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Abstract

Simultaneous eigenfunctions of two Askey–Wilson second-order difference operators are con-
structed as formal matrix coefficients of the principal series representation of the modular double
of the quantized universal enveloping algebra Uq(sl2(C)). These eigenfunctions are shown to
be equal to Ruijsenaars’ hypergeometric function under a proper parameter correspondence.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The main goal of this article is to construct a solution of two commuting Askey–
Wilson second-order difference equations using representation theory of the modular
double of the quantized universal enveloping algebra Uq of sl2(C). Furthermore, we
relate this solution to Ruijsenaars’ hypergeometric function from [11].

By Masuda et al. [8] there exist three inequivalent ∗-structures on Uq , one as-
sociated to the real form su(2) of sl2(C), one associated to su(1, 1), and one to
sl2(R). Koornwinder [7], Noumi and Mimachi [9], and Koelink [5] have shown that
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the Askey–Wilson polynomials arise as matrix coefficients of ∗-unitary irreducible repre-
sentations of Uq(su(2)). To prove these results they used the fact that the Askey–Wilson
second-order difference operator arises as the radial part of the quantum Casimir in Uq

when calculated with respect to Koornwinder’s [7] twisted primitive elements. In [6,14]
Koelink and Stokman constructed the trigonometric Askey–Wilson functions as matrix
coefficients of ∗-unitary irreducible representations of Uq(su(1, 1)). In this paper we
consider matrix coefficients of Uq(sl2(R))-representations.

An essential tool is the embedding of Uq(sl2(R)) in Faddeev’s [2] modular double of
Uq . The modular double consists of two commuting copies of the quantized universal
enveloping algebra of sl2(C) with deformation parameters q = e�iw1/w2 and q̃ =
e�iw2/w1 (w1, w2 ∈ R>0), respectively. Kharchev et al. [4] made the crucial observation
that the algebraic version �� of the principal series representation of Uq(sl2(R)) on
the space M of meromorphic functions on C can be extended to a representation of
the modular double on the same space. In the same article they construct generalized
Whittaker functions as matrix coefficients of ��.

We construct joint eigenvectors to the action under �� of two commuting twisted
primitive elements (one for each copy of the quantized universal enveloping alge-
bra of sl2(R) inside the modular double) in terms of Ruijsenaars’ [10] hyperbolic
gamma function. The action of the two commuting quantum Casimir elements in
the modular double shows that the corresponding matrix coefficients, for which we
have an explicit integral representation, satisfy Askey–Wilson second-order difference
equations in step directions iw1 and iw2. By construction these matrix coefficients
are invariant under interchanging of w1 and w2. We show duality of this solution S
in its spectral variable � and its geometric variable. Consequently, it satisfies another
two Askey–Wilson second-order difference equations in its spectral
variable.

In a series [11–13] of papers, Ruijsenaars considered a solution R of the same
Askey–Wilson difference equations. These equations arose in his study of relativis-
tic quantum integrable systems. Ruijsenaars defined the hypergeometric function R as
a Barnes’ type integral with integrand expressed in terms of the hyperbolic gamma
function. Subsequently, he established for R duality, D4-symmetry in the parameters,
asymptotic behaviour and the reduction to Askey–Wilson polynomials. We use these
properties to show equality of R to S, which is not apparent from their explicit integral
representations.

The structure of this paper is as follows. In Sections 2 and 3 we recall some
properties of the hyperbolic gamma function and of Ruijsenaars’ hypergeometric
function R, respectively. In Section 4 we define the modular double of Uq and its
principal series representation on meromorphic functions. In Section 5 we consider
the corresponding eigenvalue problem of two commuting twisted primitive elements.
Using the matrix coefficients of the principal series representation we construct
a solution S to the Askey–Wilson difference equations in Section 6, and we es-
tablish the duality of S. In Section 7 we show by a direct calculation that S re-
duces to the Askey–Wilson polynomials for certain discrete values of the spectral
parameter. Finally, in Section 8 we show that S equals Ruijsenaars’ hypergeometric
function R.



Fokko J. van de Bult / Advances in Mathematics 204 (2006) 539–571 541

1.1. Notational conventions

If ± appears inside the argument of functions we mean a product, e.g.

f (z ± a) = f (z + a)f (z − a). (1.1)

Otherwise it means that all sign combinations are possible.
Whenever we use a square root, we always mean the branch which has a cut along

the negative real line and maps the positive real line to itself.

2. The hyperbolic gamma function

Both Ruijsenaars’ and our solution to the Askey–Wilson second-order difference
equations are expressible in terms of the hyperbolic gamma function, which was intro-
duced in [10]. Let us therefore recall some basic properties of this function, see [10]
and the appendices of [11] for more details. Some results are stated for the parameters
w1 and w2 in a larger set than in the corresponding results of the references, but these
extensions are all obvious.

Let us first define for w1, w2 ∈ C+ = {z ∈ C|�(z) > 0},

g(w1, w2; z) =
∫ ∞

0

(
sin(2yz)

2 sinh(w1y) sinh(w2y)
− z

w1w2y

)
dy

y
. (2.1)

Note that the integrand has no pole at 0. To ensure convergence of the integral at
infinity however, we must impose the condition |�(z)| < �(w), where w is defined by

w = w1 + w2

2
.

The hyperbolic gamma function G(z) = G(w1, w2; z) for |�(z)| < �(w) is now defined
by

G(w1, w2; z) = eig(w1,w2;z). (2.2)

The hyperbolic gamma function G owes its name to the fact that it satisfies the differ-
ence equations

G(z + iw1/2) = 2 cosh(�z/w2)G(z − iw1/2),

G(z + iw2/2) = 2 cosh(�z/w1)G(z − iw2/2).

(2.3)

In these equations we suppress the w1 and w2 dependence of G, which we continue
to do whenever this does not cause confusion. These two difference equations allow
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for an analytic continuation of G to a meromorphic function on C. The hyperbolic
gamma function can also be expressed in terms of Barnes’ double gamma function, or
Kurokawa’s double sine function. Details can be found in [11, Appendix A].

Let us first note a few symmetries of the hyperbolic gamma function, which are all
obvious from (2.1):

G(w1, w2; z) = G(w2, w1; z), (2.4)

G(w1, w2; z) = G(w1, w2; −z)−1, (2.5)

G(w1, w2; z) = G(w̄1, w̄2, −z̄), (2.6)

G(�w1, �w2; �z) = G(w1, w2; z) (� ∈ R>0). (2.7)

The pole and zero locations of G are easily derived from the difference equations (2.3),
since G has no poles or zeros in the strip z ∈ R × i(−�(w), �(w)) in view of (2.2).
The zeros of G are contained in the set

�+ = iw + iw1Z�0 + iw2Z�0 (2.8)

and the poles in −�+. The pole at z = −iw is simple, and its residue equals

i

2�

√
w1w2. (2.9)

If w1/w2 is irrational all other poles are also simple and their residues can be calculated
from (2.9) and the difference equations (2.3), see [10, Proposition III.3].

For later purposes it is convenient to call an infinite sequence of points in C increas-
ing (respectively decreasing) if it is contained in a set of the form a +�+ (respectively
a − �+) for some a ∈ C. In this terminology, G has one increasing zero sequence and
one decreasing pole sequence.

We also need an estimate for G(z) as �(z) → ∞ and �(z) stays bounded. In fact,
we only need it for the quotient of two hyperbolic gamma functions, which is easily de-
rived from the estimate of the hyperbolic gamma itself as described in [10, Proposition
III.4; 12, (3.3)]. For a, b ∈ C and w1, w2 ∈ (0, ∞) the resulting estimate reads

G(z − a)

G(z − b)
= exp

(
�

2iw1w2
(2z(b − a) + a2 − b2 + f (z))

)
, (2.10)

where f (z) satisfies for �(z) > max(w1, w2) + max(�(a), �(b)),

|f (z)| < C(w1, w2, �(z), a, b)e−��(z)/ max(w1,w2), (2.11)

with C depending continuously on (0, ∞)2 × R × C2.
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We also use the description of G as a quotient

G(z) = E(z)

E(−z)
, (2.12)

where E is an entire function with zeros at �+ which are all simple if w1/w2 is
irrational. For a precise definition of E, see [11, Appendix A].

We will occasionally meet functions defined by an integral of the form

M(u, d) =
∫

R

n∏
j=1

G(w1, w2; z − uj )

G(w1, w2; z − dj )
dz (2.13)

for w1, w2 > 0 and for parameters uj and dj satisfying |�(uj )|, |�(dj )| < w and
�(
∑n

j=1 (uj − dj )) > 0. These conditions ensure that the integral is well defined (the
contour meets no poles and it decreases exponentially at ±∞). In [11, Appendix B] it
is shown that there exists a unique analytic extension of

M(u, d)

n∏
j,k=1

E(−iw + uj − dk)

to the set {(w1, w2, u, d) ∈ C2+ × C2n|�(
∑

(uj − dj )/w1w2) > 0}. Hence M(u, d) is
a meromorphic function which can only have poles when some E(−iw + uj − dk) is
zero.

3. Ruijsenaars’ hypergeometric function

Ruijsenaars [11] introduced a generalization R of the hypergeometric function as a
Barnes’ type integral. We recall several properties of R from [11,12] which we will
need to relate R to the formal matrix coefficients we are going to define in subsequent
sections.

We define Ruijsenaars’ hypergeometric function in terms of a parameter set �� (� =
0, 1, 2, 3), which is related to Ruijsenaars’ original c-parameters by [12, (1.11)]. Dual
parameters �̂� are defined as

⎛⎜⎜⎝
�̂0
�̂1
�̂2
�̂3

⎞⎟⎟⎠ = 1

2

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠
⎛⎜⎜⎝

�0
�1
�2
�3

⎞⎟⎟⎠ . (3.1)

We denote the set of parameters (�0, �1, �2, �3) by � and the set of dual parameters by
�̂. Note that taking dual parameters is an involution, ˆ̂� = �.
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Ruijsenaars’ hypergeometric function R is now defined for generic parameters w1, w2
∈ C+, � ∈ C4 by

R(�; x, �) = 1√
w1w2

∫
C

G(z ± x + i�0)G(z ± � + i�̂0)

G(±x + i�0)G(±� + i�̂0)G(z + iw)

×
3∏

j=1

G(i�0 + i�j + iw)

G(z + i�0 + i�j + iw)
dz. (3.2)

Note that we use convention (1.1) in this expression. The integral is taken over a
contour C, which is a deformation of R seperating the poles of the numerator from
the zeros of the denominator (equivalently, C separates the increasing pole sequences
of the integrand from the downward pole sequences). R has an analytic extension to
a meromorphic function on (w1, w2, �, x, �) ∈ C2+ × C6, with possible poles for fixed
values of w1, w2, and � at

x ∈ ±(�+ − i�j ), � ∈ ±(�+ − i�̂j ) (j = 0, 1, 2, 3). (3.3)

Recall that �+ is defined by (2.8).
We now look at the Askey–Wilson second-order difference equations which R

satisfies. The equations are obtained from [11, Theorem 3.1] by not only replacing the
c-variables by �, but also multiplying the equations by a constant. These descriptions
of the Askey–Wilson difference equations are more convenient for the representation
theoretic approach we consider in the following sections.

Let us define the function A by

A(w1, w2, �; x) = − e�iw1/w2+2�i�̂0/w2

sinh

(
2�x

w2

)
sinh

(
2�(x + iw)

w2

)

×
3∏

j=0

cosh

(
�

w2

(
x + iw1

2
+ i�j

))

= 1

(1 − e4�x/w2)(1 − e4�(x+iw)/w2)

3∏
j=0

(1 − e2�(iw+i�j +x)/w2).

(3.4)

The Askey–Wilson second-order difference operator Lx
� is defined by

Lx
�f (x) = A(w1, w2, �; x)(f (x + iw1) − f (x))

+ A(w1, w2, �; −x)(f (x − iw1) − f (x)). (3.5)
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Here the superscript x is added to emphasize that the operator acts on the x-variable
(in a moment we will also consider the operator L acting on the spectral variable �).
We write L̃x

� for the Askey–Wilson operator (3.5) with w1 and w2 interchanged.
Ruijsenaars’ hypergeometric function R is an eigenfunction of four Askey–Wilson

second-order difference operators with eigenvalues expressible in terms of

v(w1, w2, �; �) = −2e�iw1/w2+2�i�̂0/w2

×(cosh(2��/w2) + cosh(�iw1/w2 + 2�i�̂0/w2)). (3.6)

Specifically, R satisfies the difference equations

Lx
�R(�; x, �) = v(w1, w2, �; �)R(�; x, �),

L̃x
�R(�; x, �) = v(w2, w1, �; �)R(�; x, �),

L�
�̂R(�; x, �) = v(w1, w2, �̂; x)R(�; x, �),

L̃�
�̂R(�; x, �) = v(w2, w1, �̂; x)R(�; x, �).

(3.7)

Actually, the last three of these equations follow from the first by various symmetries
of R. The second difference equation can be derived from the first (and the fourth from
the third) by using the fact that R is invariant under the exchange of w1 and w2,

R(w1, w2, �; x, �) = R(w2, w1, �; x, �).

This symmetry can be directly seen from definition (3.2) of R and the corresponding
symmetry (2.4) of the hyperbolic gamma function. The third difference equation can
be obtained from the first by using the duality of R under the exchange of x and �,

R(�; x, �) = R(�̂; �, x). (3.8)

This duality is also a direct consequence of the definition of R using the fact that
�0 + �j = �̂0 + �̂j for j = 1, 2, 3.

There are more symmetries of R directly visible from the definition. Since the
hyperbolic gamma function is scale invariant it follows that R is scale invariant as
well,

R(�w1, �w2, ��; �x, ��) = R(w1, w2, �; x, �)

for � ∈ (0, ∞), where �� denotes the scaled parameter set (��0, ��1, ��2, ��3). Further-
more, it is immediately clear that R is symmetric under permutations of �1, �2, and �3.
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This symmetry can be extended to a D4-symmetry in the four parameters � (where the
Weyl group of type D4 acts on the parameters by permutations and an even number
of sign flips). To formulate this result we need the c-function

c(�; y) = 1

G(2y + iw)

3∏
j=0

G(y − i�j )

and the normalization constant

N(�) =
3∏

j=1

G(i�0 + i�j + iw). (3.9)

The D4-symmetry [12, Theorem 1.1] of R then reads

R(�; x, �)

c(�; x)c(�̂; �)N(�)
= R(w(�); x, �)

c(w(�); x)c(ŵ(�); �)N(w(�))
(3.10)

for all elements w of the Weyl group of type D4. Notice that both the c-function and
N are invariant under the action of the S3-subgroup which permutes �1, �2, and �3.

Finally we recall the limit behaviour of R, cf. [12, Theorem 1.2]. Set � = 2�/w1w2.
For w1, w2 ∈ R>0, � ∈ R4, and w1 �= w2 there exists an open neighbourhood U ⊂ C

of R, such that the asymptotics of R for fixed � ∈ U are given by

R(�; x, �) = O(e�(|�(�)|−�̂0−w)|�(x)|) (3.11)

for �(x) → ±∞, uniformly for �(x) in compacta. In fact, Ruijsenaars gives a precise
expression for the leading term of R as �(x) → ±∞ when � ∈ R. These results easily
extend to � in some open neighbourhood U of R.

4. The modular double of Uq(sl2(C))

In this section we consider a slightly extended version of Faddeev’s [2] modular
double of Uq(sl2(C)) and define an algebraic version of its principal series representa-
tion on the space M of meromorphic functions on C. We define an inner product on
some suitable subspace of M, which is compatible to the ∗-structure on Uq(sl2(C))

associated to the real form sl2(R) of sl2(C), cf. [8].
Throughout Sections 4–6 we assume that w1 and w2 are positive real numbers such

that neither w1/w2 nor w2/w1 is an integer, unless specifically stated otherwise. We
define

q = exp(�iw1/w2), q̃ = exp(�iw2/w1),
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which both lie on the unit circle (but they are not ±1). For complex numbers � we
define

q� = e��iw1/w2 , q̃� = e��iw2/w1 .

Definition 4.1. The quantized universal enveloping algebra Uq = Uq(sl2(C)) of sl2(C)

is the unital associative algebra over C generated by K±1, E, and F, subject to the
relations

KK−1 = K−1K = 1,

KE = q2EK,

KF = q−2FK,

EF − FE = K − K−1

q − q−1 .

If w1/w2 is irrational, then the center of Uq is generated by the quantum Casimir
element �, defined as

� = qK + q−1K−1 + (q − q−1)2FE.

By simply replacing q by q̃ (or interchanging w1 and w2) we obtain the quantum
universal enveloping algebra Uq̃ . The generators of Uq̃ are denoted by K̃±1, Ẽ, and F̃ .
The following concept of modular double was introduced by Faddeev [2].

Definition 4.2. The modular double Q is Uq ⊗ Uq̃ endowed with its standard tensor
product algebra structure.

For elements X ∈ Uq (respectively X̃ ∈ Uq̃ ) we also write X (respectively X̃) for
its image under the natural embedding of Uq (respectively Uq̃ ) in Q. In particular,
XX̃ = X̃X in Q for elements X ∈ Uq and X̃ ∈ Uq̃ .

We now define an extension of the modular double by formally adjoining complex
powers of K and K̃ to Q. Let A = ⊕

x∈C Cx̂ be the group algebra of the additive group

Ĉ = (C, �), where � is the translated addition x̂�ŷ = x + y + iw
̂

(this translation in

addition will make formules simpler later on). The unit of Ĉ is −̂iw.

Lemma 4.3. There exists a unique left A-action by algebra automorphisms on the
modular double Q satisfying

x̂ · K±1 = K±1, x̂ · K̃±1 = K̃±1,
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x̂ · E = −qe2�x/w2E, x̂ · Ẽ = −q̃e2�x/w1Ẽ,

x̂ · F = −qe−2�x/w2F, x̂ · F̃ = −q̃e−2�x/w1 F̃ .

Proof. Observe that e.g. the action of x̂ on E can be rewritten as

x̂ · E = e2�(x+iw)/w2E.

The lemma now follows by direct calculations. �

Definition 4.4. The extended modular double D = Q�A is the crossed product of the
modular double Q and the algebra A under its action on Q as defined in Lemma 4.3.

Hence D is the vector space Q ⊗ A endowed with the unique algebra structure
such that the natural embeddings of Q and A in D are algebra morphisms and such
that

x̂Q = (x̂ · Q)x̂, ∀x ∈ C, ∀Q ∈ Q,

where we identified x̂ (respectively Q) with their images under the natural embeddings
of A (respectively Q) in D.

Now we define representations �� of the extended modular double Q on the space
M of meromorphic functions on C depending on a complex representation label �, cf.
[4]. These representations may be viewed as algebraic versions of the principal series
representations of Uq(sl2(R)). We define these representations in terms of the operators
Ty and Sy on M, which act by

Tyf (z) = f (z + y), Syf (z) = e2�iz/yf (z) (y ∈ C).

Lemma 4.5. For � ∈ C the assignments

��(K) = Tiw1 , ��(K̃) = Tiw2 , ��(x̂) = Tx+iw,

��(E) = q1/2

q − q−1 Siw2

(
q−1/2e��/w2 + q1/2e−��/w2Tiw1

)
,

��(F ) = − q1/2

q − q−1 S−iw2

(
q−1/2e��/w2 + q1/2e−��/w2T−iw1

)
,
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��(Ẽ) = q̃1/2

q̃ − q̃−1 Siw1

(
q̃−1/2e��/w1 + q̃1/2e−��/w1Tiw2

)
,

��(F̃ ) = − q̃1/2

q̃ − q̃−1 S−iw1

(
q̃−1/2e��/w1 + q̃1/2e−��/w1T−iw2

)
,

uniquely define a representation �� of D on M.

Observe that the action of the generators of Uq̃ are obtained from the action of the
generators of Uq by interchanging w1 and w2.

Proof. The defining relations of D are easily checked using SxS−x = 1, TxTy =
Tx+y = TyTx , and the equation

TxSy = e2�ix/ySyTx. �

Remark 4.6. Denote v = (w1 − w2)/2, then ��(îv) = ��(K) and ��(−̂iv) = ��(K̃).
The extension of the modular double Q by A and the extension of the representation
��|Q to �� thus have the effect of introducing non-integral powers of Tiw1 and Tiw2

in the image of ��. The introduction of this extension is not an essential part of the
analysis later on and is only included for simplification. Using only integral powers of
K and K̃ we can simulate the action of x̂ for x in some dense subset of R, cf. [4,
Proposition 1.6].

A simple calculation shows that ��(�) acts as a scalar,

��(�)f = −2 cosh(2��/w2)f, f ∈ M. (4.1)

Since �� is an algebraic version of the principal series representation with representation
label � ∈ C, this is as expected.

Definition 4.7. We say that f ∈ M has exponential growth with growth rate � ∈ R if
there exists a compact set Kf ∈ R such that all poles of f are contained in Kf × iR =
{x + iy|x ∈ Kf , y ∈ R} and if |f (x + iy)| = O(exp(�|x|)) for x → ±∞, uniformly for
y in compacta of R.

On the space of meromorphic functions which have negative exponential growth and
which have no poles on R, we define a sesquilinear form by

〈f, g〉 =
∫

R
f (z)g(z) dz. (4.2)
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Observe that this expression is already well defined under the milder asymptotic
condition that the sum of the two exponential growths of f and g is negative. Note
furthermore that (4.2) can be rewritten as

〈f, g〉 =
∫

R
f (z)ḡ(z) dz, (4.3)

where ḡ(z) := g(z̄) now is analytic at z ∈ R.
Following [4] we define an antilinear anti-algebra involution ∗ on the extended

modular double D by

K∗ = K, E∗ = −E, F ∗ = −F, K̃∗ = K̃, Ẽ∗ = −Ẽ, F̃ ∗ = −F̃ , x̂∗ = −̂x̄. (4.4)

If we restrict this involution to Uq (respectively Uq̃ ) we obtain the ∗-structure on Uq

(respectively Uq̃ ) corresponding to the noncompact real form sl2(R) of sl2(C), cf. [8].
The following lemma relates the sesquilinear form (4.2) to the ∗-structure (4.4)

on D.

Lemma 4.8. Let � ∈ C and f, g ∈ M. If the poles of f and g are outside the strip
R × i[−w1, w1] and if the sum of the exponential growth rates of f and g is smaller
than −2�/w2, then

〈��(X)f, g〉 = 〈f, ��̄(X
∗)g〉

for X ∈ Uq,1 := spanC{1, E, F, K, K−1, FK, EK−1}.

Proof. In view of (4.3) the proof follows by a change of variables and some contour
shifting using Cauchy’s theorem. �

A similar lemma holds for the dual algebra Uq̃ .

5. Twisted primitive elements and matrix coefficients

Koornwinder [7] introduced twisted primitive elements to obtain the Askey–Wilson
polynomials as matrix coefficients of finite dimensional Uq(sl2(C))-representations. We
recall the definition of twisted primitive elements and show that they act as first-order
difference operators under the representations ��. We construct eigenvectors to these
operators in terms of the hyperbolic gamma function and we consider the corresponding
formal matrix coefficients 	 of ��. In subsequent sections we relate 	 to Ruijsenaars’
hypergeometric function.

Let 
 ∈ C and set

�
 = q2
/w1 + q−2
/w1 = 2 cos(2�
/w2).
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The twisted primitive element Y
 ∈ Uq ⊂ D is defined as

Y
 = iq−1/2E + iq−1/2FK − �


q − q−1 (K − 1). (5.1)

Analogously, we define the twisted primitive element Ỹ
 ∈ Uq̃ by interchanging w1 and
w2, viz.

Ỹ
 = iq̃−1/2Ẽ + iq̃−1/2F̃ K̃ − �̃


q̃ − q̃−1 (K̃ − 1),

where �̃
 = 2 cos(2�
/w1).
Denoting

��(
) = �
 − ��

q − q−1 , �̃�(
) = �̃
 − �̃�

q̃ − q̃−1 ,

we now have the following lemma.

Lemma 5.1. The meromorphic function

H �
�,
(z) = G(z + �/2 − 3iw/2 ± i�)

G(z − �/2 − iw/2 ± i
)

satisfies

��(Y
)H �
�,
 = ��(
)H �

�,
,

��(Ỹ
)H �
�,
 = �̃�(
)H �

�,
.

(5.2)

Proof. Since H �
�,
 is invariant under the exchange of w1 and w2, it is sufficient to

prove only the first eigenvalue equation. A calculation shows that ��(Y
)f = ��(
)f

is equivalent to the first-order difference equation

f (z + iw1/2) =
cosh

(
�

w2
(z + �/2 − 3iw/2 ± i�)

)
cosh

(
�

w2
(z − �/2 − iw/2 ± i
)

) f (z − iw1/2). (5.3)

(The exact calculation can be found in Appendix A.) Using the difference equation
(2.3) for the hyperbolic gamma function it immediately follows that H �

�,
 satisfies the
difference equation (5.3). �
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Remark 5.2. For any one of the two equations (5.2) there are infinitely many solutions
(we can e.g. multiply a solution to the first equation by any iw1-periodic function).
The crucial step in finding common solutions to both difference equations is to rewrite
the first difference equation in the specific form (5.3). Indeed, the resulting solution
H �

�,
 in terms of hyperbolic gamma functions is invariant under interchanging w1 and
w2, hence it automatically satisfies the second difference equation. This is the main
difference between our analysis and the one in [14].

Now let us consider the adjoint Y ∗
� , which is

Y ∗
� = iq1/2E + iq−3/2FK + ��̄

q − q−1 (K − 1).

Since �(�)∗ = −�̄(�̄), we are interested in solutions to the equation ��̄(Y
∗
� )f =

−�̄(�̄)f and the corresponding equation ��̄(Ỹ
∗
� )f = −�̃̄(�̄)f for the second

component of the modular double.

Lemma 5.3. The function

F �
,�(z) = G(z + �̄ − iw/2 ± ī)

G(z − �̄ + iw/2 ± i�̄)

satisfies

��̄(Y
∗
� )F �

,� = −�̄(�̄)F �
,�,

��̄(Ỹ
∗
� )F �

,� = −�̃̄(�̄)F �
,�.

Proof. The proof is similar to the proof of the previous lemma. �

We will need a few results on the analytic properties of the two functions H �
�,
 and

F �
,�.

Lemma 5.4. The possible pole locations of H �
�,
 and F �

,� are at

−�/2 ± i� + iw − �+, �/2 ± i
 + iw + �+

and

−�̄/2 ± ī − �+, �̄/2 ± i�̄ + �+,

respectively. Furthermore, H �
�,
 and F �

,� have exponential growth with growth rates
�(2�(�) − 2w)/w1w2 and �(−2�(�) − 2w)/w1w2, respectively.
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Proof. The proof follows directly from the zero/pole locations and asymptotics of the
hyperbolic gamma function (see Section 2). �

Define

� = max(|�(
)|, |�(�)|, |�(�)|, |�()|) (5.4)

and

� = w/2 − � − |�(�/2)|. (5.5)

We assume that the parameters 
, �, , � and the variable � are such that � > 0. For
|�(x)| < � define

	(
, �, �, ; x, �) = 〈��(x̂)H �
�,
, F �

,�〉, (5.6)

which is well defined since the exponential growth −2�(w1+w2)/w1w2 of the integrand
is negative and the pole sequences of ��(x̂)H �

�,
 and F �
,� all stay away from the real line

due to the condition |�(x)| < �. Note that the increasing pole sequences of ��(x̂)H �
�,


and F �
,� are all located above the real line and the decreasing pole sequences are all

located below the real line due to the shifted addition in Ĉ. Observe furthermore that
the matrix coefficient 	 is invariant under the exchange of w1 and w2, cf. Remark 5.2.
The function 	 will be related to Ruijsenaars’ hypergeometric function R in Section 8.

Using (2.5), (2.6), and (4.3) we can write 	 as

	(
, �, �, ; x, �)

=
∫

R

G(z + x + �/2 − iw/2 ± i�)G(z − �/2 − iw/2 ± i�)

G(z + x − �/2 + iw/2 ± i
)G(z + �/2 + iw/2 ± i)
dz, (5.7)

which is of the form (2.13). It follows from the discussion at the end of Section 2 that

�(�; x, �) = E(x ± i�0)E(x ± i�1)E(−x ± i�2)E(−x ± i�3)

×E(� ± i�̂0)E(� ± i�̂1)E(−� ± i�̂2)E(−� ± i�̂3)	(�; x, �) (5.8)

has an entire extension to

O = {(w1, w2, 
, �, �, , x, �) ∈ C2+ × C6}. (5.9)

Hence 	 is meromorphic on the same domain O.
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6. The Askey–Wilson difference equations

We show that the formal matrix coefficient 	 (see Section 5) satisfies a second-order
difference equation with step size iw1 using a radial part calculation of the Casimir
� with respect to twisted primitive elements. As a consequence a renormalization S
(6.10) of 	 satisfies an Askey–Wilson second order difference equation. Since S, like
	, is invariant under exchanging w1 and w2, we obtain a second difference equation
with step size iw2. We furthermore show that S satisfies a duality in the geometric and
spectral variables, and we derive various obvious symmetries of S.

Let us start by establishing a correspondence between the set of parameters 
, �, �,
and  and Ruijsenaars’ parameter set � by

�0 = −
 + �, �1 = 
 + �, �2 = −� − , �3 = � − . (6.1)

Observe that �̂0 (see (3.1)) becomes

�̂0 = 1
2 (�0 + �1 + �2 + �3) = � − .

We will also use the abbreviation � for the parameters (
, �, �, ). In particular, we
write 	(�; x, �) for (5.6). Later we show that (6.1) is the parameter correspondence
which relates 	 to Ruijsenaars’ hypergeometric function.

Now we perform a radial part calculation of the Casimir element � with respect to
the twisted primitive elements (see (5.1)). The result is stated in terms of the function
A, see (3.4).

Lemma 6.1. We have

x̂� = x̂�(x) mod x̂Uq,2(Y
 − ��(
)) + (Y� − �(�))x̂Uq,2,

where Uq,2 := spanC{1, K−1, F } and �(x) is defined as the element

�(x) = B(x)K + C(x) + D(x)K−1

with coefficients

B(x) = q−1A(�0, −�0, �1, −�1; x),

C(x) = q−1+2�̂0/w1
[
−A(�; x) − A(�; −x) + 1 + q2−4�̂0/w1

]
,

D(x) = q−1A(�2, −�2, �3, −�3; −x).

Proof. The proof involves a radial part calculation similar to the one performed in [14,
Proposition 3.3]. In fact, we can use the calculation in [14] using an embedding � of
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the extended quantum universal enveloping algebra Uq�Ĉ into the one in [14], given
by

�(K) = K2, �(x̂) =
⎛⎝2x + iw2

iw1
̂

⎞⎠K,

�(E) = −iKX+, �(F ) = iX−K−1.

A direct calculation gives �(�) = (q − q−1)2� + 2 and �(Y
) = Y2
/w1 (on the right-
hand side we use the � and Y from [14], which have a slightly different definition).
Note that in [14] the radial part is calculated modulo a larger vector space. However,
it is easily verified that the present smaller space suffices for the proof. �

Using this radial part calculation we can prove that 	 (5.6) satisfies a gauge trans-
formed Askey–Wilson second-order difference equation.

Lemma 6.2. The function 	(x) = 	(�; x, �) satisfies the difference equation

−2 cosh(2��/w2)	(x) = B(x)	(x + iw1) + C(x)	(x) + D(x)	(x − iw1), (6.2)

and a similar equation with w1 and w2 interchanged. These equations hold as identities
between meromorphic functions on the domain O (see (5.9)).

Proof. Observe that by the symmetry of 	 in w1 and w2 we only have to prove the
difference equation (6.2).

We first prove the lemma under restricted parameter conditions, which allow us to
use expression (5.6) of 	 as a matrix coefficient of the D-representation ��. Using
analytic continuation we can subsequently remove these parameter constraints, cf. the
discussion at the end of Section 5.

Let us assume that w1, w2 > 0 and that

w2 > 7w1 + 4� + 2|�(�)| + 4|�(x)| (6.3)

holds. Then |�(x)| < �, so 	 is defined by (5.6) (recall that � and � are defined by
(5.4) and (5.5), respectively). By (4.1),

−2 cosh(2��/w2)	(x) = 〈��(x̂�)H �
�,
, F �

,�〉 (6.4)

holds. By Lemma 6.1 there exist X, Z ∈ Uq,2 such that

x̂� = x̂�(x) + x̂X(Y
 − ��(
)) + (Y� − �(�))x̂Z. (6.5)
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Since ��(Y
 − ��(
))H �
�,
 = 0, we have

〈��(x̂X(Y
 − ��(
)))H �
�,
, F �

,�〉 = 0. (6.6)

The exponential growth of ��(x̂Z)H �
�,
 is at most the exponential growth of H �

�,
 plus
2�/w2 (due to the possible occurrence of an Siw2 factor in ��(Z)). The sum of the
exponential growths of ��(x̂Z)H �

�,
 and F �
,� is at most −2�/w1, hence strictly smaller

than −2�/w2, since the restrictions on the parameters imply that w2 > w1. Moreover
condition (6.3) implies that neither ��(x̂Z)H �

�,
 nor F �
,� has any poles in the strip

R × i[−w1, w1]. Using Lemma 4.8 and the fact that Y� ∈ Uq,1, we thus obtain

〈��((Y� − �(�))x̂Z)H�,
, F,�〉 = 〈��(x̂Z)H�,
, ��̄(Y
∗
� + �̄(�̄))F,�〉 = 0. (6.7)

Combining (6.4)–(6.7) now yields

−2 cosh(2��/w2)	(x) = 〈��(x̂�)H �
�,
, F �

,�〉 = 〈��(x̂�(x))H �
�,
, F �

,�〉. (6.8)

Furthermore, by Lemma 6.1 (remember that x̂ + iw1 and x̂K act in the same way
under ��) we have

〈��(x̂�(x))H�,
, F,�〉 = B(x)	(x + iw1) + C(x)	(x) + D(x)	(x − iw1). (6.9)

The lemma for the restricted parameter conditions follows now directly from (6.8) and
(6.9). �

Using the function

�(�; x) = G(x + i�2)G(x + i�3)

G(x − i�0)G(x − i�1)
,

we can define a renormalization S of 	 as

S(�; x, �) = N(�)	(�; x, �)√
w1w2�(�; x)�(�̂; �)

. (6.10)

The function N (3.9) is a convenient normalization factor when matching S to R in
Section 8.

Lemma 6.3. S(�; x, �) is meromorphic on O with possible poles at

� = ±(� − i�̂k), x = ±(� − i�k), i�0 + i�l = −� − iw

for � ∈ �+, k = 0, 1, 2, 3, and l = 1, 2, 3.
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Proof. Using (5.8) and (2.12) we can express S as

S(�; x, �) = �(�; x, �)N(�)∏3
k=0 E(±x + i�k)E(±� + i�̂k)

.

From this expression we can easily read off that the possible pole hyperplanes are
as stated in the lemma (they have to be either poles of N(�) or zeros of one of the
E-functions in the denominator). �

Theorem 6.4. The function S(�; x, �) is a simultaneous eigenfunction of the two Askey–
Wilson type second-order difference operators Lx

� and L̃x
� (see (3.5)) with eigenvalues

v(�; w1, w2, �) and v(�; w2, w1, �) respectively, where v is defined by (3.6).

Proof. Note that � satisfies the first-order difference equation

�(x + iw1/2) =
cosh

(
�

w2
(x + i�2)

)
cosh

(
�

w2
(x + i�3)

)
cosh

(
�

w2
(x − i�0)

)
cosh

(
�

w2
(x − i�1)

)�(x − iw1/2).

The desired eigenvalue equation (3.5) for Lx
� now follows immediately from

Lemma 6.2.
To prove the result for the operator L̃x

� we note that S is symmetric in w1 and w2,

while interchanging w1 and w2 transforms L to L̃. We could also prove the second
difference equation by repeating the argument for the first difference equation using
the component Uq̃ of the modular double. �

We continue the analysis of the eigenfunction S by proving its duality in the
geometric variable x and the spectral variable �, similar to duality (3.8) for Ruijse-
naars’ hypergeometric function R. The duality transformation � → �̂ of the parameters
(see (3.1)) is equivalent to interchanging 
 and  under the parameter correspondence
(6.1): (
, �, �, ) → (, �, �, 
).

Theorem 6.5 (Duality). We have

S(�; x, �) = S(�̂; �, x)

as meromorphic functions on O.

Proof. Assume that w1, w2 > 0 and w/2 > � + |�(x)| + |�(�)|, where � is as in
(5.4). Note that these restrictions on the parameters are invariant under the exchange
(x, �) ↔ (�, �̂). Then we can use the integral representation (5.7) for both 	(�; x, �)
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and 	(�̂; �, x) to compute

	(�; x, �) =
∫

R

G(z + x + �/2 − iw/2 ± i�)G(z − �/2 − iw/2 ± i�)

G(z + x − �/2 + iw/2 ± i
)G(z + �/2 + iw/2 ± i)
dz

=
∫

R

G(z + x/2 + � − iw/2 ± i�)G(z − x/2 − iw/2 ± i�)

G(z + x/2 + iw/2 ± i
)G(z − x/2 + � + iw/2 ± i)
dz

= 	(�̂; �, x),

where we used the change of integration variable z → z + (� − x)/2 and a contour
shift in the second equality. This contour shift is allowed since the integrand converges
to zero exponentially at ±∞, and the conditions on the parameters ensure that there
are no poles picked up by shifting the contour back to R.

Since � (see (5.8)) is entire on O, it follows that 	(�; x, �) = 	(�̂; �, x) holds as
identity between meromorphic functions on O. The desired duality for S now follows
from N(�) = N(�̂) and ˆ̂� = �. �

Corollary 6.6. The function S(�; x, �) is a simultaneous eigenfunction of the Askey–
Wilson second-order difference operators Lx

� , L̃x
� , L�

�̂ , and L̃�
�̂ with eigenvalues v(�; w1,

w2, �), v(�; w2, w1, �), v(x; w1, w2, �̂), and v(x; w2, w1, �̂), respectively.

Proof. The fact that S is an eigenfunction of Lx
� and L̃x

� was proved in Theorem 6.4.
The proof for the other two difference operators follows from this fact and duality
(Theorem 6.5). �

It is immediately clear from the integral representation (5.7) that 	 is invariant under
sign flips of the parameters 
, �, �, and . This leads to the following symmetries for
S.

Lemma 6.7. Let Wn be the Weyl group of type Dn, which acts on n-tuples by permuta-
tions and even numbers of sign changes. Let V = W2 ×W2 ⊂ W4 be the Weyl group of
type D2 × D2, where the first (respectively second) component acts on the parameters
(�0, �1) (respectively (�2, �3)) of the four-tuple (�0, �1, �2, �3). For an element v ∈ V

we have

S(�; x, �)

c(�; x)c(�̂; �)N(�)
= S(v(�); x, �)

c(v(�); x)c(v̂(�); �)N(v(�))

as meromorphic functions on O.

Proof. Note that the action of V � Z×4
2 on the parameters (
, �, �, ) is by sign flips

of 
, �, �, and . Under the conditions � > 0 and |�(x)| < � it follows from the



Fokko J. van de Bult / Advances in Mathematics 204 (2006) 539–571 559

integral representation (5.7) of 	 that 	 is invariant under the action of V on � (note
that the parameter restrictions are V-invariant).

Observe that

c(�; x)�(�; x) = G(x ± i�2)G(x ± i�3)

G(2x + iw)

is also V-invariant. Since the action of V commutes with taking dual parameters (which
is obvious in the parameters 
, �, �, , since V acts by flipping signs while taking dual
parameters amounts to interchanging 
 and ) we have a similar result for c(�̂; �)�(�̂; �).
Combining these results and using (6.10) now yields the desired symmetry of S for the
restricted parameter set. These extra conditions on the parameters can be removed by
analytic continuation (compare with the proof of Theorem 6.5). �

Remark 6.8. The symmetries described in Lemma 6.7 should be compared to the D4
symmetry (3.10) of R. Note that for R only an S3 ⊂ W4 symmetry holds trivially from
its integral representation (3.2), where S3 acts by permuting �1, �2, and �3.

Let us now consider asymptotics of S, compare with asymptotics (3.11) of R.

Lemma 6.9. Let w1, w2 ∈ R>0, � ∈ C4, and � ∈ C \ R such that � > 0, where � is
given by (5.5). Then

S(�; x, �) = O(e�(|�(�)|−�(�̂0)−w)|�(x)|)

for �(x) → ±∞, uniformly for �(x) in compact subsets of (−�, �), where � =
2�/w1w2.

Proof. Under the parameter restrictions as stated in the lemma, S does not have x-
independent poles (see Lemma 6.3) and the integral representation (5.7) for 	 holds.

In view of (6.10) and the asymptotics

1

�(�; x)
= O(e∓��̂0x) (6.11)

for �(x) → ±∞, uniformly for �(x) in compacta, it suffices to prove

	(�; x, �) = O(e�(|�(�)|−w)|�(x)|) (6.12)

for �(x) → ±∞, uniformly for �(x) in compacta of (−�, �). The asymptotic formula
(6.11) follows directly from estimates (2.10) and (2.11) for the hyperbolic gamma
function.
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Note that it suffices to prove (6.12) for �(x) → ∞ since

	(�; x, �) = 	(�̌; −x, −�), (6.13)

where �̌ = (�, 
, , �) (in the �� notation, �̌ = (−�0, �1, �2, −�3)). Eq. (6.13) follows
by the change of integration variable z → −z in (5.7) and a subsequent contour shift.

To prove (6.12) for �(x) → ∞ we consider the integral representation (5.7) of 	.
We define

� = max(w1, w2) + 1
2 |�(�)| + max(|�(
)|, |�(�)|, |�(�)|, |�()|) (6.14)

and we consider the division of R in five intervals

I1 = (−∞, −�(x) − �), I2 = (−�(x) − �, −�(x) + �),

I3 = (−�(x) + �, −�), I4 = (−�, �), I5 = (�, ∞), (6.15)

for �(x) > 2�. We write integral (5.7) defining 	 as the sum of five integrals over
Ij (j = 1, 2, . . . , 5) and we bound the integral over each Ij seperately. The intervals
are chosen in such a way that estimates (2.10) and (2.11) for the hyperbolic gamma
function can be used to bound the integrand over the intervals I1, I3, and I5. To
estimate the integrals over the remaining intervals I2 and I4 we use the fact that their
lenghts are finite and independent of �(x). For each interval Ij we show that the
integral over Ij is O(e�(|�(�)|−w)|�(x)|) as �(x) → ∞, uniformly for �(x) in compact
subsets of (−�, �). As a consequence 	 is also of this order. Details are given in
Appendix A. �

7. Reduction to Askey–Wilson polynomials

Using an indirect method, Ruijsenaars [11, Theorem 3.2] proved that R reduces to
the Askey–Wilson polynomials [1] when the spectral parameter is specialized to certain
specific discrete values. We now show by a direct calculation that S (6.10) reduces to
the Askey–Wilson polynomials for the same discrete spectral values.

Let us first introduce some standard notations for basic hypergeometric series, see
[3]. For q ∈ C we write

(a; q)n =
n−1∏
k=0

(1 − aqk),

(a1, a2, . . . , ak; q)n =
k∏

j=1

(aj ; q)n.
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The q-hypergeometric series is defined by

s+1�s

[
a1, . . . , as+1
b1, . . . , bs

; q, z

]
=

∞∑
k=0

(a1, . . . , as+1; q)k

(b1, . . . , bs, q; q)k
zk

provided that either |q| < 1 or that the series terminates. The Askey–Wilson polynomials
[1] are defined as

rn(x; a, b, c, d|q) = 4�3

[
q−n, abcdqn−1, ae2�x/w2 , ae−2�x/w2

ab, ac, ad
; q, q

]
.

Note that the q−n term in the above expression causes the series to terminate. This
implies that rn is a polynomial of degree n in cosh(2�x/w2). Finally, if we use the
parameter correspondence

a = −e2�i�0/w2q, b = −e2�i�1/w2q, c = −e2�i�2/w2q, d = −e2�i�3/w2q, (7.1)

and if we define

�n = iw + i�̂0 + inw1, (7.2)

then the Askey–Wilson polynomials satisfy the Askey–Wilson second-order difference
equation

Lx
� rn(x; a, b, c, d|q2) = v(w1, w2, �; �n)rn(x; a, b, c, d|q2).

Here we use the Askey–Wilson operator Lx
� (3.5) and eigenvalue v (3.6).

Ruijsenaars has shown in [11] by an indirect method that

R(w1, w2, �; x, �n) = rn(x; a, b, c, d|q2) (7.3)

for n ∈ Z�0, under the parameter correspondence (7.1). Similarly we have

Theorem 7.1. Under the parameter correspondence (7.1) we have

S(w1, w2, �; x, �n) = rn(x; a, b, c, d|q2)

for n ∈ Z�0.

Proof. Without loss of generality, we assume that the parameters w1, w2, �, x are
generic.
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For generic � we can express 	 as an integral

	(�; x, �) =
∫

C
I (�; x, �, z) dz (7.4)

with I (z) = I (�; x, �, z) given by

I (z) = G(z + x + �/2 − iw/2 ± i�)G(z − �/2 − iw/2 ± i�)

G(z + x − �/2 + iw/2 ± i
)G(z + �/2 + iw/2 ± i)

and with contour C a deformation of R seperating the upward pole sequences of I from
the downward pole sequences of I. When � → �n, the pole zk := �/2−iw/2−i�−ikw1
from a downward pole sequence of I will collide with the pole −�/2 + iw/2 − i +
i(n − k)w1 from an upward pole sequence of I for 0�k�n. In order to compute
the limit � → �n in (7.4), we therefore first shift the contour C over the poles at zk

(0�k�n) while picking up poles. In the resulting integral the colliding poles are on
the same side of the integration contour, hence the limit � → �n can be taken.

To calculate the residues of I at zk we first remark that k consecutive applications
of the difference equation (2.3) yield

G(z)

G(z − ikw1)
= ek�z/w2q−k2/2(−e−2�z/w2q; q2)k.

Using this equation we can write

I (z) = G(z + ikw1 + x + �/2 − iw/2 ± i�)G(z + ikw1 − �/2 − iw/2 ± i�)

G(z + ikw1 + x − �/2 + iw/2 ± i
)G(z + ikw1 + �/2 + iw/2 ± i)

×q2k (−e
− 2�

w2
(z+ikw1+x−�/2+iw/2±i
)

q, −e
− 2�

w2
(z+ikw1+�/2+iw/2±i)

q; q2)k

(−e
− 2�

w2
(z+ikw1+x+�/2−iw/2±i�)

q, −e
− 2�

w2
(z+ikw1−�/2−iw/2±i�)

q, q2)k

.

Using the fact that the residue of the hyperbolic gamma function at z = −iw equals
(2.9), we obtain that the residue Resk of I at zk equals

Resk = i
√

w1w2

2�

G(x + � − iw − i� ± i�)G(−iw − 2i�)

G(x − i� ± i
)G(� − i� ± i)

×q2k (−e
− 2�

w2
(x−i�±i
)

q, −e
− 2�

w2
(�−i�±i)

q; q2)k

(e
− 2�

w2
(x+�−i�±i�)

q2, e
2�
w2

2i�
q2, q2; q2)k

.

Now we can rewrite S as

S(�; x, �) = N(�)√
w1w2�(�; x)�(�̂; �)

(
−2�i

n∑
k=0

Resk +
∫

C′
I (z) dz

)
,
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where the contour C′ is chosen in such a way that all upward pole sequences and the
poles zk (0�k�n) are above C′, while all poles in downward pole sequences except
zk (0�k�n) are below C′. In this expression the integral

∫
C′ I (z) dz has an analytic

extension to � = �n. Furthermore S(�; x, �) is analytic at � = �n, while �(�̂; �) and
Resk (0�k�n) have simple poles at � = �n. Hence we obtain

S(�; x, �n) = lim
�→�n

− 2�iN(�)√
w1w2�(�; x)�(�̂; �)

n∑
k=0

Resk

= e
2n�
w2

(x−iw−i�0) (e
− 2�

w2
(x−iw+�2/3)q−2n; q2)n

(e
− 2�

w2
(i�0+i�2/3)q−2n; q2)n

×4�3

[
q−2n, e

− 2�
w2

(x−iw−i�0/1), e
− 2�i

w2
(�2+�3)q−2n

e
− 2�

w2
(x−iw+i�2/3)q−2n, e

2�i
w2

(�0+�1)q2
; q2, q2

]
,

where the notation �0/1 (respectively �2/3) means that there are two terms, one with �0
and another with �1 (respectively, �2 and �3). Inserting the parameter correspondence
(7.1) we obtain

S(�; x, �n) = e2�nx/w2a−n (e−2�x/w2c−1q−2n+2, e−2�x/w2d−1q−2n+2; q2)n

(a−1c−1q−2n+2, a−1d−1q−2n+2; q2)n

×4�3

[
q−2n, e−2�x/w2a, e−2�x/w2b, c−1d−1q−2n+2

e−2�x/w2c−1q−2n+2, e−2�x/w2d−1q−2n+2, ab
; q2, q2

]
.

Using Sears’ transformation [3, (III.15)] of a terminating balanced 4�3 series with
parameters specialized to a = ae−2�x/w2 , b = be−2�x/w2 , c = c−1d−1q−2n+2, d =
ab, e = e−2�x/w2c−1q−2n+2, and f = e−2�x/w2d−1q−2n+2 now yields the desired
result. �

8. Equality to Ruijsenaars’ hypergeometric function

We have already seen in previous sections that Ruijsenaars’ hypergeometric function
R and the renormalized formal matrix coefficient S have several properties in common.
They satisfy the same Askey–Wilson second-order difference equations, they have the
same duality property, they specialize in the same way to the Askey–Wilson polynomials
and their possible pole locations coincide. These common properties suffice to show
that R and S are equal.

Theorem 8.1. We have

R(w1, w2, �; x, �) = S(w1, w2, �; x, �). (8.1)
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This theorem is equivalent to the following identity between hyperbolic integrals.

Corollary 8.2. For w1, w2, �(�j ) > 0 and |x|, |�|, |�j | < w/6 we have∫
R

G(z + x + �/2 − iw/2 ± i(�3 − �2)/2)G(z − �/2 − iw/2 ± i(�0 + �1)/2)

G(z + x − �/2 + iw/2 ± i(�0 − �1)/2)G(z + �/2 + iw/2 ± i(�2 + �3)/2)
dz

= G(x + i�2)G(x + i�3)G(� + i�̂2)G(� + i�̂3)

G(x + i�0)G(x − i�1)G(� + i�̂0)G(� − i�̂1)

×
∫

C
G(z ± x + i�0)G(z ± � + i�̂0)

G(z + iw)
∏3

j=1 G(z + i�0 + i�j + iw)
dz,

where the contour C is the real line with a downward indentation at the origin.

Proof. The proof consists of inserting the integral representations of R and S in (8.1).
See (3.2) for the integral representation of R, and (5.7), (6.10) for the integral repre-
sentation of S. �

In order to prove Theorem 8.1 we first consider the Casorati-determinant of S and
R in the iw1 direction.

Lemma 8.3. The Casorati-determinant

�(�; z, �) = S(�; z + iw1/2, �)R(�; z − iw1/2, �)

−S(�; z − iw1/2, �)R(�; z + iw1/2, �)

of S and R in the iw1 direction is identically zero.

Proof. We suppress the � and � dependence of �(z) whenever this does not cause
confusion. We prove the lemma for generic parameters w1, w2 ∈ R>0, � ∈ R4, and
� ∈ U \ R, under the condition w2 > 2� + 2|�(�)| + 3w1, where U is an open subset
such that asymptotics (3.11) of R hold for � ∈ U .

A simple calculation involving the Askey–Wilson difference equations satisfied by R
and S (see (3.7) and Theorem 6.6, respectively) shows that

�(z + iw1/2) = A(�; −z)

A(�; z)
�(z − iw1/2),

where A is defined by (3.4). Since the function

T (z) = sinh(2�z/w2)

3∏
j=0

G(z − i�j − iw1/2)

G(z + i�j + iw1/2)
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satisfies the same difference equation, we conclude that

m(z) = �(z)

T (z)

is an iw1-periodic function.
We now show that m(z) is an entire function in z. Let us look at the possible poles

of the Casorati-determinant �(z). By Lemma 6.9 the possible poles of S are located at

±(�+ − i�j ), (j = 0, 1, 2, 3).

From (3.3) the possible poles of R are located at the same points. Hence �(z) can only
have poles at

±(�+ − i�j ) ± iw1/2 (j = 0, 1, 2, 3)

Here all sign combinations are possible. Furthermore, using the pole and zero locations
(2.8) of the hyperbolic gamma function, we can easily see that the possible zeros of
T (z) are located at

±(�+ + i�j + iw1/2), riw2, (j = 0, 1, 2, 3; r ∈ Z).

By the assumption that the parameters are generic, we conclude that m has no pole
sequences of the form p + ikw1 (k ∈ Z). By the iw1-periodicity of m it now follows
that m cannot have any poles.

In the limit �(z) → ∞ we have

1

T (z)
= O(e�(�̂0+w1)z)

uniformly for �(z) in compacta, in view of estimates (2.10) and (2.11) for the hyperbolic
gamma function. Here � = 2�/w1w2 as before.

Furthermore, using the asymptotics for S (see Lemma 6.9) and for R (see (3.11)) we
have for �(z) → ∞

�(z) = O(e2�(|�(�)|+|�̂0|−w)|�(z)|)

uniformly for �(z) in compact subsets of (−� + w1/2, � − w1/2). Observe that the
interval (−� + w1/2, � − w1/2) is nonempty due to the conditions on the parameters.

Combining these two asymptotic estimates we obtain

m(z) = �(z)

T (z)
= O(e�(2|�(�)|−w2)|�(z)|) → 0 (8.2)

for �(z) → ∞, uniformly for �(z) in compacta of (−� + w1/2, � − w1/2).
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The asymptotics of m(z) for �(z) → −∞ can be obtained in a similar way and is
also given by (8.2). Combining the asymptotics with the fact that m(z) is analytic and
iw1-periodic we conclude that m(z) is bounded on C since � − w1/2 > w1/2.

For these parameters we conclude by Liouville’s theorem that m(z) is constant. In
fact, by the asymptotic expansion (8.2), m is identically zero. We can now extend
this result to all values of the parameters by analytic continuation, which proves the
lemma. �

Proof of Theorem 8.1. Consider the quotient

Q(�; x, �) = R(�; x, �)

S(�; x, �)
.

By Lemma 8.3, Q is an iw1-periodic meromorphic function in x. Since Q is symmetric
in w1 and w2 (for both R and S are invariant under interchanging w1 and w2), Q is
also iw2-periodic. If we choose w1, w2 > 0 such that w1/w2 /∈ Q, then the set {kw1 +
lw2|k, l ∈ Z} is dense on the real line, hence Q(�; x, �) is constant as meromorphic
function in x. Analytic continuation (in w1, w2, and �) allows us to extend this result
to all possible values of w1 and w2 in C+ and � ∈ C4.

By the duality properties of R and S (see (3.8) and Theorem 6.5, respectively), we
have

Q(�; x, �) = Q(�̂; �, x).

This implies that Q is also constant as function in �.
In particular, we have

Q(w1, w2, �; x, �) = S(w1, w2, �; x, �0)

R(w1, w2, �; x, �0)

with �0 given by (7.2). By Theorem 7.1 we have S(w1, w2, �; x, �0) ≡ 1, and by (7.3)
we have R(w1, w2, �; x, �0) ≡ 1. Hence Q ≡ 1, as desired. �
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Appendix A. Eigenfunction of ��(Y�)

In this appendix we give the explicit calculation to rewrite the eigenvalue equation
��(Y
)f = ��(
)f as the first-order difference equation (5.3).
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Using the explicit expression (5.1) of Y
, the eigenvalue equation becomes

iq−1/2��(E)f + iq−1/2��(FK)f − �


q − q−1 (��(K − 1))f = �
 − ��

q − q−1 f.

By the explicit definition (Lemma 4.5) of �� we obtain

i

q − q−1 e2�z/w2
(
q−1/2e��/w2f (z) + q1/2e−��/w2f (z + iw1)

)
− i

q − q−1 e−2�z/w2
(
q−1/2e��/w2f (z + iw1) + q1/2e−��/w2f (z)

)
− �


q − q−1 (f (z + iw1) − f (z)) = �
 − ��

q − q−1 f (z).

Multiplying by q − q−1 and rearranging the terms yields(
ie2�z/w2q−1/2e��/w2 − ie−2�z/w2q1/2e−��/w2 + ��

)
f (z)

=
(
−ie2�z/w2q1/2e−��/w2 + ie−2�z/w2q−1/2e��/w2 + �


)
f (z + iw1),

which is equivalent to

f (z + iw1)

= cosh(�i/2 + 2�z/w2 − �iw1/(2w2) + ��/w2) + cosh(2�i�/w2)

cosh(−�i/2 + 2�z/w2 + �iw1/(2w2) − ��/w2) + cosh(2�i
/w2)
f (z).

Replacing the variable z by z − iw1/2 we can now rewrite the latter equation as

f (z + iw1/2)

f (z − iw1/2)

= cosh(�i/2 + 2�z/w2 − 3�iw1/(2w2) + ��/w2) + cosh(2�i�/w2)

cosh(−�i/2 + 2�z/w2 − �iw1/(2w2) − ��/w2) + cosh(2�i
/w2)

=
cosh

(
�

w2
(z + �/2 − 3iw1/4 + iw2/4 ± i�)

)
cosh

(
�

w2
(z − �/2 − iw1/4 − iw2/4 ± i
)

)

=
cosh

(
�
w2

(z + �/2 − 3iw/2 ± i�)
)

cosh

(
�

w2
(z − �/2 − iw/2 + i
)

) ,

where we used the i�-antiperiodicity of the hyperbolic cosine in the last equality.
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Appendix B. The limit behaviour of �

In this appendix we give the details on the calculation of the limit behaviour of 	,
cf. the proof of Lemma 6.9. Throughout this section we assume that w1, w2 ∈ R>0,
� /∈ R, � ∈ C4, and that � > 0 (with � given by (5.5)). We prove that

	(�; x, �) = O(e�(|�(�)|−w)|�(x)|) (B.1)

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �). As explained in the proof
of Lemma 6.9, we prove (B.1) by splitting R in five intervals and bounding the integral
representation (5.7) of 	 over each interval.

B.1 Preparations

Let us first define a function K by

K(z, �, a, b) = G(z + �/2 − iw/2 ± ia)

G(z − �/2 + iw/2 ± ib)
.

The integral representation (5.7) for 	 can then be written as

	(�; x, �) =
∫

R
K(z + x, �, �, 
)K(z, −�, �, ) dz. (B.2)

The behaviour of K in the limit z → ±∞ is controlled by

K±(z, �, a, b) = e∓i�(z(�−iw)−a2/2+b2/2).

Explicitely, for fixed a, b, and � we have

K(z, �, a, b) = K±(z, �, a, b)eg(z,�,a,b) (B.3)

for ±�(z) > max(w1, w2) + |�(�)|/2 + max(|�(a)|, |�(b)|), where

|g(z, �, a, b)| < C(�(z))e−� min(w1,w2)|�(z)|/2, (B.4)

with C depending continuously on �(z), cf. (2.10) and (2.11).

B.2 General estimation scheme

Let � and the intervals Ij (j ∈ {1, . . . , 5}) be defined as in (6.14) and (6.15). We
only consider the asymptotics for �(x) → ∞. Assume that �(x) > 2�, causing the
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intervals to form a partition of the real line. We write integral (B.2) defining 	 as

	(x) =
5∑

j=1

	j (x), (B.5)

where

	j (x) =
∫

Ij

K(z + x, �, �, 
)K(z, −�, �, ) dz

for j ∈ {1, 2, . . . , 5}. We bound these integrals using (B.3) (if one of them is applicable
for the interval at hand).

For j = 1 we have

	1(x) =
∫ −�(x)−�

−∞
K−(z + x, �, �, 
)K−(z, −�, �, )eg1(z+x,x) dz

= ei��xe−�wx̄ei�(
2+2−�2−�2)/2
∫ −�

−∞
e2�wz+g1(z+i�(x),x) dz

= O(e−�(�(�)+w)�(x))

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �). Here g1(z, x) = g(z, �, �, 
)

+ g(z − x, −�, �, ) which satisfies an equation like (B.4) for z < −�

|g1(z + i�(x), x)| < Ce−� min(w1,w2)|�(z)|/2,

where the constant C is independent of �(x), because �(x) is bounded. In particular,
g1(z + i�(x), x) is uniformly bounded for z ∈ (−∞, −�) and x ∈ {z ∈ C|�(z)�2�,
|�(z)| < �}.

Likewise we have for j = 5,

	5(x) =
∫ ∞

�
K+(z + x, �, �, 
)K+(z, −�, �, )eg5(z,x) dz

= e−�x(w+i�)ei�(�2+�2−
2−2)/2
∫ ∞

�
e−2�wz+g5(z,x) dz

= O(e�(�(�)−w)�(x))

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �). Here g5 is a function
which satisfies a bound like (B.4) for z > �, cf. the previous paragraph.
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For j = 3 we need to be a bit more careful. First observe that

	3(x) =
∫ −�

−�(x)+�
K+(z + x, �, �, 
)K−(z, −�, �, )eg3(z,x) dz

= e−�x(w+i�)ei�(�2+2−
2−�2)/2
∫ −�

−�(x)+�
e−2i��z+g3(z,x) dz,

where g3 = g(z + x, �, �, 
) + g(z, −�, �, ) is bounded on z ∈ (−�(x) + �, −�) by
Ce−� min(w1,w2) min(−z,z−�(x))/2, and hence by the constant C itself. Therefore we have

|	3(x)| � e�(�(�)−w)�(x)+��(x)�(�)e��(�2+2−
2−�2)/2
∫ −�

−�(x)+�
e2��(�)z+C dz

= O(e�(|�(�)|−w)�(x))

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �). Here we get the final
approximation by evaluating the integral and using that �(�) �= 0.

For j = 4 we cannot use (B.3) for the entire integrand. However we still have

	4(x) =
∫ �

−�
K+(z + x, �, �, 
)K(z, −�, �, )eg4(z,x) dz

= ei�x(iw−�)

∫ �

−�
K+(z, �, �, 
)K(z, −�, �, )eg4(z,x) dz

= O(e�(�(�)−w)�(x))

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �). Here g4 is a function
satisfying the bound g4(z, x) < Ce−� min(w1,w2)(�(x)−�)/2 �C, for z ∈ [−�, �] and
�(x) > 2�.

Finally for j = 2 we have in a similar way

	2(x) =
∫ �

−�
K(z + i�(x), �, �, 
)K−(z − �(x), −�, �, )eg2(z,x) dz

= e−i��(x)(−�−iw)

∫ �

−�
K(z + �(x), �, �, 
)K−(z, −�, �, )eg2(z,x) dz

= O(e−�(�(�)+w)x)

for �(x) → ∞, uniformly for �(x) in compacta of (−�, �), where g2 is a bounded
function, cf. the previous paragraph.

By (B.5) we conclude that asymptotics (B.1) for 	 holds, as desired.
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