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Abstract-we investigate the global stability properties and asymptotic behavior of solutions of 
the recursive sequence 

XT% Zln 
xn+1 = -, 

a+cy, 
?h+1= ()+&,’ 7x=0,1,..., 

where the parameters a, 6, c, and d are arbitrary positive numbers, and the initial conditions zo 
and go are arbitrary nonnegative numbers. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Consider the recursive sequence 

un % 
‘11,+1 = -7 

a+CV, 
%+I= *+&&9 n=O,l,..., 

where the parameters a, b, c, and d are positive numbers and the initial conditions ~0 and vc are 
arbitrary nonnegative numbers. Letting x, = du,, and y,, = cv,, we obtain 

272 
x7&+1 = - 

YTI 

a+y, 
Yn+l= b+x,’ n=O,l,.... 

System (1) is deceptively simple. In fact, the authors have used it in “liberal arts math” courses 
to illustrate the role of computers in mathematical experimentation and how short the distance 
can be from elementary mathematics to twilight regions where experts are baffled. For an interac- 
tive version of this iteration on the web, go to http: //www. uri . edu/artsci/mth/wi08/interact 
. htm, download a plug-in and then click on Outer Limits. A more significant application of sys- 
tem (1) is indicated at the end of this section. 

In a modelling setting, system (1) of nonlinear difference equations represents the rule by 
which two discrete, competing populations reproduce from one generation to the next. The phase 
variables x, and y,, denote population sizes during the nth generation and the sequence or orbit 
{(x,, yn) : n = 0,1,2,. . . } depicts how the populations evolve over time. Competition between 
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the two populations is reflected by the fact that the transition function for each population is a 
decreasing function of the other population size. 

Our aim is to investigate the global stability properties and the global asymptotic behavior of 
solutions of equation (1). We will exhibit analytically the stable and unstable manifolds for all 
equilibrium points, for all values of parameters (a, b) on and outside the unit square (0,l) x (0,l). 

For these values of a and b, we will show that there are nine cases according as 0 < a < 1, a = 1, 
or a > 1, together with all possibilities 0 < b < 1, b = 1, or b > 1. Using a linear change of 

variables and parameters, nine cases can be reduced to six qualitatively different cases . In this 

paper, we consider five of the six cases, omitting the case 0 < a < 1 and 0 < b < 1. The case 

0 < a < 1 and 0 < b < 1 leads to different results and requires different techniques and is studied 
in [ 11. We obtain fairly complete information about all possible asymptotic behaviors of solutions 

to equation (1). In some of the above-mentioned five cases, the behavior is quite simple, such as 
the case a > 1, b > 1. In other cases, it is more complicated, for example, the case 0 < a < 1, 

b= 1. 
Our principal tool in resolving the more complex cases is the use of phase plane solutions 

of the differential equation 
dy (z+b-i)(y+a)y 
& = (z + b)(y + a - 1)s (3) 

associated with a corresponding system of differential equations 

X 
2’ = - -5, 

Y - - 

a+y y’= b+x YI (4) 

c = ((~0 + a) / (yAma>> b 
((xo + b) / (x:-~))~’ 

Equation (1) is the Euler discretization of this latter system. Note that the system of differential 

equations (4) has the same equilibrium points as our system of difference equations, equation (1). 
The Euler discretization is conventionally used to obtain information about a given differential 
equation, and it is customary to warn that this discrete approximation is crude, i.e., that the 

qualitative behavior of its solutions can differ dramatically from the behavior of solutions to the 
differential equation. In this paper, we reverse the usual direction of analysis. It is a differential 
equation which underlies a given system of difference equations, and the behavior of their solutions 
is found to be dramatically similar. 

Graphical and numerical experiments revealed that solutions {(xn, y,)} to our system (1) 
intersect the solution curves (2) in the direction of increasing or decreasing values of C. This fact 

becomes crucial (see below) in finding basins of attraction for two qualitatively different types of 
asymptotic behavior when 0 < a < 1, b = 1. It is again essential in proving that every solution 
which begins off the coordinate axes has a limit on the positive y-axis when a > 1, b = 1. To 
the best of our knowledge, this is the first time that this technique has been used with such 
effectiveness. 

We will use the product representation 

n-1 n-1 

of solutions of equation (1) to establish the continuous dependence of finite limits ym = lim,,, ym 
upon initial points (xc, yc) which lie in the interior of a basin of attraction of this finite limit. 
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The special case a = b = 1 is interesting in itself. All equilibrium points coincide and their 

local stability cannot, be obtained from the linearization. In this case, we will find an invariant 

and a closed-form solution. 

Observe that the variables 5, and Yn in (1) can be decoupled, and that this system is equivalent 

to the pair of second-order difference equations 

x,+2 = 
x:+1 @ + 4 Yi.+1 (a + Ynln) 

4b - l)xn+1+ (%L+1 + 1) 2, ’ Yn+2 = va - l)Y,+1 + (by,+1 + 1) yn. 

The latter equations are essentially equivalent in the sense that x, can be replaced by yn and a 

by b. Thus, all our results can be applied to these two equations. 

Systems of rational difference equations have been studied extensively in the literature. They 

appear in many problems in numerical analysis, such as the application of Newton’s method for 

solving systems of polynomial or rational equations, or solving a polynomial or rational equation 

in the complex plane, see (2, pp. 317-3211. Systems of rational difference equations are used to 

model competitive interaction between two biological species, see [3-51 and references therein. 

The asymptotic behavior and stability of some rational systems is investigated in [2, pp. 168-1721, 

by using Liapunov’s method and Lasalle’s invariance principle and in [2, pp. 182-1841, by using 

linearized stability analysis. 

2. LINEARIZED STABILITY ANALYSIS 

The equilibria of equation (1) are (0, 0)) and (1 -b, 1 -a), for all values of parameters a and b. In 

addition, if a = 1, then every point on the x-axis is an equilibrium point, and if b = 1, then every 

point on the y-axis is an equilibrium point. Finally, if a = b = 1, then the two equilibria (0,O) 

and (1 - b, 1 - a) coincide, and every point on each coordinate axis is an equilibrium point. 

The characteristic equation of the Jacobian evaluated at (0,O) is 

(XL) (x-i) =o. 

As is well known (see [6, p. 455]), the equilibrium (0,O) of equation (1) is locally asymptotically 

stable if a > 1 and b > 1, and it is a source if a < 1 and b < 1. Finally, if a > 1 and b < 1, 

or a < 1 and b > 1, the equilibrium (0,O) is a saddle point. The local stable manifold theorem 

assures that a small piece of local unstable manifold WC, resembles a line segment. Similarly, 

the local stable manifold theorem guarantees that a small piece of local stable manifold W& 

resembles a line segment. In forthcoming sections, we will “globalize” some of these local results. 

In particular, we will find explicitly both global stable and unstable manifolds in the case of a 

saddle point equilibrium. The case a = b = 1, where the two equilibria coincide, will be treated 

separately. 

We summarize the local stability properties of the equilibrium (0,O) of equation (1) as follows. 

THEOREM 2.1. 

(4 

(b) 

Assume that 

a>1 and b> 1. 

Then, the equilibrium (0,O) of equation (1) is locally asymptotically stable. 

Assume that 

a<1 and/or b< 1. 

Then the equilibrium (0,O) of equation (1) is unstable. More precisely, it is a saddle point 
equilibriumifa<1andb>1,ora>1andb~1,anditisasourceifa<1andb~1. 
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The characteristic equation of the Jacobian evaluated at &,b = (1 - b, 1 - a) is 

X2 - 2X + 1 - (a - l)(b - 1) = 0, (6) 

with roots 

Xk = 1 f J(a - l)(b - 1). 

This shows that at least one of the characteristic roots of the Jacobian computed at the equi- 
librium Ea,b has modulus greater than 1. By a well-known result [6, p. 4553, the equilibrium Ea,b 
of equation (1) is locally unstable for all values of a and b. Obviously, the interesting cases that 
locate the equilibrium &,b in the first quadrant are 

(a) a < 1, b < 1, 
(b) a < 1, b= 1, 
(c) a = 1, b < 1. 

In Case (a), the equilibrium &,b is a saddle point. The local unstable and stable manifold 

theorem assures that, near equilibrium, small pieces of local unstable and stable manifolds, IV,;, 

and IV,,, respectively, resemble line segments, see [6, p. 4571 and [7, Theorem 10.1, p. 1821. 

We will exhibit explicitly both stable and unstable manifolds in the special case a = b, and 
we will numerically estimate segments of both stable and unstable manifolds for other values of 

parameters a and b. 

In Cases (b) and (c), &,b = (0,l - a) and &,b = (1 - b,O) are nonhyperbolic equilibrium 
points and so the linearization is inconclusive. Global results for these two cases will be provided 

in forthcoming sections. 

The following statement summarizes the local stability properties of the equilibrium &b of 

equation ( 1). 

THEOREM 2.2. The equilibrium point Ea,b is not locally asymptotically stable for any value of 
parameters a and b. More precisely, we have the following. 

(a) Assume that 

a < 1, b< 1. 

Then the equilibrium (0,O) of equation (1) is a source, while the equilibrium Ea,b is a saddle 

point. 

(b) Assume that 

a<landb=l or a=la.ndb<l. 

Then the equilibrium (0,O) of equation (1) is a nonhyperbolic equilibrium point. 

Our linearized stability analysis indicates several cases with different asymptotic behavior de- 

pending on the values of parameters a and b. 

CASE 1. a > 1, b > 1. 

CASE 2. a > 1, b = 1. 

CASE 3. a > 1, b < 1. 

CASE 4. a < 1, b = 1. 

CASE 5. a = b = 1. 

CASE 6. a < 1, b < 1. 

CASE 7. a < 1, b > 1. 

CASE 8. a = 1, b > 1. 

CASE 9. a = 1, b < 1. 
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Defining 

f(C,Xc,Y) = 37 
we can rewrite equation (1) in the form 

x,+1 = f (a, xn, Yn) 7 Yn+l = f (b, Yn, 4 . (7) 

This shows that there is a linear change of variables and parameters showing that some of the 

cases are essentially identical to other cases. Case 7 is reducible to Case 3, Case 8 is reducible to 

Case 2, and Case 9 is reducible to Case 4. Accordingly, there are six cases to consider: Cases l-6. 

In this paper, we treat Cases l-5. Case 6 will be taken up in a separate paper [l]. 

3. GLOBAL RESULTS-COMMON FACTS 

The following results are common to all cases. 

LEMMA 3.1. Every solution of equation (1) satisfies 

XnYn < 1, 71= 1,2,.... 

The initial point (0, yo) generates the solution (0, ye/b”), and the initial point (x0,0) generates 

the solution (xO/an, 0). Consequently, if a > 1, then the initial point (x0,0) generates a solution 

(xn,O) such that lim,,, x, = 0, while if a < 1, the initial point (x0,0) generates a solution 

(xn, 0) such that lim,,, xn = 00. Finally, if a = 1, then the solution is simply (x0,0). 

Analogously, if b > 1, then the initial point (0,yo) generates a solution (0, y,) such that 

lim,+,y, = 0, while if b < 1, the initial point (0, yo) generates a solution (0,~~) such that 

lim,,, yn = co. Finally, if b = 1, then the solution is simply (0, ~0). 

PROOF. Using equation (l), we have 

% Yfl 
Xn+lYn+l = -- <5!!?&1, 

a+y,b+x, ynxn 
n=l,2,.... 

The rest of the proof is obvious. I 

In view of the linearized stability analysis from the previous section and the obvious fact, that 

the positive initial condition x0 > 0 and/or yo > 0 implies that the corresponding solution is 

positive, x, > 0 and/or yn > 0, this result has an important consequence for the dynamics of 

the iteration as follows. 

COROLLARY 3.1. The coordinate axes are parts of either the global stable manifold or the global 

unstable manifold of the equilibrium (0,O) of equation (1). 

That is, if a > 1, then the x-axis is part of the global stable manifold W”( (0, 0)), while if a < 1, 

then the x-axis is part of the global unstable manifold W"((0, 0)). 

An&logously, if b > 1, then the y-axis is part of the global stable manifold W'((0, 0)), while if 

b < 1, then the y-axis is part of the global unstable manifold W"((0, 0)). 

The next, two lemmas provide basic information about the behavior of solutions in the cases 

when a > 1 and/or b > 1, and when a = 1 or b = 1. 

LEMMA 3.2. Assume that a > 1. Then, for every solution {(x,, yn)} of equation (I), 

lim xn = 0. 
n-m 

Assume that b > 1. Then, for every solution {(x,, yn)} of equation (l), 

lim yn = 0. 
7a’co 
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PROOF. The first equation of (1) gives 

X, 
G&+1 I-, 

a 

which, by iteration, implies 
1 

&I+1 L--$x0, 72=0,1,.... 

In the same way, the second equation of (1) gives 

completing the proof. I 

LEMMA 3.3. Assume that a = 1. Then the first component {x,} of every solution {(xc,, yn)} of 

equation (1) is a strictly decreasing sequence. 

Assume that b = 1. Then the second component {yn} of every solution {(x,, yn)} of equa- 
tion (I) is a strictly decreasing sequence. 

PROOF. Taking into account the positivity of solutions and parameters, the first equation of (1) 

implies 

Likewise, the second equation 

x72+1 < 27%. 

of (1) gives 

Yn+1 < Yn, 

and the proof is complete. 

The following provides a kind of closed-form solution to equation (1). 

LEMMA 3.4. Every sobn5on {(xc,, yn)} of equation (1) satisfies 

Yn = (YW-I + a) (ax,-1 + yn-l + ab) 

xn + b (%-I+ b) (X,-I + by,_1 + ab) 

I 

(8) 

yn+a_ 

n-1 

II 

axk +yk + ab 

x, + b kc0 xk+byk+ab 

If the solution has the finite limit (x,, yoo), then 

!!!&A= O” axk + yk + ab II 
yc + a 

x,+b k=O xk + byk + ab G-T%+ 

(9) 

(10) 

PROOF. The first two identities are obvious consequences of equation (1) and the third follows 
from equation (9), assuming that the limit (zoo, yW) exists. 

4. GLOBAL RESULTS-CASE a > 1, b > 1 

The next result, based on the previous sections, describes completely the dynamics of equa- 
tion (1) in Case 1. 

THEOREM 4.1. Assume that a > 1 and b > 1. Then the equilibrium point (0,O) is globally 
asymptotically stable, i.e., every solution {(x,, yn)} of equation (I) satisfies 

lim 2, = &,r,-i y, = 0. 
71-00 

The global stable manifold Ws((O, 0)) = ((2, y) : x 2 0, y 2 0). 
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5. GLOBAL RESULTS-CASE a > 1, b = 1 

In this case, the equilibrium points consist of all points on the y-axis. In view of 

Lemmas 3.1-3.3, every solution {(zn, y,)} of equation (1) satisfies 

lim 2, = 0 
n-cc 

and lim yn = Y 2 0. 
n-00 

In addition, both sequences {zn} and {y,} are strictly decreasing. Thus, our objective is to 

provide additional information about $7. 

Taking b = 1 in equation (9), we obtain 

Yn+a 
n-1 

- rI axk + yk + a 

x, + 1 k=O Xk + Yk + a 

Taking limits produces a closed formula for the limit in terms of the iterates 

5= (11) 

Since each of the terms in the product is greater than 1, for any finite N, we have the lower 

bound 

Y> fi 
( 

aXk+yk+a !/O+a a. 

k=O 
Xk + Yk f a 

) 
X0 + 1 

A simple question will serve to showcase the power of our differential equations-based method. 

Under what circumstances is Y 2 0 equal to zero ? It seems that, at best, only a partial answer 

to this question can be derived from (9). Since the product in (9) is greater than 1, 

Y> yo+o - - a. 
x0 + 1 

Therefore, Y > 0 if the right-hand side of this inequality is positive, which is equivalent to 

YO > ax0. 

So, the preceding inequality gives a region in the plane of initial conditions which implies Y > 0. 

The more satisfactory answer to the question is very simple, but the reasoning is quite different. 

THEOREM 5.1. Assume that a > 1 and b = 1. Then the gIoba1 stable manifold WS((O,O)) is 

precisely the x-mis. Every solution {(x,, yn)} of equation (1) satisfies 

lim 2, = 0, lim yn = $7, 
n-+(X n-+m 

where Y is given by equation (11). Every solution {(So, yn)} for which the initial point (xc, yc) 

satisfies yc > 0 has a positive limit Y. 

PROOF. If yc > 0 and xc = 0, we have the trivial case of an equilibrium point where yn = y. and 

X - 0, for every n = 0, 1, . . . . n- Suppose then, that yc > 0 and xc > 0. With b = 1 and a > 1, 

the implicit solution (2) to our differential equation (3) becomes 

(12) 

First, we want to show that solutions to the difference equation (1) which begin with positive 

initial values, pass through decreasing values of C in the last expression (see Figure 1). That is, 

we need to show that for all n = 0, 1, . . . , 

(Yn+l + a) YE;: < (Yn + a) l/;-l 
(x,+1 + 1r (x72 + lja (13) 
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Figure 1. The iterates of the difference equation cross-solution curves of the 
differential equation in the direction of decreasing level numbers when a > 1, 
b = 1. In this illustration, a = 2. 

or 
(VT& + oY(o% + Yn + a) < I 

6% + Yn + oP * 

Letting yn + a = k, 2, = x, we need to show that for all x > 0, 

(ax + +a-’ < I 

(x+rc)” . 

Obviously, the left-hand side of this inequality equals 1 when x = 0. Differentiating with respect 

to x and using the fact that a > 1 and k > 0, we get a negative derivative 

d (ax + k)ka-’ = ak+‘(a - 1)~ 

z (x+k)a - (x+k)a+l ’ 

In view of the preceding remark, we have established inequality (13). 

Set 

We have just shown that c,, is monotone decreasing. Now consider 

cn+1 - cn = 
YE-’ (Yn + da (YTX + a (x, + 1)) _ (& + a) y;-’ 

(Gz + I)= (x, + yn + a)” (Gl + IT 

=c, (Yn + 4a-1 (wz + yn + a) - (5, + yn + a)” 
(xn 4 Yn + 4” 

We want to show that c, z (1/2)c~. Letting yn + a = kn, we obtain 
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Expanding in a Taylor polynomial, 

857 

we get, for k, 5 &, 5 x, + k,, 

&+1--%=-c, 

u(a - l)e;-sx; 

(x, +k,$‘ ’ 

For any integer N 2 0, n > N + 1, sum both sides of the preceding relation to obtain 

GZ -cN=- 
" 

a(u - 1,e;-?rj2 

(xj + kJ' ’ (14) 

The sum of positive terms in the last equation has as an upper bound 

(a - 1) (20 + Yo +- a) 
a-l n-l 

2 (CP - 1) 
j=N 

which follows because 9, i kj + xj and both xj and yj are monotone decreasing. However, we 
showed in (13) that c, is monotone decreasing, so 

u(u - l)e;-“x; 

‘j 2(xj+kj)a 

< (a - 1) (50 + y0 + a)a-l CN n-1 

2 (ua - 1) 
c x3. 
j=N 

Since 

“j+l = 
xj 

Ci+yj 

we have X~ I (l/uj)zo and 

u(u - 1,e;-“xj” < (u - I) (2s + ?,,, + o)a-’ c&r; n-N-1 1 2 

‘j 2(xj + kj)a - 2 (@ - 1) u2N W 
7 

j=O 
aJ 

< (x0 + 90 + a)‘-’ x;cN - 
2(~ + 1)u2N+a-3 1 

after expanding the geometric series. Choosing N sufficiently large so that 

(50 + yo + uy-’ x; 
(u + l)u2N+a-3 < ‘, 

we have, for n 2 N + 1, 
72-l 

x( 
‘j 

a(u - i)e;-2x; 

j=N 
2(xj +kj)a 

) 
5 fCN. 

Using this estimate and (14), we obtain c, - CN 1 -(1/2)cN, hence, c, 2 (1/2)CN. Therefore, 
ym > 0 because we assumed that ye > 0, hence, yN > 0, and we have just obtained 

Our numerical simulations suggest that the limit yoo depends continuously on the initial values 
x0, ye for a hxed value of a. Here is the precise statement. 
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THEOREM 5.2. Assume that a > 1 and b = 1. Then every solution {(~~,y~)} of equation (1) 
which is initiated off the x-axis satisfies 

lim 2, = 0 
n+oo 

and lim yn = yoo > 0. 
n-XXI 

The limit yoo depends continuously on the initial values xc, yc for any fixed value of a > 1. 

PROOF. Fix xc, ys 2 0 and let (z;, y/J lie in a compact neighborhood of (x0, ys). Denote by ym 
and y& the respective limits of the corresponding y,,-sequences. The limit of the x,-sequence is 
in every case zero. The infinite product representation (10) gives 

First, we want to show that 

1+ (a-l)xk 
xk + Yk + a > 

=l+O(amN), 

where O(amN) depends only on the fixed value x0. We will use the fact (a > 1) that zk 5 zc/ak. 

Now, 

and 

(a - 1)xk 

xk + Yk + a 

2 (a-1)xk 

k=N xk +yk +a 

Therefore, 

1 

kcNxk+yk+aak- a 

and 

which 
in the 

4 (a - 1)xk 

k=N 
l+xk+Yk+a 5% 

> 

Co 

n( 

1 + ca - lJxk 

k=N xk + Yk + a > 

I eroa-N 
1 

proves our claim that O(amN) depends only on the fixed value xc. Similarly, the 0’ term 
following expression depends only on xb: 

1 + (a- 1)zLk 
xi + yI, + a > 

=l+O’(amN). 

Fix M > 0 so that, for every xb in the aftermentioned compact neighborhood of (xo, yo), 

10 (u-“)I + IO’ (a-“) 1 5 MaeN. 

For any positive integer N, these estimates result in 

Taking the limsup as (x& yb) + (x0, y0) on both sides of the preceding. inequality gives 

limsup lyoo - yk,l 5 MU-~. 
(~b&)‘(wo) 

Since N is arbitrary, we conclude that the limit of yk as (x6, yb) -+ (x0, ye) is ym. I 
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6. GLOBAL RESULTS-CASE a > 1, b < 1 

In this case, the only equilibrium point in first quadrant is the origin (0,O). In view of 

Lemma 3.2, every solution {(x,, y,)} of equation (1) satisfies 

lim 2, = 0. 
n-m 

But then the denominator in 
YlL 

Yn+l = - 
x, + b 

is, for all large n, strictly less than a constant p < 1, which in turn implies 

Yn+1 > LYn, 
P 

n > N. 

Iterating this inequality, we obtain 

and this forces y,, to infinity. Combined with the result of Lemma 3.2, we have the following. 

THEOREM 6.1. Assume that a > 1 and b < 1. Then the x-axis is the global stable manifold 

W’((O,O)). Every solution {(x,, yn)} of equation (1) which begins off the x-axis satisfies 

lim x, =0 and lim yn = co. 
7L+cc n-m 

Consequently, the global unstable manifold W”((O,O)) = {(z, y) : x 2 0, y > 0) - W((O,O)). 

7. GLOBAL RESULTS-CASE a < 1, b = 1 

In this case, the equilibrium points are all the points on the y-axis, and the z-axis is a part 

of the unstable manifold W”( (0,O)). In add’t’ 1 ion, all equilibria except (0,O) are nonhyperbolic 

points. 

In view of Lemmas 3.1 and 3.3, every solution {(z,, yn)} of equation (1) satisfies 

lim yn = g 2 0. 
n+oo 

Furthermore, {yn} is strictly decreasing if 20 # 0. Thus, our objective is to provide additional 

information about 5. In particular, we will find regions in the first quadrant of the plane of 

initial conditions {(xc, yc) : xc > 0, yc 2 0}, which generate solutions 

asymptotic behaviors: 

with two different global 

lim yn = g 2 1 - a 
n-+m 

and lim 2, = 0, 
7L’cc 

and 

lim yn = 0 
7L--tcc 

and lim 2, = co. 
12+cc 

In the language of dynamical systems, we are estimating the basins of attractions of the equilib- 

ria (0, g) and (oo,O). Our first result provides information about the basin of attraction for (0, g). 

THEOREM 7.1. Assume that a is fixed and 0 < a < 1 and b = 1. Then there is a g = g(se,ye) 

such that every solution {(x~, yn)} of equation (1) whose initial conditions (x0, yo) satisfy 

yell-a and (xo joIT$-a 5 (I _ (pl (15) 

converges to the limit (0, jj), where g 2 1 - a. 
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If we write the differential equation (3), with b -- 1, in the form 

dx (x + 1)(y + a - 1) 

dy (y + a)y 

x becomes visible as a well-defined function of y which is strictly decreasing to the left of 1 - a 

and strictly increasing to the right of 1 - a. Therefore, 1 - a is the location of a global min imum 

for x as a function of y along any one of the level curves. We want to know when the value of 

this min imum is zero. When  b = 1, solution (2) of equation (3) is 

y + a  

(x + 1)ay 1-a 

Subst i tu t ing y = 1 - a and x = O, we get 

y o + a  

(xo + 1)ay] -a 

Y0 + a  
(X 0 a 1--a +1) Y0 

= ( l - a )  a - l ,  

and the corresponding part icular solution of our differential equation is 

y + a a)a_l.  
(x + 1)ay 1-a = (1 - (16) 

If we can show that  each succeeding pair of iterates in the difference equation lies on a level 

curve (12) with a higher index number  C, then initial values on or above the critical level curve (16) 

with Y0 -> 1 - a  generate solutions which remain trapped in that  region. Consequently, {Yn} must  

converge to a point ff > 1 - a on the y-axis, while {xn}  converges to zero. Therefore, we need to 

prove tha t  for n = 0, 1 , . . . ,  

Yn+l + a Yn + a 
~ , a  1--a > l - -a"  

(Xn+ 1 -~- l)  Yn+l (Xn ~- 1) a Yn 

This behavior is general for Case 4 and is illustrated in Figure 2. Using equation (1) in the last 

inequality, we obta in  

o r  

o r  

yn / ( zn  + 1) + a y~ + a > 
(y~/(xn+al+ll°(y. / (z~ + 1)) 1-a (x~ + ~ ,  ~ 

(y~ +~)~(y~ + ~ ( ~  + 1)) y~ + a  
y ~ - ~ ( x ~ + l ) ° ( ~  +y~ +a)  ° 

(Y~ + a) a-1 (Yn + axn + a) 
(x~ + y~ + a) ~ 

Let c and r be defined as follows: 

ax + c  
r ( x )  

(X -~ c ) a c  1 - a '  

4~a 1 - a  (xn + 1) Yn 

> 1 .  

where c = Yn + a. Obviously, r(0) = 1, so we only need to show tha t  r is an increasing function 

of X, 
d r  aaa - 1 

- > 0 .  
dx (x + c) a 
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Figure 2. The iterates of the difference equation cross-solution curves of the 
differential equation in the direction of increasing level numbers when a < 1, 
b = 1. In this illustration, a = 3/4. 

So, to get the convergence of Yn to a positive limit by means of this “trapping” argument, the 
initial conditions must satisfy yo > 1 - a and 

Yo + a 
> (1 -&z’ yol--a (20 + l)a - 

which is equivalent to the second condition in (15). 
Furthermore, we can estimate a lower bound for this limit as the larger of the two y-roots in 

the following implicit equation: 

Y+a YO + a 
(x + 1)ay’-a - (20 + l)QyA-a = o, 

so long as convergence condition (15) is satisfied for the initial values. I 
Our next sufficient condition provides a clearer indication of how large yo must be relative to 20 

to ensure the asymptotic behavior described in the previous theorem. 

COROLLARY 7.1. Assume that a is fked and 0 < a < 1 and b = 1. Then there is a % = %(zo,y,-,) 

such that every solution {(z,, yn)} of equation (1) whose initial conditions (20, yo) satisfy 

yo 2 (1 - .)l-%o + (1 - #-l/a - a (17) 

converges to the limit (O,o), with jj 2 1 - a. 

PROOF. First, we show that the second part of (15) is equivalent to 

l/a-l 1+a ( > 
l/a-l 

( > 
1 + a 

l/a-l 

20 I (1 -a> - 1. 
Yo 

yo + a(1 - #‘a-l 
Yo 
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The preceding inequality is equivalent to 

(20 + l)a < (1 - #-a 
Yo+a 1-a 

( > 
- 

YO 
(Yo f o)a, 

which is equivalent to the second part of (15). Now, the right-hand side of the last inequality is 

greater than 

(1 - a) ila-iyo + o(i - &la-i - 1, 

so if we take 

(1 --a) +-rye -+ a(1 - u)ila-i - 1 > 20 - 7 

we will satisfy condition (15). In other words, if the initial pair lies on or above the straight line 

y = (1 - .)1-l& + (1 - .)1-l/a - a 7 (18) 

it will satisfy the second part of (15). 

With respect to the first part of condition (15), note that when x = 0, 

y = (1 - #-l/a - fJ = 1 - a + (1 - .)1-l/a - 1 > 1 - a. 

The conclusion is that any initial pair on or above the line (18) satisfies both parts of condi- 

tion (15). 

Interestingly, it turns out that there is a universal condition, i.e., independent of a, which 

implies (15). 

COROLLARY 7.2. Assume that a is fixed and 0 < a < 1 and b = 1. Then there is a Y = jj(xo, yo) 

such that every solution {(x,, y,)} of equation (1) whose initial conditions (x0, y,-,) satisfy 

~021 a& yOel’yO > e (x0 - 1) (19) 

converges to the limit (O,o), where 5 > 1 - a. 

PROOF. If we rewrite (15) as 

x0 + 1 I (1 - f+-+ 1 + ; ( > 
l/a 

yo, 

and let a go to zero, elementary arguments show that the curve determined by (19) is an upper 

bound for all the curves determined by (15). Therefore, an initial pair satisfying (19) will result 

in convergence for any a, 0 < a < 1. See Figure 3. 

We follow with a universal sufficient condition for the other type of asymptotic behavior in this 

case: x, -+ cc and yn -+ 0. For any a E (0, l), this sufficient condition on the initial pair is 

simply 

Yo 5x0. (20) 

This condition is obtained from (18) by taking a + 1. As a -+ 1, line (18) squeezes the curve (16) 
onto the bisector ys = ~0, squeezing out of existence the region where both types of asymptotic 
behavior are possible. See the discussion immediately following the proof of the next theorem. 

THEOREM 7.2. Assume that 0 < a < 1 and b = 1. Every solution {(x,, yn)} of equation (1) for 
which condition (20) is satisfied converges to (co, 0). 

PROOF. Since a < 1 and b = 1, identity (8) implies 

yn+a= yn-1+ a (2X,-l + yn-1+ a 
xn + 1 x,-1 + 1 xn-1+ yn-1 + a * 
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Figure 3. 0 < a < 1, b = 1. The lowest line is the graph of (16) with a = 9/10. 
In the dashed line, a = l/2. In the dotted line, a = l/3. The heavy line shows 
the curve defined by (19). 

Iterating the relation backwards terminates with 

Yn + a < Yo + a ax0 + YO + a -_ 
GI + 1 x0 + 1 50 + y0 + a 

and 
y 

n 
+a< Yo+aax0+yo+a 

Zo 20 + y0 + a (‘, + ‘)’ 
On the right-hand side above, substitute 

Yn 
z,=-- 1 

Yntl 

to get 

y 
n 

+ a < Yo + a a50 + YO + a yn 
x0+1 zo+yo+a yn+l 

y +1 < yo+aazo+Yo+a yin 
n 

20 + 1 20 + y0 + a yn + a 
z&k--. 

yn + a 

In view of the comparison result for difference inequalities, (see [8, pp. 14-21]), y, 5 z, for every 
n = 1,2,. . . , if yc 5 to, where zn is a solution of the corresponding difference equation 

Gz .z,+~ = K-. 
z, + a 

This is Riccati’s difference equation, with explicit solution of the form 

1 

‘, = l/(K - a) + (l/z0 - l/(K - a))(a/K)n’ 
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Clearly, Z, + 0 as n + 00 if and only if a > K. The last requirement is equivalent to 

510 (Yo + 4 < ax0 (x0 + 1). (21) 

When satisfied, equation (21) implies that yn --) 0 as n + 00. The denominator in the first 
equation of (1) is eventually strictly less than 1 and this forces IC, + co. 

Now, it is easy to see that ys 5 uzs implies (21), above. So, to prove the original claim, we 
consider the inverse image of the line y = KC under the map 

of system (1). The inverse map of f is 

f--i(2, y) = S(Z, y) = 
( 

x(o + by) y(b + at) 
l-zy ’ l-zy > ’ 

Set b = 1 and consider the image of the line in question 

S(4 4 = ( (at + u)t u(ut + 1)t 
1 _ a@ 7 1 -a@ > * 

Restricting t to 0 < t < l/v’& we have 

x = (at + a)t u(ut + 1)t 

l- at2 ' 9 = 1 _-at2 ' (22) 

and 
dy UP + 2ut + 1 

Z= at2 + 2t + 1 . 

When t = 0, 2 = 1. Also, as t approaches l/&i, 2 approaches J;;. In fact, the line y = &ix 
is a lower bound for the parametric curve given by equation (22). It is clear that any point on 
or underneath the line y = @x will be mapped by f to a point underneath the line y = ax. 

Now we repeat the argument, replacing the line y = ux with the line y = &ix to get a new line 
y = ~‘/~a: bounded above by S(S(t, at)). Any point on this line will, in two iterations of f, be 
underneath the line y = ux and, hence, be part of sequence in which x, --) 00 and yn -+ 0. 

Finally, it becomes clear how the proof terminates. We iterate the preceding argument forever 
and get as our ultimate line y = x. Any solution which starts on or below this line (i.e., our 
asserted universal condition yc 5 xc) will eventually be underneath the line y = ux and be part of 

a sequence with the desired asymptotic behavior. Note that this asymptotic result is independent 
of a E (0,l). 

Our development thus far shows that the positive plane is separated into three regions. We have 
just treated the region which lies below the lines y = 1 - a, 0 < x < 1 - a and y = x, x 2 1 - a, 
where x, --) 00 and y,, -t 0, i.e., the region on or below the dashed line in Figure 4. Previously, 
we showed that all initial pairs on or above the curve (16) (the heavy line in Figure 4) result 
in convergence of yn to a finite limit 5 2 1 - a, while x, goes to zero. Based on our numerical 
simulations, points slightly to the right of the latter curve can show the same convergent behavior 
because, as illustrated in Figure 2, solutions might be able to “jump over” the heavy line in 
Figure 4 and enter the region of convergence. However, a precise meaning to “slightly” remains 
elusive at this time. For every a E (0, l), these two regions separate the two fundamentally 
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Figure 4. a = l/2, b = 1. A divergent solution is initiated at the point (3,3). 
Most solutions in the region between the dashed and heavy lines also diverge, yet 
it is possible for solutions close enough to the heavy line to cross into the region of 
convergence, e.g., the sequence of open circles initiated at (1.5,3.8). 

different types of asymptotic behavior. In the middle region, the behavior is predominantly 

divergent, however, both types are possible in view of the preceding remark. 

As in Case 2, numerical simulations indicate that the limit yoo depends continuously on the 

initial values ZO, yo for a fixed value of a so long as the initial point (20, yo) lies in the interior of 

the region where the finite limiting value yoo exists. The continuous dependence is not true on 

the boundary of the region defined by (15). Every initial pair with zo > 0 and yo < 1 - a has zn 

diverging to 00, so there exist initial pairs arbitrarily close to (0,l -a) which then move arbitrarily 

far from (0,l -a). On the other hand, if (~0, yo) = (0,l -a), then (x,, yn) = (0,l -a) for every n 

and so yoo = 1 - a. However, it is possible to show that any limit y, which results from starting 

in the interior B of the above-mentioned region of guaranteed convergence (determined by (15)) 

will exhibit continuous dependence on the initial conditions as follows. 

THEOREM 7.3. Assume that 0 < a < 1 and b = 1. Then every solution {(x,, yn)} of equation (1) 

which starts in the region B satisfies 

lim zn =0 and lim yn =yoo. 
n+oo 7L’Kl 

FWhermore, yoo depends continuously on the initial values x0, yo for any fixed value of a, 0 < 

a < 1. 

PROOF. The proof is similar to the proof of Theorem 5.2, so we will only provide an outline. 

First, displace the region B vertically by small e > 0 to get a new region B, (in other words, 

choose a slightly higher-level curve of the corresponding differential equation (3)). Because every 

solution of the difference equation which starts in B, remains there, we have yn > 1 - a + E, and 

thus, 
XTl 

%a+1 < - 
l+E * x, < (1 $n. 
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Setting A = 1 + 6 > 1, the proof can proceed as in the proof of Theorem 5.2, so long as 

the neighborhood centered at (x0, yo) is contained entirely within the region B,. But now the 

arbitrariness of e allows us to conclude that the limit ym resulting from any choice of initial pair 

(20, yo) in the original region B of the plane of initial conditions, i.e., the region above the line 

y = 1 - a and the curve 

(x +yTzi-’ = (I _ a)l-a 

shows continuous dependence on initial pairs taken from B. I 

8. GLOBAL RESULTS-CASE a = b = 1 

In this case, the equilibrium points (0,O) and &,b coincide and both axes consist of equilibrium 

points. (0,O) is a nonhyperbolic equilibrium point. For a = b = 1, system (1) becomes 

%I YTZ 
x,+1 = l+y,’ Yn+I = 1 +xn7 ?L=O,l,..., 

and expression (8) becomes 

Thus, the expression 

y,+l= Yn-1+ 1 

2, + 1 xn-1-t 1’ 

I(Xn,YJ = 5 (24) 
7% 

is an invariant for system (23), therefore, I(z,, yn) = I(za, yo), n = 0, 1, . . . . It follows from (23) 

that x, and yn are strictly decreasing sequences, hence, convergent 

lim 2, = f, lim yn = y. 
TL’CC n-+ca 

Using the invariant 1, we obtain I(%, Y) = 1(x0, ys). System (23) implies that 

Yn+l - Yn Yn + l 
= s = I(X,,Yn) = ~(Xo,Yo/o). 

X,+1-% 7% 

Thus, we obtain 

Y7&+1 - I(209 YO) %I+1 = Yn - 1 (x0, YO) %, 

which shows that the expression J(zn, yn) = yn - 1(x0, yo)zn is an additional invariant of (23). 

Therefore, 

Jb&,Yn) = J(XO,YO)r 

that is, 
Yo - x0 

Yn-~(xo,Yo)%=Yo--(zo,Yo)xo=---. 
xl) + 1 

So, we have 

Yn - 510 = I (x0, YO) (Gl - 20) ’ (25) 

Thus, every solution of (23) lies on the straight line y - yo = l(zo, ye)(x - x0). Substituting 

272 
yn=-- 1 

Xn+l 

into equation (25) yields 
X0 fl xn &I 

xn+l = -- = 
yo+lx,+l Axn+l. 
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This is Riccati’s difference equation, whose general solution is 

1 

5n = l/(A - 1) + (l/z0 - l/(A - l))l/An’ 
ifA#l, 

and 

1 
x - 

TZ - n+l/xo’ 
ifA=l. (27) 

867 

If A < 1, which is equivalent to x0 < yo, then {(x~, yn)} + (0, (yo - xo)/(yo + 1)) as n + co. 

If A > 1, which is equivalent to x0 > yo, then {(xCn, yn)} -+ ((x0 - yo)/(yo + l),O) as n -+ 00. 

Finally, if A = 1, which is equivalent to 20 = yo, then {(zn, yn)} + (0,O) as n + 0;). 

Our results for this case, which support the claims made on the very elementary web page 

mentioned in the Introduction, are summarized as follows. 

THEOREM 8.1. Assume that a = b = 1. Then, system (23) possesses an invariant (24), and all 

solutions belong to the lines (25). In addition, every solution is given in closed form by formulas 

(26), (27), and (25). 
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