Vaccinia H5 is a multifunctional protein involved in viral DNA replication, postreplicative gene transcription, and virion morphogenesis

Susan M. D’Costa a,⁎, Travis W. Bainbridge a,1, Sayuri E. Kato a, Cindy Prins a,2, Karen Kelley b, Richard C. Condit c

a Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610-0266, USA
b Interdisciplinary Center for Biotechnology Research (ICBR) Electron Microscopy And Bio-Imaging Laboratory, University of Florida, Gainesville, FL, 32610-0266, USA

A R T I C L E   I N F O
Article history:
Received 9 November 2009
Returned to author for revision 20 December 2009
Accepted 15 January 2010
Available online 5 March 2010

Keywords:
Poxvirus
Vaccinia
ts
H5
DNA replication
Postreplicative gene transcription
Virion morphogenesis
Scaffold

A B S T R A C T
The vaccinia H5 protein has been implicated in several steps of virus replication including DNA synthesis, postreplicative gene transcription, and virion morphogenesis. Our recent mapping of mutants in the consolidated Condit-Dales collection identified a temperature-sensitive vaccinia mutant in the H5 gene (Dts57). We demonstrate here that Dts57 has a DNA negative phenotype, strongly suggesting a direct role for H5 in DNA replication. We used a temperature shift protocol to determine the impact of H5 temperature sensitivity on postreplicative gene expression and observed changes in the pattern of postreplicative viral mRNA metabolism consistent with a role of H5 in postreplicative transcription. Finally, using a rifampicin release temperature shift protocol, we show that H5 is involved in multiple steps of virion morphogenesis. These data demonstrate directly that H5 plays roles in DNA replication, transcription and morphogenesis in vivo.

© 2010 Elsevier Inc. All rights reserved.

Introduction
Poxviruses are large (~200 kb) double-stranded DNA viruses that replicate exclusively in the cytoplasm of the infected cell and encode their own nucleic acid metabolism machinery (Moss, 2007). The prototypical and therefore the best studied member of this family is vaccinia virus. Viral gene expression during vaccinia infection occurs in a temporal cascade that is regulated by several viral and host factors. Of the three classes of genes, early gene expression precedes viral DNA replication whereas intermediate and late (collectively termed postreplicative) gene transcription is coupled to and therefore occurs concomitantly with DNA replication. Early gene products are required for DNA replication and many of the postreplicative proteins are involved in virion morphogenesis. Notwithstanding this temporal regulation of gene expression, several viral proteins are expressed throughout the virus life cycle. Viral DNA replication, postreplicative transcription and virion assembly take place in discrete cytoplasmic sites termed virus factories. Virion assembly commences with formation of crescent shaped viral membrane structures within factories, followed by packaging of condensed viroplasm and DNA within the viral membranes to form spherical immature virions with nucleoids (IVN), and completed with proteolysis of major virion structural proteins and metamorphosis of the IVN into mature virions (MV) accompanied by transport of the MV out of the factory.

The vaccinia H5R gene has been implicated in virtually all phases of the virus life cycle, including DNA synthesis, postreplicative gene transcription, and virion morphogenesis. The H5R gene is present in all chordopoxviruses but only highly conserved in the orthopoxviruses and is absent from the entomopoxviruses. H5 is a 22.3 kDa phosphoprotein that is constitutively expressed in abundance during viral replication, localized in virus factories and packaged into virions (Rosel et al., 1986). H5 is phosphorylated by both viral kinases (F10 and B1) and cellular kinases but the pattern of phosphorylation is dynamic and temporally regulated (Beaud et al., 1995; Condit et al., 2006). Additionally, H5 is a nucleic acid binding protein with affinity for both DNA and RNA (Kay, N., Bainbridge, T, Condit, C, and D’Costa, S., unpublished results; (Beaud et al., 1995; Kovacs and Moss, 1996; Nowakowski et al., 1978). H5 has been shown to stimulate late transcription in vitro and it interacts with viral late transcription initiation (A2 and G8), elongation (G2) and termination (A18) factors.
suggested a role for H5 in postreplicative transcription (Kovacs and Moss, 1996; Dells et al., 2004; McCraith et al., 2000; Black et al., 1998). Importantly, an H5 mutant has been isolated which is resistant to isatin beta-thiosemicarbazone (IBT), an antivopivirus drug that is known to affect vaccinia postreplicative gene elongation (Cresawn and Condit, 2007), thus substantiating a role for H5 in postreplicative gene transcription. Additionally, biochemical analysis demonstrates that H5 is associated with endoribonuclease activity that processes at least two vaccinia late mRNAs, suggesting a role for H5 in late transcription termination (D’Costa et al., 2008). H5 also interacts with A20, the viral DNA replication processivity factor, and B1, a viral protein kinase required for viral DNA replication (Ishi and Moss, 2001; McCraith et al., 2000), implying a role for H5 in DNA replication. In order to confirm a role for H5 in DNA replication, DeMasi et al. engineered a ts mutant in H5R, tsH5-4, using clustered-charge to complementation group by itself (Lackner et al., 2003). In order to confirm a role for H5 in DNA replication, using a temperature shift protocol we show that postreplicative transcription is adversely affected in Dts57 infections. Finally, using a rifampicin release, temperature shift protocol, we show that functional H5 is required both for inclusion of virosoplasm into crescents as well as for maturation of IVs into MVs.

**Results**

**Marker rescue and DNA sequencing**

The temperature-sensitive mutant, Dts57, has been placed in a complementation group by itself (Lackner et al., 2003). In order to determine the gene to which it mapped, four rounds of marker rescue were carried out (Kato et al., 2008). Confluent monolayers of BSC40 cells were infected with Dts57 and transfected with DNA fragments PCR-amplified from wild-type vaccinia virus genomic DNA. The first round of marker rescue used pools of overlapping 20 kb fragments spanning the entire vaccinia virus genome (not shown), the second round resolved the map position to a single 20 kb fragment (not shown), the third round used overlapping 5 kb PCR products spanning the 20 kb region of the vaccinia genome that scored positive in round two and the last round resolved the map to a single gene contained within the 5 kb fragment that scored positive in round three (Fig. 1) (Kato et al., 2008; Luttge and Moyer, 2005; Yao and Evans, 2003). Marker rescue of Dts57 with individual ORFs in the 5-kb LM22 region indicated a rescue with the H5R gene (Fig. 1D). However, this signal was only weakly positive over background. Assuming that the mutation was close to the 5′ end of the H5R gene, this rescue was repeated with overlapping PCR products spanning two adjacent ORFs within the D1R–H7R region. A successful rescue was obtained with both the H4R–H5R and the H5R–H6R products with a stronger signal over background in the latter rescue, suggesting that the mutation was near the 3′ end of the H5R gene. The H5R gene from Dts57, WR, and IHDW was sequenced as described in Materials and methods. The H5R gene from IHDW was sequenced because it is the parent strain from which Dts57 was derived (Dales et al., 1978). In addition, the H5R gene from WR was sequenced to determine potential polymorphisms between these two wild-type strains routinely used in our laboratory. No polymorphisms were detected between the parental IHDW and WR strains (data not shown). In contrast there was one non-coding polymorphism in the H5R gene of these viruses compared to the published WR sequence. (The published WR sequence is from a different WR isolate than the WR isolate used in our laboratory (Condit and Motyczka, 1981)). Finally, Dts57 contained a single point mutation at nucleotide 566, resulting in an amino acid substitution from glycine to arginine at position 189 (G189R). The sequencing data are in good accordance with the marker rescue data and confirmed that the mutation was indeed near the 3′ end of the 203 codon H5R gene.

**Growth properties of Dts57**

The temperature sensitivity of Dts57 was ascertained by carrying out a one-step growth experiment. BSC-40 cell monolayers were infected with either wt IHDW or Dts57 virus at an moi of 10 at both 31 °C and 39.7 °C. At different times post infection, cells and media were harvested and the virus yield at each time was determined by a plaque assay performed at 31 °C (Fig. 2). IHDW grew normally at both 31 °C and 39.7 °C. Dts57 grew well at 31 °C but nevertheless grew slightly slower and reached slightly reduced titers compared to IHDW grown at 31 °C. Dts57 grown at 39.7 °C did not yield any infectious progeny confirming the temperature sensitivity of this mutant.

**Basic phenotypic characterization of Dts57**

Our preliminary analysis indicated that Dts57 was defective in DNA synthesis (see Fig. 5). This was a novel finding given that a previously engineered ts mutant in H5R had a morphogenesis phenotype (Demasi and Traktman, 2000). In order to confirm our findings and also compare these data with a known DNA negative mutant, all further phenotypic characterizations of Dts57 were done in tandem with a wild-type IHDW control and Dts20, a DNA negative mutant in the vaccinia DNA polymerase gene (ESR). Studies with both DNA replication inhibitors and with DNA replication mutations have demonstrated previously that late viral gene expression is coupled to viral DNA replication, that is, when viral DNA replication is prevented, postreplicative viral gene expression is inhibited and, presumably as a consequence, early viral gene expression is not shut off (Moss, 2007; Condit and Niles, 2002). Interestingly, McDonald et al. (1992) have shown using metabolic inhibitors and temperature-sensitive mutants that the gene expression patterns of at least some (DNA polymerase, D5, and B1 kinase) early genes are transient and unlinked to viral DNA replication and late gene expression. For the most part however, viral gene expression as measured by protein and RNA synthesis can be used to corroborate a DNA negative phenotype. Therefore, we assayed viral protein and RNA synthesis as a measure of overall gene expression in mutant infections. Monolayers of BSC40 cells were infected with either Dts57, IHDW, or Dts20 at an moi of 10 and incubated at either 31 °C or 39.7 °C for analysis of both protein and mRNA synthesis (Figs. 3 and 4). In order to analyze protein synthesis, at various times post infection, infected cells were pulse labeled for 30 min in media containing 35S-methionine and harvested in SDS-sample buffer. These samples were then fractionated on SDS-PAGE gels and analyzed by autoradiography. The time course of infection for Dts57 and Dts20 at 31 °C was indistinguishable from IHDW at both 31 °C and 39.7 °C, showing in each case a shutoff of host proteins and a temporal cascade of early, intermediate, and late protein expression (Fig. 3). At the non-permissive temperature, the protein expression patterns for both Dts57 and Dts20 were similar to each other and significantly different than permissive infections, showing a decrease in host protein shutoff, extended synthesis of early proteins, and a lack of late protein expression consistent with a DNA negative phenotype. However, unlike Dts57, early protein expression appears to decay in Dts20 infections at late times post infection. This phenotype has been observed earlier for other DNA polymerase mutants (Sridhar and Condit, 1983) but not for other DNA negative mutants.
For the analysis of mRNA synthesis, BSC40 cells infected with Dts57, Dts20, or IHDW were harvested at various times post infection and RNA was extracted. RNA samples were fractionated on formaldehyde-agarose gels, the fractionated RNA was transferred to nylon membranes and the membranes were hybridized with $^{32}$P-labeled riboprobe specific for either an early gene (C11R), an intermediate gene (G8R), or a late gene (F17R) (Fig. 4). For the wt infections (IHDW) at both temperatures, the early transcripts (C11R) peaked initially at 3 h p.i. followed by a second peak in synthesis later in infection either at 12 h p.i. (31 °C) or at 9 h p.i. (39.7 °C). This reactivation of early transcription has been previously observed for IHDW but not WR (Shatzer et al., 2008). At the permissive temperature, both Dts57 and Dts20 showed an initial peak of C11R transcripts at 3 h p.i. with a delay in the second peak of synthesis (15 h p.i.). Interestingly, at the non-permissive temperature, while C11R transcripts in the Dts57 infection peaked at 3 h p.i. and remained high for the remainder of the analysis, in Dts20 infections C11R transcripts decreased in amount to near background levels after the initial peak at 3 h p.i., consistent with the pattern of protein synthesis observed in Fig. 3. Thus Dts57 infections display the extended synthesis of early gene products typical of most inhibitors of DNA replication while Dts20 infections display the decay of early gene expression apparently unique to DNA polymerase mutants (Sridhar and Condit, 1983). For the intermediate gene, G8, a peak of RNA synthesis was observed at 6 h p.i. (or 3 h p.i. at 39.7 °C) for IHDW infections. In Dts57 and Dts20 infections, while the pattern of G8 transcription is similar to wt at the permissive temperature, there is merely a background level of transcription at the non-permissive temperature, confirming again the DNA negative phenotype of these mutants. Finally, for the late gene, a peak of F17 transcripts is observed at 9 h p.i. (6 h p.i. at 39.7 °C) in IHDW infections. In Dts57 and Dts20 infections, while the pattern of G8 transcription is similar to wt at the permissive temperature, there is merely a background level of transcription at the non-permissive temperature, consistent with a block in DNA replication.
Since H5 has been implicated in multiple steps of vaccinia virus replication including postreplicative transcription and viral morphogenesis, we were interested in analyzing events downstream of DNA replication in a Dts57 mutant infection. Because the late phase of infection is inhibited in the absence of DNA replication, we employed a temperature shift protocol to examine the effects of H5 temperature sensitivity on postreplicative gene expression. Cells were infected with either Dts57, IHDW, or Dts20 at both permissive and non-permissive temperatures. A subset of the cells incubated at the permissive temperature was then shifted up to the non-permissive temperature at 9 h p.i. once DNA replication and late gene expression were well underway. Samples were harvested at the various times indicated and analyzed for viral DNA, protein, and mRNA synthesis, virus yield, and H5 protein stability. Viral DNA synthesis was analyzed by slot blot hybridization of DNA in infected cell lysates to a radiolabeled vaccinia genome specific probe. Wild-type viral DNA replication proceeded normally in infections maintained at 31 °C and 39.7 °C or in infections shifted from 31 °C to 39.7 °C. Mutant infections demonstrated normal DNA synthesis at 31 °C and no DNA synthesis in infections maintained at 39.7 °C from the beginning of infection. DNA replication was abrogated upon shift up of Dts57 and Dts20 infections from the permissive to the non-permissive temperature, thus both mutants possess a DNA negative phenotype. Despite the interruption in DNA replication, protein pulse labelling indicated that normal levels of late proteins were synthesized in both Dts57 and Dts20 infections post shift up. Immunoblot analysis showed that the steady state level of mutant H5 synthesized in Dts57 infections did not change when compared with the control infections indicating that the mutant H5 protein is not destabilized by the temperature shift. Analysis of virus yield under conditions permissive for virus growth, that is 31 °C for Dts57 and Dts20 and 31 °C, 39.7 °C or shift up from 31 °C to 39.5 °C for IHDW, showed a 10–80 fold increase in virus titer at 24 h compared to 0 h, as expected. Mutant infections maintained at 39.7 °C showed no increase in titer at 24 h, also as expected. Shifting Dts20 infections from 31 °C to 39.7 °C resulted in a 6-fold increase in titer within 24 h, suggesting a partial inhibition of virus growth. However in Dts57 infections there was no increase in titer between 0 and 24 h in infections shifted from 31 °C to 39.7 °C. This suggests that H5 may be involved in events downstream of DNA replication.

In order to analyze the role of H5 in mRNA synthesis, RNA was harvested during the shift up experiment as described above, and northern blots were prepared and hybridized to riboprobes specific for three genes representative of each temporal class, early (C11R), intermediate (G8R) and late (F17R). Importantly, previous experiments demonstrating a coupling of viral DNA replication and postreplicative gene transcription have used protocols which block DNA replication from the outset of infection. Therefore, in addition to assessing the effect of H5 temperature sensitivity on postreplicative gene transcription, the temperature shift experiment done with a Dts20 control measures for the first time the impact on postreplicative transcription of interrupting ongoing viral DNA replication. For the C11R early gene, in both IHDW and Dts20 infections, shift up to the non-permissive temperature caused an increase in signal intensity at 12 h p.i. However, in the Dts57...
infection, a shift up to the non-permissive temperature resulted in a decrease in signal intensity for the C11R transcript. These results are contrary to expectations based on infections with Dts20 and Dts57 maintained at 39.7 °C from the beginning of the infection (Fig. 4), where C11R transcription decayed in Dts20 infections but not in Dts57 infections. One possible explanation for this observation is that reactivation of early transcripts, a key feature of viruses in the IHDW strain lineage, is defective in Dts57 infections. In the case of the intermediate G8R gene transcripts, an increase in signal followed by a plateau is observed upon temperature shift in IHDW infections. Conversely, in both Dts57 and Dts20 infections, there is a decrease in intensity of the G8 transcript suggesting a decay of intermediate transcripts. The decay of the G8R appears more dramatic and immediate in Dts57 infections as compared with Dts20 infections, suggesting that H5 may be directly involved in intermediate transcription. Finally, for the late, F17R gene transcripts, a homogenous F17R transcript is observed in IHDW infections. The homogeneity of F17R transcript is as a result of a post-transcriptional endoribonucleolytic event (D'Costa et al., 2004). H5 has been identified to be associated with the endoribonuclease activity that catalyzes this cleavage event in vitro (D'Costa et al., 2008). The intensity of the F17R transcript remains constant upon shift up and until the end of the time course in IHDW infections. Interestingly, in both Dts57 and Dts20 infections, this homogenous band decreases in intensity upon shift up. However, an interesting difference noted was the presence of a second, fairly homogenous, faster migrating band in Dts57 but not in Dts20 infections, suggesting that shorter than normal transcripts are produced in Dts57 infections. Importantly, the decrease in postreplicative transcription in the absence of DNA synthesis does not appear to correlate with the apparently normal protein synthesis pattern (Fig. 5B) observed for both Dts20 and Dts57 infections under the same conditions. Shatzer et al. (2008) observed a similar anomaly for capping enzyme (D1) mutant infections. Specific early genes were observed to be significantly decreased in expression even though a normal pattern of early protein synthesis was observed by protein pulse labelling. Thus metabolic labeling is not necessarily a reliable quantitative measure of mRNA metabolism. In summary, while subtle, the northern blots show that the phenotype observed for Dts57 infections is different from that seen for a classic DNA negative mutant and therefore suggest that H5 may play a direct role in vaccinia late transcription.

H5 is directly involved in virion morphogenesis

Previous phenotypic characterization of an engineered temperature-sensitive mutant in H5R, tsh5-4, revealed a defect early in virion morphogenesis characterized by the establishment of factories devoid of any normal virion precursors and the formation of malformed or “curdled” virosomes (Demasi and Traktman, 2000). Because H5 is also implicated in postreplicative transcription (D'Costa et al., 2008; Kovacs and Moss, 1996; Dellis et al., 2004; Ishii and Moss, 2001, 2002; Cresawn and Condit, 2007), the possibility exists that the phenotype observed for tsh5-4 is a pleiotropic effect resulting from a subtle defect in late transcription. In our temperature shift protocol, we observed a decrease in virus production in Dts57 infections compared to Dts20 infections that could be attributed either to a subtle defect in transcription or to a defect in morphogenesis (Fig. 5). Therefore, we were motivated to explore further a possible role for H5 in virion morphogenesis. We employed a rifampicin release, temperature shift protocol that has been used previously to elucidate the functions of several vaccinia proteins including A13, F10, and G7 (Mercer and Traktman, 2005; Unger and Traktman, 2004; Punjabi and Traktman, 2005). Rifampicin does not affect vaccinia viral gene expression but specifically arrests vaccinia virus morphogenesis by preventing formation of a viral D13 protein-containing scaffold on which viral membrane crescents are formed (Szajner et al., 2005). Rifampicin treated cells accumulate large virosomes that are surrounded with loose or flaccid membranes, together called rif bodies. Upon removal of rifampicin morphogenesis resumes within minutes. Therefore, rifampicin can be used to synchronize infections at a point where postreplicative gene expression is effectively complete but morphogenesis is just beginning. BSC40 monolayers were infected with either IHDW, Dts57, or tsh5-4 virus (moi = 10) at 31 °C in the presence of the drug rifampicin (Fig. 7). At 12 h p.i., cells were either harvested immediately or refed with media with and without rifampicin and incubated at the permissive temperature or shifted up to the non-permissive temperature for a further 24 h (36 h p.i.). At this time, the cells were processed either for determination of virus yield or for electron microscopy (Figs. 7A and 8). We chose 36 h p.i. as the time of harvest because Dts57 cultures maintained at 31 °C after Rif release (positive control) needed a longer time to recover from the Rif block. Since the rifampicin sensitive step precedes proteolytic processing of virion proteins, we also analyzed proteolytic processing using a pulse-chase protocol and immunoblot analyses (Figs. 7B, C). For pulse-chase analysis, cells were infected at the permissive
All three infections (wt IHDW and H5 mutants Dts57 and tsH5-4) maintained in the presence of rifampicin throughout infection showed background levels of virus yield (Fig. 7A, R31 and RS). In addition proteolytic processing of virion proteins was blocked (Figs. 7B and C) and rifampicin bodies accumulated (Fig. 8). When maintained at 31 °C without rifampicin from 12 to 36 h p.i., all three infections recovered from the rifampicin block yielding a 100–1000 fold increase in titer (5–50 pfu/cell) (Fig. 7A, RR/31). Additionally, these infections showed normal processing of key virion proteins.
using p4a, and preG7 as determined by both pulse-chase and immunoblot analyses (Figs. 7B and C). Finally, all the normal stages of morphogenesis with virosomes (v), crescents (cr), immature virions (IV) and a large number of mature virions (MV) were observed by electron microscopy (data not shown). In contrast, Dts57 infections that were released from the rifampicin block and shifted to 39.7 °C showed no increase in titer (Fig. 7A, RR/S), and no proteolytic processing of key virion proteins (Figs. 7B and C). Electron microscopy revealed that morphogenesis was arrested at the stage of IV formation (Fig. 8). We observed several examples of crescents “biting” off virosomes as well as several examples of normal looking IV, and some partially filled or dense IV. However, very few IVN and no MV were observed, suggesting that H5 is required for the maturation of immature to mature virions. By contrast, under conditions of rifampicin release and shift tsH5-4 appeared to have a partial arrest phenotype with a 20-fold (1 pfu/cell) increase in titer (Fig. 7A, RR/S). Pulse-chase analysis showed a defect in proteolytic processing and immunoblot analysis showed that neither p4a nor preG7 were processed under these conditions (Figs. 7B and C). Additionally, preG7 protein appears to be unstable in tsH5-4 but not in Dts57 infections under these conditions, consistent with previous results for this mutant (Mercer and Traktman, 2005). After rifampicin release and shift, the cytoplasm of tsH5-4 infected cells showed large areas of clearing with several crescents, empty IV and a few dense IV by electron microscopy (Fig. 8). Additionally, we observed several examples of “curled” virosomes (CV), a phenotype reminiscent of tsH5-4 infections maintained at the non-permissive temperature from the outset of infection (Demasi and Traktman, 2000). The tsH5-4 phenotype under rifampicin release, temperature shift conditions is also very similar to that observed for tsG7 under the same conditions (Mercer and Traktman, 2005). Thus, while both Dts57 and tsH5-4 appear to be arrested at the stage of IV formation, the phenotype is different, suggesting multiple points of execution during morphogenesis.

Discussion

Using a temperature-sensitive mutant of H5R, Dts57, we have established that H5 is involved in multiple aspects of virus replication in vivo. Specifically, we have shown that Dts57 is a DNA negative mutant demonstrating that H5 is directly involved in DNA replication. We have also demonstrated using a temperature shift protocol that H5 influences postreplicative gene transcription. Finally using a rifampicin release, temperature shift protocol, we have determined that H5 is required for at least two separate steps in virion morphogenesis. We have adopted a scaffold model (Condit et al., 2006; Mercer and Traktman, 2005) to explain the varied roles of H5 in a unified structural context, described below.

The scaffold model for H5 function is founded on the observation that H5 is an abundant protein that apparently self associates to form a complex. Using both yeast two hybrid analysis and co-immunoprecipitation, Dells et al. (2004) showed that H5 interacts with itself. We have shown previously that purified H5 (expressed either from vaccinia virus or as a recombinant protein in E. coli) elutes with a large molecular mass (∼400 kDa) on a gel filtration column (D’Costa et al., 2008). Analysis in silico predicts that the N-terminus of the H5 protein is highly disordered (D’Costa and Condit, unpublished observations). Disorder in protein structure is thought to facilitate interaction via induced fit with multiple binding partners (Romero et al., 2004). Thus we predict that H5 multimerizes via its C terminus to form a scaffold and mediates its activities through interaction with multiple binding partners through its N-terminus. The interaction of H5 with numerous proteins involved in DNA replication, transcription and assembly is well known as detailed below. H5 is also a nucleic acid binding protein with high affinity for both DNA and RNA (Kay, N., Bainbridge, T, Condit, C. and D’Costa, S., unpublished results; Beaud et al., 1995; Kovacs and Moss, 1996; Nowakowski et al., 1978). H5 is differentially phosphorylated during infection implying that the interaction of H5 with different binding partners during infection is regulated by phosphorylation (Beaud et al., 1994, 1995). Thus we envision the coupled processes of DNA replication and postreplicative gene transcription, and also morphogenesis, occurring on the H5 scaffold.

Previous experiments implicate H5 in DNA replication based solely on interactions between H5 and DNA replication proteins, specifically A20 and B1 (McCraith et al., 2000; Ishii and Moss, 2002). A20 is a DNA polymerase processivity factor that exists in a heterotrimeric replication complex along with the viral DNA polymerase (E9) and uracil DNA glycosylase (D4) (Stanitsa et al., 2006). Recently, Traktman et al. have observed that H5 co-purifies at near stoichiometric ratios with the overexpressed trimeric DNA replication complex (E9, A20, and D4), possibly via the interaction of H5 with A20 (P. Traktman, personal communication). B1 is a viral serine-threonine kinase required for DNA replication (Rempel and Traktman, 1992). Recently, it was determined that the primary if not the only role of the B1 kinase in viral DNA replication is to phosphorylate and thus inactivate BAF, a host protein involved in defending the cell against foreign DNA (Wiebe and Traktman, 2007). Interestingly, H5 is the only viral substrate for the B1 kinase (Beaud et al., 1994, 1995; Beaud and Beaud, 2000). We hypothesize that viral DNA replication takes place on the H5 scaffold, mediated by the binding of H5 to nucleic acid and/or A20. We speculate further that the phosphorylation of H5 by the B1 kinase may be required for the interaction of H5 with B1, localizing B1 to the site of DNA replication and thereby enabling the phosphorylation of BAF at the site of viral DNA replication in the cytoplasm of the infected cell. Our model thus hypothesizes direct roles for H5 in DNA replication, consistent with the DNA negative phenotype of Dts57.
Published data have argued for a role for H5 in virtually every step of postreplicative transcription: initiation, elongation, and termination. Specifically, as detailed in the Introduction, H5 interacts with late gene transcription initiation factors (A2 and G8) and stimulates late gene transcription in vitro; H5 interacts with a postreplicative gene transcription elongation factor (G2) and can be mutated to confer resistance to the elongation enhancing drug IBT; H5 interacts with the postreplicative gene transcription termination factor (A18); and H5 is associated with an endoribonuclease activity implicated in postreplicative gene transcription termination (Dellis et al., 2004; Black et al., 1998; Cresawn and Condit, 2007; D’Costa et al., 2008; Kovacs and Moss, 1996; McCraith et al., 2000). Inactivation of H5 via temperature shift in a Dts57 infection results in accelerated decay of postreplicative transcripts relative to a Dts20 infection, consistent with a defect in transcription initiation. In the same temperature shift experiment, we also observed a decrease in intensity of the normal homogenous 1.5 kb late F17 transcript and the appearance of a faster migrating homogenous band. These findings suggest that the lesion in Dts57 affects either H5 mediated mRNA processing or transcription elongation. Extracts prepared from Dts57-infected cells using the temperature shift protocol were cleavage competent in vitro (data not shown); suggesting that the mRNA processing function of Dts57 is...
intact. Therefore, we hypothesize that Dts57 is defective in transcription elongation, resulting in synthesis of F17 transcripts that are shorter than normal. This result is reminiscent of infections with mutants in other late gene elongation factors, J3 and G2 (Latner et al., 2000), where discrete 3′ truncated F17 transcripts were also observed. Thus the current study confirms that H5 mediates postreplicative transcription elongation and furthermore suggests that the elongation and mRNA processing functions of H5 are discrete. We suggest that the multiple roles of H5 in transcription are also mediated via an H5 scaffold, which can bind both the DNA template, the RNA product, and several key factors involved in all steps of postreplicative gene transcription.

Our own results combined with previous studies by Traktman and co-workers show that H5 is involved in multiple steps of virus morphogenesis including membrane biogenesis, encapsidation of viroplasm to form IVs, and maturation of IVs to MVs. In tsH5-4 infections maintained at the non-permissive temperature from the outset of infection, viral membrane biogenesis is completely blocked in a fashion similar to infections with mutants in the F10 kinase, suggesting that H5 phosphorylation by F10 or modulation of F10 activity by H5 may play a critical role early in virus assembly (Traktman et al., 1995; Wang and Shuman, 1995; Demasi and Traktman, 2000; Condit et al., 2006; Mercer and Traktman, 2005). We show here that H5 is also required for viroplasm encapsidation to form normal IVs. Specifically, in the rifampicin release temperature shift protocol, tsH5-4 infection results in accumulation of membrane crescents, empty IVs and curdled virosomes, a phenotype similar to that observed for tsA30 and tsG7 infections (Mercer and Traktman, 2005). A30, G7 and F10 are components of a “seven protein complex” that is thought to be responsible for targeting viroplasm to membrane

Fig. 8. H5 is required for IV formation and maturation of IV to MV. Cultures of BSC40 cells were infected with either wt (IHDW) or mutant (Dts57, tsH5-4) viruses at the 31 °C in the presence of rifampicin. At 12 h p.i., rifampicin was washed out of the cells and shifted up to the non-permissive temperature (SHIFT/RIF RELEASE; right column) or cells were maintained in rifampicin at the permissive temperature (RIF; left column) for an additional 24 h. Characteristic rifampicin bodies are seen in the left column. Arrows indicate flaccid membranes surrounding the virosomes; D DNA crystalloids. Top plate; right column: Normal intermediates of morphogenesis are observed in wt infections: viroplasm; IV immature virions; MV mature virions. Middle plate; right column: Dts57 infections cannot progress beyond IV formation: viroplasm; IV immature virions. Bottom plate; right column: tsH5-4 infections are arrested at IV formation. Clearing of the cytoplasm with empty IVs and crescents (arrow) were observed with curdled virosomes (CV) and few dense IVs in the periphery of the clearing.
crescents and encapsidation of viroplasm into IV (Szajner et al., 2004). Mercer and Traktman (2005) have shown that both the G7 and A30 proteins are unstable in a tsh5–4 infection, and we have observed destabilization of G7 in tsh5–4 infections following rifampicin release and temperature shift. Thus the block to viroplasm encapsidation may result from destabilization of the seven protein complex. Traktman and co-workers have suggested that H5 is a matrix protein upon which the seven protein complex forms and within which F10 can phosphorylate the other seven protein complex components (Mercer and Traktman, 2005). Likewise, we suggest that both membrane formation and the early stages of virion assembly including encapsidation of viroplasm takes place on and is facilitated by the H5 scaffold. Lastly, in the rifampicin release temperature shift protocol, Dts57 infection results in a block in formation of MV from IV. Mutants in a wide variety of vaccinia gene functions exhibit a similar block to MV formation (Condit et al., 2006). H5 is normally encapsidated into the virion and is probably required for proper formation of core substructures.

Materials and methods

Eukaryotic cells and viruses

BSC40 cells, wild-type vaccinia strains WR and IHDW, temperature-sensitive mutants tsh5–4, Dts57, and Dts20 and the conditions for their growth and infection have been described previously (Condit and Motyczka, 1981; Condit et al., 1983, 1996; Fuerst et al., 1986; Bayliss and Condit, 1995; Lackner et al., 2003; Demasi and Traktman, 2000; Dales et al., 1978). A permissive temperature of 31 °C and restrictive temperature of 39.7 °C was used for all virus infections. A multiplicity of infection of 10 (moi = 10) was used for all experiments unless otherwise denoted.

Marker rescue

One-step marker rescue was accomplished as described previously (Kato et al., 2007). Briefly, BSC40 cells in 60 mm dishes were infected with Dts57 for 1 h at 39.7 °C at an moi determined empirically by terminal dilution. After the adsorption period, the inoculum was aspirated, replaced with 4 ml of OPTI-MEM and transfected with 1.5 µg of the appropriate PCR product using Lipofectamine reagent (Invitrogen). Cells were incubated at the non-permissive temperature for 4 days and subsequently stained with crystal violet.

DNA sequence analysis

Total DNA was isolated from infected BSC40 cells using the Qiagen DNeasy miniprep kit for the isolation of DNA from cells in culture according to the manufacturer’s instructions. This DNA and two primers that hybridize just outside the open reading frame were used to amplify the entire H5 gene. Sequencing was performed by the University of Florida ICBR DNA Sequencing Core Laboratory.

Analysis of DNA replication

Analysis of viral DNA replication was carried out as described previously (Traktman and Boyle, 2004). Briefly, confluent 35 mm dishes of BSC40 cells were infected with wt and mutant viruses as indicated. At different times post infection, cells were harvested, washed once with PBS, and resuspended in 450 µl of buffer containing 10× SSC (1.5 M NaCl; 150 mM Na-citrate) and 1 M NH₄-acetate. Samples were subjected to three rounds of freeze–thawing and stored at −70 °C. Twenty-five micro liters of each well-vortexed sample was then applied to a nylon transfer membrane (Nytran Supercharge, Schleicher & Schuell) in a vacuum manifold (Minifold II, Schleicher & Schuell). While still in the blotting apparatus, the DNA on the membrane was denatured with a solution of 0.5 M NaOH/1.5 M NaCl and neutralized with 10× SSC. Hybridization was carried out at 42 °C with a randomly 32P-labeled (DECAprime II kit (Ambion)) vaccinia HindIII E fragment in buffer containing 6× SSC; 0.5% SDS; 5× Denhardt’s (0.1% BSA, Sigma, Fraction V), 0.1% PVP, 0.1% Ficoll 400 and 100 µg/ml single stranded salmon sperm DNA. After hybridization, the blots were washed three times in 2× SSC at room temperature followed by two washes at 55 °C with 0.2× SSC/0.1% SDS, and analyzed using a phosphor imager (Storm 860, GE Healthcare).

Analysis of RNA synthesis

Monolayers of BSC40 cells were infected with wt and mutant virus as indicated. At various times post infection, total RNA was isolated using the RNase kit (Qiagen) following the manufacturer’s directions. Two micrograms of each RNA sample in 10 µl was mixed with an equal volume of RNA sample loading buffer (Fermentas), denatured by incubating at 70 °C for 10 min and fractionated on a formaldehyde-agarose gel (1.2% agarose, 2.2 M formaldehyde in 1× MOPS buffer (20 mM MOPS: 5 mM sodium acetate, 1 mM EDTA, pH 7.0)). The gels were blotted and hybridized as described previously (Shatzer et al., 2008).

Metabolic labeling of viral proteins

BSC40 cell monolayers were infected with the indicated viruses. At the various times indicated, the cells were washed with methionine-free DMEM (Sigma) and pulse labeled with the same medium containing 50 µCi 35S-labeled cysteine and methionine (ProMix-GE Healthcare) for 30 min at the appropriate temperature. After the pulse, the cells were lysed in SDS-sample buffer (50 mM Tris–HCl, pH 6.8; 1% SDS; 10% glycerol; 140 mM 2-mercaptoethanol; 0.1% bromophenol blue), and analyzed by SDS-PAGE and autoradiography.

Immunoblot assay

Samples were resolved by SDS-PAGE and transferred electrochemically to nitrocellulose filters in transfer buffer (25 mM Tris, 192 mM glycine, 20% methanol). Filters were incubated with polyclonal antisera directed against H5 (1:20,000–1:40,000) (Demasi and Traktman, 2000), G7 (1:1000) or A10 (1:2000). Anti-A10 rabbit serum was provided by Dr. Mariano Esteban (CNB-CSIC, Spain), anti-H5 and anti-G7 rabbit sera were provided by Dr. Paula Traktman (Wisconsin Medical School). The bound primary antibody was then detected using a horseradish peroxidase-conjugated secondary antibody (anti-rabbit; 1:5000) and chemiluminescent reagents (GE Healthcare).

Shift up analysis

For the temperature shift analysis, 35-mm (virus yield, protein synthesis, and DNA synthesis) or 60-mm dishes (RNA synthesis) of confluent BSC40 cells were infected with wt and mutant viruses and incubated at 31 °C or 39.7 °C. At 9 h post infection, several dishes from each set of virus infection were shifted up to 39.7 °C. At various times post infection before and after the shift, cells were harvested for virus yield, DNA, RNA and protein synthesis as described elsewhere in Materials and methods.

Rifampicin release analysis

(i) Virus Yields. Monolayers of BSC40 cells (35 mm dishes) were infected with either IHDW, Dts57, or tsh5–4 in quadruplicate in the presence of 200 µg of rifampicin per ml at 31 °C for 12 h. At this time, two out of four plates from each set of infections were shifted to 39.7 °C, and the rest were maintained at 31 °C.
Furthermore, one plate from each set at each temperature was washed and resuspended in media lacking rifampicin, while the other dish was maintained in the presence of drug. The infection was then allowed to proceed for an additional 24 h, at which time, cells were harvested, and viral yield was determined by plaque assay. (ii) Transmission EM. A second set of three 60 mm dishes containing confluent BSC40 cells were infected and processed as described above for virus yields. At 12 h p.i., one dish from each virus infection was processed for EM as described below. The remaining two dishes were washed twice and resuspended in media devoid of rifampicin. One dish was then incubated at 31 °C and the other was shifted to 39.7 °C for another 24 h after infection. At 36 h p.i., cells were rinsed with cold 0.1 M sodium cacodylate and fixed in situ with 1% glutaraldehyde in 0.1 M sodium cacodylate containing 2 mM MgCl₂, 1 mM CaCl₂, and 0.25% NaCl, pH 7.24 at RT for 30–60 min before placing on ice. Electron microscopy was carried out at the University of Florida ICBR Electron Microscopy Core Laboratory. Briefly, fixed cells were buffer washed twice and scraped from the dish, centrifuged to pellet and encapsulated with 3% agarose type VII. Subsequent steps were processed with the aid of a Pelco BioWave laboratory microwave (Ted Pella, Redding, CA). Samples were washed in 0.1 M sodium cacodylate, post-fixed with 2% buffered osmium tetroxide, water washed and dehydrated in a graded ethanol series (25%, 50%, 75%, 95%, and 100%), and followed by 100% acetone. Dehydrated samples were infiltrated in graded acetone/Spurr epoxy resin and oven cured at 60 °C. Cured resin blocks were trimmed, thin sectioned and collected on formvar copper slot grids, post-stained with 2% aqueous uranyl acetate and Reynolds's lead citrate. Sections were examined with a Hitachi H-7000 TEM (Hitachi High Technologies America, Inc. Schaumburg, IL) and digital images acquired with Veleta camera and iTEM software (Olympus Soft-Imageing Solutions Corp, Lakewood, CO). (iii) Pulse-chase analysis. A third set of five 35 mm dishes of confluent BSC40 cells were infected in tandem with the infections carried out for virus yields. At 12 h p.i., the cells were washed with methionine-free DMEM and pulsed with the same medium containing 50 µCi/dish 35S-labeled cysteine and methionine (ProMix-GE Healthcare) for 30 min at 31 °C. Following the pulse, one of the five plates from each set of infections was washed once with PBS, and the cells were lysed in SDS-sample buffer. Two plates from each set were washed twice with DMEM containing rifampicin and 100 µg/ml methionine (+ RIF) and resuspended in the same media. The other two plates in each set were washed twice with DMEM containing rifampicin and 100 µg/ml methionine (− RIF) and resuspended in the same media. One plate from each subset (+ RIF and − RIF) was shifted to 39.7 °C, and the other plate was maintained at 31 °C. The infection was then allowed to proceed for an additional 24 h, at which time, cells were washed once with PBS, lysed in SDS-sample buffer, harvested and analyzed by SDS-PAGE and autoradiography.

Acknowledgments

We thank Dr. Paula Traktman for tsH5-4 and the anti-H5 and anti-G7 antibodies, Dr. Mariano Esteban for the anti-A10 antibody and Dr. Bernard Moss for help with rifampicin. This work was supported by grant RO1 18094 to RCC from the National Institutes of Health.

References


