I

k = [0,1]k , where 1� k � ω: each
g(f−1(y)), y ∈ Y , is at mostn-dimensional. It is shown that all mapsg ∈ C(X, In+1) with the above
property form a denseGδ-set in the function spaceC(X, In+1) equipped with the source limitatio
topology. Moreover, for everyn + 1 � m � ω the spaceC(X, Im) contains a denseGδ-set of maps
having this property.
 2002 Elsevier B.V. All rights reserved.
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1. Introduction

This note is inspired by a result of Uspenskij [15, Theorem 1]. Answering a que
of R. Pol, Uspenskij proved the following theorem: Letf :X → Y be a light map (i.e.
every fiberf−1(y) is 0-dimensional) between compact spaces andA be the set of al
functionsg :X → I = [0,1] such thatg(f−1(y)) is 0-dimensional for ally ∈ Y . ThenA
is a denseGδ-subset of the function spaceC(X, I) providedY is aC-space (the case whe
Y is countable-dimensional was established earlier by Torunczyk). We extend this re
follows:
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Theorem 1.1. Let f :X → Y be a σ -perfect surjection such that dimf � n and Y is a
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paracompact C-space. Let H = {g ∈ C(X, In+1): dimg(f−1(y)) � n for each y ∈ Y }.
Then H is dense and Gδ in C(X, In+1) with respect to the source limitation topology.

Corollary 1.2. Let X, Y and f satisfy the hypotheses of Theorem 1.1and n+ 1 � m � ω.
Then, there exists a dense Gδ-subset Hm of C(X, Im) with respect to the source limitation
topology such that dimg(f−1(y))� n for every g ∈ Hm and y ∈ Y .

Here, dimf = sup{dimf−1(y): y ∈ Y } andf is said to beσ -perfect if there exists a
sequence{Xi} of closed subsets ofX such that each restriction mapf |Xi is perfect and
the setsf (Xi) are closed inY . TheC-space property was introduced by Haver [7]
compact metric spaces and then extended by Addis and Gresham [1] for general
(see [4] for the definition and some properties ofC-spaces). Every countable-dimensio
(in particular, every finite-dimensional) paracompact space has propertyC, but there exists
a compact metricC-space which is not countable-dimensional [13]. For any spacesX and
Y byC(X,Y ) we denote the set of all continuous maps fromX into Y . If (Y, d) is a metric
space, then the source limitation topology onC(X,Y ) is defined in the following way
a subsetU ⊂ C(X,Y ) is open inC(X,Y ) with respect to the source limitation topolog
provided for everyg ∈ U there exists a continuous functionα :X → (0,∞) such that
B(g,α) ⊂ U , whereB(g,α) denotes the set{h ∈ C(X,Y ): d(g(x),h(x))� α(x) for each
x ∈ X}. The source limitation topology is also known as the fine topology andC(X,Y )

with this topology has Baire property provided(Y, d) is a complete metric space [12
Moreover, the source limitation topology onC(X,Y ) does not depend on the metric ofY

whenX is paracompact [8].
All single-valued maps under discussion are continuous, and all function spaces

explicitly stated otherwise, are equipped with the source limitation topology.

2. Proofs

Let show first that the proof of Theorem 1.1 can be reduced to the case
f is perfect. Indeed, we fix a sequence{Xi} of closed subsets ofX such that each
map fi = f |Xi :Xi → Yi = f (Xi) is perfect andYi ⊂ Y is closed. Consider th
mapsπi :C(X, In+1) → C(Xi, I

n+1) defined byπ(g) = g|Xi and the setsHi = {g ∈
C(Xi, I

n+1): dimg(f−1
i (y))� n for eachy ∈ Yi}. If Theorem 1.1 holds for perfect map

then everyHi is dense andGδ in C(Xi, I
n+1), so are the setsπ−1

i (Hi ) in C(X, In+1)

becauseπi are open and surjective maps. Finally, observe thatH is the intersection of al
Hi and sinceC(X, In+1) has Baire property, we are done.

Everywhere in this sectionX, Y , f andH are fixed and satisfy the hypotheses
Theorem 1.1 withf being perfect. Any finite-dimensional cubeIk is considered with
the Euclidean metric. We say that a set-valued mapθ :H → F(Z), whereF(Z) denotes
the family of all closed subsets of the spaceZ, is upper semi-continuous (br. u.s.c.)
{y ∈ H : θ(y) ⊂ W } is open inH for every openW ⊂ Z. In the above notation,θ is called
lower semi-continuous if{y ∈ H : θ(y)∩W �= ∅} is open inH wheneverW is open inZ.
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Proof of Theorem 1.1. For every open setV in I
n+1 let HV be the set of allg ∈

j

s

r the

s a
nuous
ct-

-

wing
act

r
t

C(X, In+1) such thatV is not contained in anyg(f −1(y)), y ∈ Y . Following the Uspenski
idea from [15], it suffices to show that each setHV is dense and open inC(X, In+1).
Indeed, choose a countable baseB in I

n+1. Since a subset ofIn+1 is at mostn-dimensional
if and only if it does not contain anyV ∈ B, we have thatH is the intersection of allHV ,
V ∈ B. But C(X, In+1) has the Baire property, soH is dense andGδ in C(X, In+1) and
we are done. ✷
Lemma 2.1. The set HV is open in C(X, In+1) for every open V ⊂ I

n+1.

Proof. Fix an open setV in I
n+1 and g0 ∈ HV . We are going to find a continuou

functionα :X → (0,∞) such thatB(g0, α) ⊂HV . To this end, letp :Z → Y be a perfect
surjection with dimZ = 0 and defineψ :Y → F(In+1) by ψ(y) = g0(f

−1(y)), y ∈ Y .
Sincef is perfect,ψ is upper semi-continuous and compact-valued. Now, conside
set-valued mapψ1 :Z → F(In+1), ψ1 = ψ ◦p. Obviously,g0 ∈HV impliesV \ψ1(z) �= ∅
for every z ∈ Z. Moreover,ψ1 is also upper semi-continuous, in particular it ha
closed graph. Then, by a result of Michael [10, Theorem 5.3], there exists a conti
maph :Z → I

n+1 such thath(z) ∈ V \ψ1(z), z ∈ Z. Next, consider the u.s.c. compa
valued mapθ :Y → F(In+1), θ(y) = h(p−1(y)), y ∈ Y . We have∅ �= θ(y) ⊂ V and
θ(y) ∩ ψ(y) = ∅ for all y ∈ Y . Hence, the functionα1 :Y → R, α1(y) = d(θ(y),ψ(y)),
is positive, whered is the Euclidean metric onIn+1. Since, bothθ andψ are upper semi
continuous,α1 has the following property:α−1

1 (a,∞) is open inY for everya ∈ R. Finally,
take a continuous functionα2 :Y → (0,∞) with α2(y) < α1(y) for every y ∈ Y (see,
for example, [3]) and defineα = α2 ◦ f . It remains to observe that, ifg ∈ B(g0, α) and
y ∈ Y , thenθ(y) ⊂ V \g(f−1(y)). So,g(f−1(y)) does not containV for all y ∈ Y , i.e.,
B(g0, α) ⊂HV . ✷
Remark. Analyzing the proof of Lemma 2.1, one can see that we proved the follo
more general statement: Leth :X → Y be a perfect surjection between paracomp
spaces andK a complete metric space. Then, for every openV ⊂ K the set of all maps
g ∈ C(X,K) with V �⊂ g(h−1(y)) for anyy ∈ Y is open inC(X,K).

The remaining part of this section is devoted to the proof that eachHV is dense in
C(X, In+1), which is finally accomplished by Lemma 2.6.

Lemma 2.2. Let Z and K be compact spaces and K0 = ⋃∞
i=1Ki with each Ki being a

closed 0-dimensional subset of K . Then the set A = {g ∈ C(Z ×K, I): dimg({z}×K0) =
0 for every z ∈ Z} is dense and Gδ in C(Z × K, I).

Proof. Since, for everyi, the restriction mappi :C(Z × K, I) → C(Z × Ki, I) is a
continuous open surjection, we can assume thatK0 = K and dimK = 0. ThenA is the
intersection of the setsAV , V ∈ B, whereB is a countable base ofI andAV consists
of all g ∈ C(Z × K, I) such thatV �⊆ g({z} × K) for everyz ∈ Z. By the remark afte
Lemma 1.1, everyAV ⊂ C(Z × K, I) is open, soA is Gδ . It remains only to show tha
A is dense inC(Z × K, I). SinceK is 0-dimensional, the setCK = {h ∈ C(K,R): h(K)
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is finite} is dense inC(K,R). Hence, by the Stone–Weierstrass theorem, all polynomials
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of elements of the familyγ = {t · h: t ∈ C(Z,R), h ∈ CK } form a dense subsetP of
C(Z × K,R). We fix a retractionr :R → I and defineur :C(Z × K,R) → C(Z × K, I),
ur(h) = r ◦ h. Thenur(P) is dense inC(Z × K, I). It is easily seen that everyg ∈ ur(P)

has the following property:g({z} × K) is finite for everyz ∈ Z. So,ur(P) ⊂ A, i.e.,A is
dense inC(Z ×K, I). ✷
Lemma 2.3. Let M and K be compact spaces with dimK � n and M metrizable. If
V ⊂ I

n+1 is open, then the set of all maps g ∈ C(M ×K, In+1) such that V �⊂ g({y} ×K)

for each y ∈ M is dense in C(M ×K, In+1).

Proof. We are going to prove this lemma by induction with respect to the dimensionK.
According to Lemma 2.2, it is true if dimK = 0. Suppose the lemma holds for anyK with
dimK � m− 1 for somem � 1 and letK be a fixed compact space with dimK = m. For
g0 ∈ C(M ×K, Im+1) andε > 0 we need to find a functiong ∈ C(M ×K, Im+1) which is
ε-close tog0 andV �⊂ g({y} ×K) for everyy ∈ M. If K is not metrizable, we represent
as the limit space of aσ -complete inverse systemS = {Kλ,p

λ+1
λ : λ ∈ Λ} such that each

Kλ is a metrizable compactum with dimKλ � m. ThenM × K is the limit of the system
{M×Kλ, id×pλ+1

λ : λ ∈ Λ}, where id is the identity map onM. Applying standard invers
spectra arguments (see [2]), we can findλ(0) ∈ Λ andgλ(0) ∈ C(M × Kλ(0), I

m+1) such
thatgλ(0) ◦ (id×pλ(0)) = g0, wherepλ(0) :K → Kλ(0) denotes theλ(0)th limit projection
of S. Therefore, the proof is reduced to the case whenK is metrizable.

Let K be metrizable andK = K1 ∪ K2 such thatK1 is a 0-dimensionalσ -compact
subset ofK and dimK2 � m − 1 (this is possible becauseK is metrizable and
m-dimensional, see [4]). Letg0 = g0

1 × g0
2, whereg0

1 is a function fromM × K into I,
andg0

2 :M × K → I
m. We can assume thatV = V1 × V2 with bothV1 ⊂ I andV2 ⊂ I

m

open. According to Lemma 2.2, there exists a functiong1 :M × K → I which is ε/
√

2-
close tog0

1 and such that dimg1({y}×K1) = 0 for everyy ∈ M. Hence,V1 is not contained
in any of the setsg1({y} ×K1), y ∈ M.

Claim. There exists an open set A1 ⊂ K containing K1 such that V 1 �⊂ g1({y} × A1) for
any y ∈ M .

To prove the claim, we representK1 as the union of countably many compa
0-dimensional setsK1i and consider the upper semi-continuous compact-valued m
ψi :M →F(I) defined byψi(y) = g1({y} ×K1i ). As in the proof of Lemma 2.1, we fix
0-dimensional spaceZ, a surjective perfect mapp :Z → M and define the set-valued ma
ψ̄i :Z → F(I), ψ̄i = ψi ◦p. It follows from our construction that each̄ψi(z), z ∈ Z, i ∈ N,
is 0-dimensional. By [10, Theorem 5.5] (see also [6, Theorem 1.1]), there ish ∈ C(Z, I)

such thath(z) ∈ V 1 \ ⋃∞
i=1 ψ̄i(z), z ∈ Z. Thenθ :M → F(I), θ(y) = h(p−1(y)), is u.s.c.

with ∅ �= θ(y) ⊂ V 1 \ g1({y} ×K1) for everyy ∈ M. Since the graphGθ of θ is closed in
M × I, the setU = {(y, x) ∈ M ×K: (y, g1(y, x)) /∈ Gθ } is open inM × K and contains
M × K1. So,A1 = {x ∈ K: M × {x} ⊂ U} is open inK and containsK1. Moreover,
θ(y)⊂ V 1 \ g1({y} × A1) for everyy ∈ M, which completes the proof of the claim.
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Now, letA2 = K \ A1. Obviously,A2 is a compact subset ofK2, so dimA2 � m − 1.
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According to the assumption that the lemma is true for any space of dimension� m − 1,
there exists a maph2 :M × A2 → I

m which isε/
√

2-close tog0
2|(M × A2) and such tha

V 2 �⊂ h2({y} ×A2) for anyy ∈ M. We finally extendh2 to a mapg2: M ×K such thatg2
is ε/

√
2-close tog0

2. Hence,

K = A1 ∪A2 and V j �⊂ gj
({y} ×Aj

)
for anyy ∈ M, j = 1,2. (1)

Then the mapg = g1 × g2 :M × K → I
m+1 is ε-close tog0. It follows from (1) that

V �⊂ (g{y} ×K) for anyy ∈ M. ✷
For any openV ⊂ I

n+1 we consider the set-valued mapψV from Y into C(X, In+1),
given byψV (y) = {g ∈ C(X, In+1): V ⊂ g(f−1(y))}, y ∈ Y .

Lemma 2.4. If V ⊂ I
n+1 is open and C(X, In+1) is equipped with the uniform convergence

topology, then ψV has a closed graph.

Proof. Let GV ⊂ Y × C(X, In+1) be the graph ofψV and (y0, g0) /∈ GV . Theng0 /∈
ψV (y0), so g0(f

−1(y0)) does not containV . Consequently, there existsz0 ∈ V \
g0(f

−1(y0)) and let ε = d(z0, g0(f
−1(y0))). Sincef is a closed map, there exists

neighborhoodU of y0 in Y with d(z0, g0(f
−1(y))) > 2−1ε for everyy ∈ U . It is easily

seen thatU × B4−1ε(g0) is a neighborhood of(y0, g0) in Y × C(X, In+1) which does not
meetGV (hereB4−1ε(g0) is the 4−1ε-neighborhood ofg0 in C(X, In+1) with the uniform
metric). ThereforeGV ⊂ Y × C(X, In+1) is closed. ✷

Recall that a closed subsetF of the metrizable spaceM is said to be aZ-set inM

[11], if the setC(Q,M\F) is dense inC(Q,M) with respect to the uniform convergen
topology, whereQ denotes the Hilbert cube.

Lemma 2.5. Let α :X → (0,∞) be a positive continuous function, V ⊂ I
n+1 open and

g0 ∈ C(X, In+1). Then ψV (y) ∩ B(g0, α) is a Z-set in B(g0, α) for every y ∈ Y , where
B(g0, α) is considered as a subspace of C(X, In+1) with the uniform convergence topology.

Proof. The proof of this lemma follows very closely the proof of [14, Lemma 2.8].
sake of completeness we provide a sketch. In this proof all function spaces are eq
with the uniform convergence topology generated by the Euclidean metricd on I

n+1.
Since, by Lemma 2.4,ψV has a closed graph, eachψV (y) is closedB(g0, α). We need to
show that, for fixedy ∈ Y , δ > 0 and a mapu :Q → B(g0, α) there exists a mapv :Q →
B(g0, α)\ψV (y) which isδ-close tou. Observe first thatu generatesh ∈ C(Q×X, In+1),
h(z, x) = u(z)(x), such thatd(h(z, x), g0(x)) � α(x) for any (z, x) ∈ Q × X. Since
f−1(y) is compact, takeλ ∈ (0,1) such thatλsup{α(x): x ∈ f−1(y)} < δ/2 and de-
fine h1 ∈ C(Q × f−1(y), In+1) by h1(z, x) = (1 − λ)h(z, x) + λg0(x). Then, for every
(z, x) ∈ Q× f−1(y), we have

d
(
h1(z, x), g0(x)

)
� (1− λ)α(x) < α(x) (2)
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(
h1(z, x), h(z, x)

)
� λα(x) <

δ

2
. (3)

Letq < min{r, δ/2}, wherer = inf{α(x)−d(h1(z, x), g0(x)): (z, x) ∈ Q×f −1(y)}. Since
dimf−1(y) � n, by Lemma 2.3 (applied to the productQ× f−1(y)), there is a maph2 ∈
C(Q × f−1(y), In+1) such thatd(h2(z, x), h1(z, x)) < q andh2({z} × f−1(y)) does not
containV for each(z, x) ∈ Q× f−1(y). Then, by (2) and (3), for all(z, x) ∈ Q× f−1(y)

we have

d
(
h2(z, x), h(z, x)

)
< δ and d

(
h2(z, x), g0(x)

)
< α(x). (4)

Because bothQ andf−1(y) are compact,u2(z)(x) = h2(z, x) defines the mapu2 :Q →
C(f−1(y), In+1). Since the mapπ :B(g0, α) → C(f−1(y), In+1), π(g) = g|f−1(y) is
continuous and open (with respect to the uniform convergence topology), we can s
u2(z) ∈ π(B(g0, α)) for everyz ∈ Q andθ(z) = π−1(u2(z))∩ Bδ(u(z)) defines a convex
valued map fromQ into B(g0, α) which is lower semi-continuous. By the Michael s
lection theorem [9, Theorem 3.2′′], there is a continuous selectionv :Q → C(X, In+1)

for θ . Thenv mapsQ into B(g0, α) andv is δ-close tou. Moreover, for anyz ∈ Q we
haveπ(v(z)) = u2(z) andV �⊂ u2(z)(f

−1(y)). Hence,v(z) /∈ ψV (y) for any z ∈ Q, i.e.,
v :Q → B(g0, α)\ψV (y). ✷

We are now in a position to finish the proof of Theorem 1.1.

Lemma 2.6. The set HV is dense in C(X, In+1) for every open V ⊂ I
n+1.

Proof. We need to show that, for fixedg0 ∈ C(X, In+1) and a continuous functio
α :X → (0,∞), there existsg ∈ B(g0, α) ∩ HV . The spaceC(X, In+1) with the uniform
convergence topology is a closed convex subspace of the Banach spaceE consisting of
all bounded continuous maps fromX into R

n+1. We define the set-valued mapφ from
Y into C(X, In+1), φ(y) = B(g0, α), y ∈ Y . According to Lemma 2.5,B(g0, α) ∩ ψV (y)

is aZ-set inB(g0, α) for everyy ∈ Y . So, we have a lower semi-continuous closed
convex-valued mapφ :Y → F(E) and another mapψV :Y → F(E) with a closed graph
(see Lemma 2.4) such thatφ(y)∩ψV (y) is aZ-set inφ(y) for eachy ∈ Y . Moreover,Y is a
C-space, so we can apply [5, Theorem 1.1] to obtain a continuous maph :Y → C(X, In+1)

with h(y) ∈ φ(y)\ψV (y) for everyy ∈ Y . Theng(x) = h(f (x))(x), x ∈ X, defines a map
g ∈ B(g0, α). On the other hand,h(y) /∈ ψV (y), y ∈ Y , implies thatg ∈ HV . ✷
Proof of Corollary 1.2. As in the proof of Theorem 1.1, we can suppose thatf is
perfect. We first consider the case whenm is an integer� n + 1. Let expn+1 be the
family of all subsets ofA = {1,2, . . . ,m} having cardinalityn + 1 and letπB : Im → I

B

denote the corresponding projections,B ∈ expn+1. It can be shown thatC(X, Im) =
C(X, IB ] × C(X, IA\B), so each projectionpB :C(X, Im) → C(X, IB) is open. Since, by
Theorem 1.1, every setHB = {g ∈ C(X, IB): dimg(f−1(y)) � n for all y ∈ Y } is dense
andGδ in C(X, IB), so is the setp−1

B (HB) in C(X, Im). Consequently, the intersectio
Hm of all HB , B ∈ expn+1, is also dense andGδ in C(X, Im). Moreover, ifg ∈ Hm and
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y ∈ Y , then dimπB(g(f
−1(y))) � n for anyB ∈ expn+1. The last inequalities, according
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to a result of Nöbeling [4, Problem 1.8.C], imply dimg(f−1(y))� n.
Now, let m = ω and exp<ω, denote the family of all finite setsB ⊂ ω of cardinality

|B| � n + 1. Keeping the above notations, for anyB ∈ exp<ω, πB :Q = I
ω → I

B and
pB :C(X,Q) → C(X, IB) stand for the corresponding projections. Then the intersec
Hω of all p−1

B (HB) is dense andGδ in C(X,Q). We need only to check tha
dimg(f−1(y)) � n for any g ∈ Hω and y ∈ Y . And this is certainly true, take a
increasing sequence{B(k)} in exp<ω which coversω and consider the inverse sequen
S = {πB(k)(g(f

−1(y))),πk+1
k }, whereπk+1

k :πB(k+1)(g(f
−1(y))) → πB(k)(g(f

−1(y)))

are the natural projections. Obviously,g(f−1(y)) is the limit space ofS. Moreover,
g ∈ Hω implies thatπB(k) ◦ g ∈ HB(k) for any k, so all πB(k)(g(f

−1(y))) are at most
n-dimensional. Hence, dimg(f−1(y)) � n. ✷
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