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Abstract

Let f: X — Y be a perfect-dimensional surjective map of paracompact spaceyamd-space.
We consider the following property of continuous mgpst — I¥ = [0, 1]%, where 1< k < w: each
g(f_l(y)), y €Y, is at mosti-dimensional. It is shown that all maps= C (X, ]I"+1) with the above
property form a densé&s-set in the function spac€(X, I+l equipped with the source limitation
topology. Moreover, for every + 1 < m < w the space” (X, ™) contains a dens€'s-set of maps
having this property.
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1. Introduction

This note is inspired by a result of Uspenskij [15, Theorem 1]. Answering a question
of R. Pol, Uspenskij proved the following theorem: LEt X — Y be a light map (i.e.,
every fiber f~1(y) is 0-dimensional) between compact spaces dnbe the set of all
functionsg: X — I =[0, 1] such thatg(f~1(y)) is O-dimensional for ally € Y. Then A
is a densé’ s-subset of the function spacq X, I) providedY is aC-space (the case when
Y is countable-dimensional was established earlier by Torunczyk). We extend this result as
follows:
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Theorem 1.1. Let f: X — Y be a o-perfect surjection such that dimf <n and Y isa
paracompact C-space. Let H = {g € C(X,I"™1): dimg(f~1(y)) < n for each y € Y}.
Then H isdenseand G5 in C(X, I"+1) with respect to the source limitation topology.

Corollary 1.2. Let X, Y and f satisfy the hypotheses of Theorem1.1landn + 1 < m < w.
Then, there exists a dense Gs-subset H,,, of C (X, I"™) with respect to the source limitation
topology such that dimg(f~1(y)) <n for every g € H,, and y € Y.

Here, dimf = sug(dim f~1(y): y € Y} and f is said to ber-perfect if there exists a
sequencégX;} of closed subsets of such that each restriction mafjX; is perfect and
the setsf (X;) are closed inY. The C-space property was introduced by Haver [7] for
compact metric spaces and then extended by Addis and Gresham [1] for general spaces
(see [4] for the definition and some propertiesBEpaces). Every countable-dimensional
(in particular, every finite-dimensional) paracompact space has prapgoiyt there exists
a compact metri€-space which is not countable-dimensional [13]. For any spacasd
Y by C(X, Y) we denote the set of all continuous maps frgrmto Y. If (¥, d) is a metric
space, then the source limitation topology 60X, Y) is defined in the following way:
a subsetV C C(X,Y) is open inC(X, Y) with respect to the source limitation topology
provided for everyg € U there exists a continuous functien X — (0, co) such that
B(g,a) C U, whereB(g, o) denotes the sdéh € C(X, Y): d(g(x), h(x)) < a(x) for each
x € X}. The source limitation topology is also known as the fine topology @, Y)
with this topology has Baire property providé#l, d) is a complete metric space [12].
Moreover, the source limitation topology @l X, Y) does not depend on the metric 6f
whenX is paracompact [8].

All single-valued maps under discussion are continuous, and all function spaces, if not
explicitly stated otherwise, are equipped with the source limitation topology.

2. Proofs

Let show first that the proof of Theorem 1.1 can be reduced to the case when
f is perfect. Indeed, we fix a sequengk;} of closed subsets ok such that each
map f;i = fI1X;:X; — Y; = f(X;) is perfect andY; C Y is closed. Consider the
maps; 1 C(X, "t — C(X;, ") defined byr(g) = g|X; and the set$t; = {g €
C(X;,I"t1y: dimg(fi_l(y)) < n for eachy € Y;}. If Theorem 1.1 holds for perfect maps,
then everyH; is dense andss in C(X;,I"*1), so are the setsl.‘l(H,-) in C(X, It
becauser; are open and surjective maps. Finally, observe thé the intersection of all
H; and sinceC (X, I"t1) has Baire property, we are done.

Everywhere in this sectioX, Y, f and’H are fixed and satisfy the hypotheses of
Theorem 1.1 withf being perfect. Any finite-dimensional culié is considered with
the Euclidean metric. We say that a set-valued mafl — F(Z), whereF(Z) denotes
the family of all closed subsets of the spageis upper semi-continuous (br. u.s.c.) if
{ye H: 6(y) Cc W} is openinH for every operWW C Z. In the above notatiom, is called
lower semi-continuous ify € H: 6(y) N W # @} is open inH wheneveW is openinZ.
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Proof of Theorem 1.1. For every open seV in I"t1 let Hy be the set of allg €
C(X,I"*tY) such that/ is not contained in any(f ~1(y)), y € Y. Following the Uspenskij
idea from [15], it suffices to show that each $é¢ is dense and open i@ (X, I"t1).
Indeed, choose a countable b#bsm I"+1. Since a subset d@f+1 is at most:-dimensional
if and only if it does not contain any € 5, we have that{ is the intersection of alHy,
V € B. But C(X,I"t1) has the Baire property, si is dense andss in C(X,I"*1) and
we are done. O

Lemma 2.1. The set Hy isopenin C (X, I"+1) for every open V c I"*1,

Proof. Fix an open set/ in I"*1 and go € Hy. We are going to find a continuous
functiona : X — (0, 0o) such thatB(go, ) C Hy. To this end, lelp: Z — Y be a perfect
surjection with dimZ = 0 and definey : ¥ — F([*1) by v(y) = go(f~1(»)), y € Y.
Since f is perfect,yr is upper semi-continuous and compact-valued. Now, consider the
set-valued magr : Z — F(I"t1), ¥, = ¥ o p. Obviously,go € Hy implies V\y1(z) # 0

for every z € Z. Moreover, 1 is also upper semi-continuous, in particular it has a
closed graph. Then, by a result of Michael [10, Theorem 5.3], there exists a continuous
maph:Z — I"*1 such thath(z) € V\¥1(2), z € Z. Next, consider the u.s.c. compact-
valued mapd: Y — FItY), 0(y) = h(p~1(y)), y € Y. We haved # 6(y) c V and

0(y) Ny (y) =0 for all y € Y. Hence, the functiow1:Y — R, a1(y) =dO(y), ¥ (»)),

is positive, where! is the Euclidean metric off 1. Since, bott¥ andy are upper semi-
continuousgs has the following property;zl‘l(a, 00) is openiny for everya € R. Finally,

take a continuous functioaz:Y — (0, co) with a2(y) < a1(y) for everyy € Y (see,

for example, [3]) and define = a2 o f. It remains to observe that, i € B(go, «) and

y €Y, thend(y) ¢ V\g(f~1(y)). So,g(f1(y)) does not contairV forall y € Y, i.e.,
B(go,a) CHy. O

Remark. Analyzing the proof of Lemma 2.1, one can see that we proved the following
more general statement: L&t X — Y be a perfect surjection between paracompact
spaces an& a complete metric space. Then, for every ope K the set of all maps
g€ C(X,K)with V ¢ g(h=1(y)) foranyy e Y is openinC(X, K).

The remaining part of this section is devoted to the proof that é&aghis dense in
C (X, "), which is finally accomplished by Lemma 2.6.

Lemma 2.2. Let Z and K be compact spaces and Ko = | ;2 K; with each K; being a
closed O-dimensional subset of K. Thentheset A = {g € C(Z x K, I): dimg({z} x Kg) =
Ofor everyz € Z} isdenseand Gs in C(Z x K, ).

Proof. Since, for everyi, the restriction map; :C(Z x K,I) - C(Z x K;,1) is a
continuous open surjection, we can assume gt K and dimkK = 0. ThenA is the
intersection of the setgly, V € B, whereB is a countable base dfand.Ay consists
ofall g e C(Z x K,I) such thatV € g({z} x K) for everyz € Z. By the remark after
Lemma 1.1, everydly C C(Z x K, 1) is open, saA is Gs. It remains only to show that
AlisdenseinC(Z x K,I). SincekK is 0-dimensional, the s&lx = {h € C(K,R): h(K)
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is finite} is dense inC (K, R). Hence, by the Stone—Weierstrass theorem, all polynomials
of elements of the family ={¢t - h: t € C(Z,R), h € Cg} form a dense subsé® of

C(Z x K,R). We fix a retractionr : R — I and defina:, :C(Z x K,R) — C(Z x K, ),
uy(h) =roh. Thenu,(P) isdense inC(Z x K,I). It is easily seen that evegye u,(P)

has the following propertyg ({z} x K) is finite for everyz € Z. So,u,(P) C A, i.e., Ais
denseinC(Z x K,I). O

Lemma 2.3. Let M and K be compact spaces with dimK < n and M metrizable. If
v c I"*1isopen, thenthe set of all maps g € C(M x K, I"1) suchthat V ¢ g({y} x K)
for each y € M isdensein C(M x K,T"*1).

Proof. We are going to prove this lemma by induction with respect to the dimensi&n of
According to Lemma 2.2, it is true if diti = 0. Suppose the lemma holds for akiywith
dimK <m — 1 forsomen > 1 and letK be a fixed compact space with dkh=m. For
g% e C(M x K,T"*1) ande > 0 we need to find a function e C(M x K, I"*+1) which is
e-close tog® andV ¢ g({y} x K) for everyy € M. If K is not metrizable, we represent it
as the limit space of a-complete inverse systeti= {K;, pi+li A € A} such that each
K, is a metrizable compactum with diff < m. ThenM x K is the limit of the system
{M x K, id Xp§+li A € A}, where id is the identity map ai. Applying standard inverse
spectra arguments (see [2]), we can fi(@) € A andg, ) € C(M x K (o), "+1y such
that gy (o) o (id X py(0)) = g°, wherep, ) : K — K0 denotes the.(0)th limit projection
of S. Therefore, the proof is reduced to the case wkieis metrizable.

Let K be metrizable an& = K; U K> such thatK; is a 0-dimensionab-compact
subset of K and dimK; < m — 1 (this is possible becaus& is metrizable and
m-dimensional, see [4]). Leg® = g9 x g3, whereg{ is a function fromM x K into I,
andgd: M x K — I". We can assume that = V; x V> with both Vo c T and v, c I
open. According to Lemma 2.2, there exists a funcenM x K — I which ise/+/2-
close tOg? and such that din ({y} x K1) = 0 for everyy € M. Hence V1 is not contained
in any of the setg1({y} x K1), y € M.

Claim. There exists an open set A1 C K containing K1 such that V1 ¢ g1({y} x Aq) for
anyyeM.

To prove the claim, we represer; as the union of countably many compact
0-dimensional setk;; and consider the upper semi-continuous compact-valued maps
¥ M — FI) defined byyr; (y) = g1({y} x K1;). As in the proof of Lemma 2.1, we fix a
O-dimensional spacg, a surjective perfect mgp: Z — M and define the set-valued maps
v, Z — F(), ¥; = i o p. It follows from our construction that eaah (z), z € Z,i € N,
is 0-dimensional. By [10, Theorem 5.5] (see also [6, Theorem 1.1]), thére i€ (Z, )
such thati(z) € V1 \ U2, ¥i(2), z € Z. Thend : M — F(I), 6(y) = h(p~1(y)), is u.s.c.
with @ #6(y) c V1 \ g1({y} x K1) for everyy e M. Since the grapl&, of 6 is closed in
M x 1, the setU = {(y,x) e M x K: (y, g1(y,x)) ¢ Gy} is openinM x K and contains
M x K1. S0,A1 ={x € K: M x {x} C U} is open inK and containsk;. Moreover,
6(y) C V1\ g1({y} x A1) for everyy e M, which completes the proof of the claim.
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Now, let Ao = K \ Aj. Obviously,A2 is a compact subset &2, so dimA, <m — 1.
According to the assumption that the lemma is true for any space of dimedsion 1,
there exists a map,: M x A» — I" which ise/+/2-close t0gg|(M x A2) and such that
Vo ¢ ho({y} x Ap) for anyy e M. We finally extend:, to a mapgz: M x K such thafg,
is &/+/2-close togd. Hence,

K=A1UAz and V;¢Zgi({y} xA;) foranyyeM, j=12 (1)

Then the mapg = g1 x g2: M x K — I"*1 is e-close togo. It follows from (1) that
V¢ (g{y} x K)foranyye M. O

For any openV c I"*1 we consider the set-valued magy from Y into C(X,I"*1),
given byyy (y) ={g € C(X, ") V Cg(f 2y}, y e Y.

Lemma2.4.1fV c I"tisopenand C(X, I"*1) is equipped with the uniform convergence
topology, then ¢y hasa closed graph.

Proof. Let Gy C Y x C(X,I"™1) be the graph ofyy and (yo, go) ¢ Gv. Thengo ¢
Yy (yo), SO go(fL(yo)) does not containV. Consequently, there existg € V \
20(f~Y(yo)) and lete = d(zo, go(f ~1(y0))). Since f is a closed map, there exists a
neighborhoodJ of yg in ¥ with d(zo, go(f ~1(y))) > 27 1¢ for everyy € U. It is easily
seen thall' x B4-1,(go) is a neighborhood ofyo, go) in ¥ x C(X, "+1) which does not
meetGy (hereB,-1,.(go) is the 4 1e-neighborhood ofg in C(X, I"*1) with the uniform
metric). Therefor&Gy C Y x C(X,I"t1) is closed. O

Recall that a closed subsgt of the metrizable spac#f is said to be aZ-set in M
[11], if the setC(Q, M\ F) is dense inC(Q, M) with respect to the uniform convergence
topology, whereQ denotes the Hilbert cube.

Lemma 2.5. Let o : X — (0, 00) be a positive continuous function, V C I"+1 open and
80 € C(X,I"*1). Then vy (v) N B(go, @) isa Z-set in B(go, «) for every y € Y, where
B(go, ) isconsidered asa subspace of C (X, I"*1) with the uniform convergencetopol ogy.

Proof. The proof of this lemma follows very closely the proof of [14, Lemma 2.8]. For
sake of completeness we provide a sketch. In this proof all function spaces are equipped
with the uniform convergence topology generated by the Euclidean métoic "1,

Since, by Lemma 2.4)y has a closed graph, eaghy (y) is closedB (go, o). We need to

show that, for fixedy € Y, § > 0 and a map : Q — B(go, ) there exists a map: Q —

B(go, @)\¥v (y) which iss-close tou. Observe first that generates € C(Q x X,I"*t1),

h(z,x) = u(z)(x), such thatd(h(z, x), go(x)) < a(x) for any (z,x) € Q x X. Since
f~L(y) is compact, take. € (0,1) such thatisupa(x): x € f~1(y)} < §/2 and de-

fine h1 € C(Q x f~1(y), ") by h1(z,x) = (1 — Mh(z, x) + Ago(x). Then, for every

(z,x) € O x f~1(y), we have

d(h1(z, x), go(x)) < (1 — Mar(x) < a(x) (2
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and
d(hl(z,x), h(z,x)) <la(x) < % (3)

Letg < min{r, §/2}, wherer = inf{a(x) —d(h1(z, x), go(x)): (z,x) € O X f‘l(y)}. Since
dim f~1(y) <n, by Lemma 2.3 (applied to the produgtx f~1(y)), there is a map, €
C(Q x f~1(y), "1y such thaid (h2(z, x), h1(z, x)) < ¢ andhz({z} x f~1(y)) does not
containV for each(z, x) € Q0 x f~1(y). Then, by (2) and (3), forallz, x) € 0 x f~1(y)
we have

d(hg(z,x),h(z,x)) <§ and d(hz(z,x),go(x)) < a(x). (4)

Because botlp and f~1(y) are compacty2(z)(x) = ha(z, x) defines the map,: Q —
C(f~H(y), I"*1). Since the mapr : B(go, @) — C(f (), I"™h), m(g) = ¢l f1(y) is
continuous and open (with respect to the uniform convergence topology), we can see that
uz(z) € m(B(go, a)) for everyz € Q andd(z) = 7 ~1(u2(z)) N Bs(u(z)) defines a convex-
valued map fromQ into B(go, «) which is lower semi-continuous. By the Michael se-
lection theorem [9, Theorem.®'], there is a continuous selectian Q — C(X, I"t1)

for . Thenv mapsQ into B(go, «) andv is §-close tou. Moreover, for any; € Q we

haver (v(z)) = u2(z) andV ¢ u2(2)(f~1(y)). Hencew(z) ¢ ¥y (y) foranyz € Q, i.e.,
v:0— B(go,)\yy(y). O

We are now in a position to finish the proof of Theorem 1.1.
Lemma 2.6. The set Hy isdensein C (X, I"+1) for every open V c I"*1.

Proof. We need to show that, for fixedo € C(X,I"*1) and a continuous function
a: X — (0, 00), there existg € B(go, ) N'Hy. The space’ (X, I"t1) with the uniform
convergence topology is a closed convex subspace of the Banach Bpamesisting of
all bounded continuous maps from into R*+1. We define the set-valued mapfrom
Y into C(X, "), ¢(y) = B(go, @), y € Y. According to Lemma 2.5B8(go, o) N ¥y (y)
is a Z-set in B(go, «) for everyy e Y. So, we have a lower semi-continuous closed and
convex-valued map : Y — F(E) and another magy : Y — F(FE) with a closed graph
(see Lemma 2.4) suchthaty) Nyrv () isaZ-seting (y) for eachy € Y. Moreovery is a
C-space, so we can apply [5, Theorem 1.1] to obtain a continuougmap> C (X, I"t1)
with Z(y) € ¢ (y)\ ¥y () foreveryy e Y. Theng(x) = h(f(x))(x), x € X, defines a map
g € B(go, @). On the other handy(y) ¢ ¥y (v), y € Y, implies thatg € Hy. O

Proof of Corollary 1.2. As in the proof of Theorem 1.1, we can suppose tfiais
perfect. We first consider the case whenis an integer> n + 1. Let exp,,; be the
family of all subsets ofA = {1, 2, ..., m} having cardinalitys + 1 and letrg : 1" — 18
denote the corresponding projectior,e exp, ;. It can be shown thaC(X,I") =
C(X,18] x C(X,14\B), so each projectiopp : C(X,I") — C(X,I?) is open. Since, by
Theorem 1.1, every séip = {g € C(X,I8): dimg(f~1(y)) <nforall y € Y} is dense
andGs in C(X,I8), so is the sepgl(HB) in C(X,TI™). Consequently, the intersection
Hn of all Hp, B € exp,,4, is also dense and@; in C(X,I"). Moreover, ifg € H,, and
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y e Y, then dimrg(g(f~1(y))) <nforanyB e exp,.1- The last inequalities, according
to a result of Nébeling [4, Problem 1.8.C], imply digaf ~1(y)) < n.

Now, letm = » and exp,,, denote the family of all finite setB C w of cardinality
|B| > n + 1. Keeping the above notations, for aBye exp_,,, 75:Q =1° — I and
pp.C(X, Q) — C(X,IB) stand for the corresponding projections. Then the intersection
H, of all pgl(HB) is dense andGs in C(X, Q). We need only to check that
dimg(f~1(y)) < n for any g € H,, and y € Y. And this is certainly true, take an
increasing sequende(k)} in exp,,, which coversw and consider the inverse sequence

S = {mpa(g(f ). 7T, where mf gy (8 (f 70D — T (8(F )
are the natural projections. Obviously f~1(y)) is the limit space ofS. Moreover,
g € H,, implies thatrpy) o g € Hpw) for any k, so allnB(k)(g(f_l(y))) are at most
n-dimensional. Hence, dig( f 1(y)) <n. O
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