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Targeting the mTOR pathway in hepatocellular carcinoma:
Current state and future trends
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Summary

Mechanistic target of rapamycin (mTOR) regulates cell growth,
metabolism and aging in response to nutrients, cellular energy
stage and growth factors. mTOR is frequently up-regulated in
cancer including hepatocellular carcinoma (HCC) and is associ-
ated with bad prognosis, poorly differentiated tumors, and earlier
recurrence. Blocking mTOR with rapamycin and first generation
mTOR inhibitors, called rapalogs, has shown promising reduction
of HCC tumor growth in preclinical models. Currently, rapamy-
cin/rapalogs are used in several clinical trials for the treatment
of advanced HCC, and as adjuvant therapy in HCC patients after
liver transplantation and TACE. A second generation of mTOR
pathway inhibitors has been developed recently and is being
tested in various clinical trials of solid cancers, and has been used
in preclinical HCC models. The results of series of clinical trials
using mTOR inhibitors in HCC treatment will emerge in the near
future.
Published by Elsevier B.V. on behalf of the European Association
for the Study of the Liver. Open access under CC BY-NC-ND license.
Introduction

Target of rapamycin (TOR) is an evolutionary well conserved ser-
ine/threonine protein kinase that belongs to the phosphoinositide
3-kinase (PI3K)-related kinase family. Mechanistic TOR (mTOR;
originally called mammalian TOR) has a broad range of action
and is involved in regulation of cell growth, aging and metabo-
lism [1]. mTOR can be divided into two structurally and function-
ally distinct complexes named mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2) [1]. mTORC1 is composed of mTOR,
mLST8, DEPTOR, RAPTOR, and PRAS40. mTORC2 consists of
mTOR, mLST8, DEPTOR, PROTOR, RICTOR, and mSIN1 [1].
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mTORC1 is a nutrient and energy sensor at both cellular and
whole-body levels [2]. When nutrients are available, mTORC1 is
activated and stimulates anabolic processes such as protein syn-
thesis, lipogenesis, and energy metabolism, whereas autophagy
and lysosome biogenesis is inhibited [1] (for more details see
Fig. 1). mTORC1 is activated by a myriad of inputs such as growth
factors, energy status, proinflammatory cytokines, oxygen levels,
amino acids, and the canonical Wnt pathway [1] (Fig. 1). Growth
factors, e.g., insulin and insulin-like growth factor 1 (IGF1), exert
their action on mTORC1 through receptor tyrosine kinases (RTK)
and the well-characterized PI3K-AKT and Ras-Raf-Mek-Erk sig-
naling pathways. These pathways activate mTORC1 by phosphor-
ylating and thereby inhibiting the tumor suppressor TSC1-TSC2
(tuberous sclerosis 1 and 2) complex. The TSC1-TSC2 complex
is a key regulator of mTORC1 and functions as a GTPase-activat-
ing protein (GAP) that negatively regulates Rheb by converting it
into its inactive GDP-bound state [3,4]. In contrast, down-regula-
tion of mTORC1, is accomplished via activation of the TSC1-TSC2
complex by AMPK, LKB1, and REDD1 in situations of low energy
(high AMP), low oxygen levels [5], and DNA damage [6].

Much less is known about the later discovered mTORC2 sig-
naling pathway. mTORC2 is insensitive to nutrients but does
respond to growth factors such as insulin in association with
ribosomes [7]. Besides its initial described role in actin cytoskel-
eton organization, mTORC2 also activates cell metabolism, sur-
vival, and growth. mTORC2-ribosome interaction is a likely
conserved mechanism of mTORC2 activation that is physiologi-
cally relevant in both normal and cancer cells.
Involvement of mTOR pathway in hepatocellular carcinoma
(HCC)

Given its importance in cell growth and metabolism it is not sur-
prising that mTOR plays a pivotal role in HCC. mTORC1 and
mTORC2 pathways, including pRPS6, p-AKT, IGF-1R, and RICTOR
are up-regulated in 40–50% of HCCs [8–10]. A similar upregulation
is observed in other common cancer types such as breast, colon,
and lung carcinomas [11]. Moreover an up-regulation is frequently
observed in cholangiocarcinoma, the second most common pri-
mary cancer of the liver [12]. Activation of the mTOR pathway in
HCC is associated with less differentiated tumors, bad prognosis,
and earlier recurrence independently of the underlying etiology
of liver cancer [9,13,14]. Furthermore, it is associated with
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Fig. 1. Schematic overview of the mTOR signaling pathway with the most important factors and their action.
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deregulation of EGF, IGF, and PTEN pathways [9] and, as expected,
with increased lipogenesis in the tumor [15]. Surprisingly, altera-
tions in copy number or somatic mutations of PTEN, PIK3CA, and
PIK3B were not identified as major mechanisms of mTOR pathway
deregulation in HCC by PCR [9]. In accordance, more recent studies
using next-generation sequencing technique revealed a low fre-
quency of mutations in the mTOR pathway including mTOR,
PIK3CA, and PTEN among others [16–18]. The most frequently
mutated gene, found in one study in 9.6% of HCC was RPS6KA3, a
serine/threonine kinase involved in regulating PI3K/RAS signaling
[16]. Therefore, mutations in the mTOR pathway is a rare event in
HCC and activation of the mTOR pathway appears to result largely
from ligand dependent receptor activation.

Genomic studies in the past have identified multiple molecular
classifications of HCC and demonstrated deregulated signaling
pathways unique to subgroups of patients [19–24]. These studies
indicated that the mTOR pathway and its upstream pathways
PI3K and AKT occupy a central position in the network of deregu-
lated signaling pathways in HCC. With the specific aim to identify
driver genes associated with HCC prognosis, we have used an inte-
grative approach combining data obtained from somatic copy
number analysis and transcriptomics [25]. Fifty driver genes were
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recognized and were linked to the mTOR, AMPK or EGFR path-
ways. In the molecular HCC classification by Boyault et al., 6
robust subgroups (G1-G6) were identified and the G1/G2 sub-
group showed AKT activation with overexpression of IGF2, IGF1R,
and GSK3b as well as PIK3CA, and AXIN1 mutations [19]. The G1/G2
patient subgroup was further confirmed in a large meta-analysis
using integrative transcriptomics of 9 HCC data sets including a
total of 603 patients [26]. This analysis assigned the patients into
three subclasses (S1-S3), and the G1/G2 subgroup was enriched in
the subclass S2, characterized again by activation of the upstream
regulator of mTOR, AKT, in combination with MYC.

Taken together, activation of mTOR plays a central role in HCC
and blocking this pathway is an attractive strategy for HCC treat-
ment. The main goal of this review is to offer the rationale for the
use of mTOR inhibitors in HCC and provide an overview of the cur-
rent and prospective clinical trials with mTOR inhibitors in HCC.
Rapamycin and first generation mTOR inhibitors

mTOR is targeted by rapamycin, a natural compound discovered
from the bacterium Streptomyces hygroscopius more than 30 years
4 vol. 60 j 855–865
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ago. The two mTOR-containing complexes have different sensitiv-
ities to rapamycin. mTORC1 is inhibited by a complex formed by
rapamycin and FKBP12 protein [27]. In contrast, mTORC2 is gener-
ally resistant to rapamycin, however, in certain cell types, mTORC2
may show sensitivity after prolonged rapamycin treatment [28].
Rapamycin (sirolimus) was first approved as an immunosuppres-
sant for the prevention of graft rejection in kidney transplant
recipients more than a decade ago [2]. A few years later rapamycin
obtained approval for its use as an anti-restenosis agent following
balloon angioplasty in coronary arterial stents. The early success of
rapamycin has encouraged the development of derivative com-
pounds with improved bioavailability, called rapalogs: everolimus
(RAD001), temsirolimus (CCI-779), and deforolimus (AP23573).
Due to the important role of mTOR in cell growth and metabolism
the primary interest shifted to anti-cancer therapy, and in 2007
temsirolimus (CCI-779) was approved for the treatment of renal
cell carcinoma and shortly thereafter for mantle cell lymphoma.
Meanwhile, everolimus (RAD001), has received approval for treat-
ment of pancreatic neuroendocrine tumours, subependymal giant
cell astrocytoma, renal cell carcinoma, and HER2-negative breast
cancer in combination with Exemestane.

In general, first generation mTOR inhibitors are well tolerated.
The major toxicities include, stomatitis, headache, diarrhea, vom-
iting, and thrombocytopenia. Due to their role in metabolism they
can cause hyperglycemia, hyperlipidemia, and hypophosphate-
mia. As for every immunosuppressive drug, the risk for infections
is increased. Furthermore, reactivation of HBV is a serious compli-
cation and has been described in renal cell carcinoma patients
under everolimus treatment [29,30]. EASL Clinical practice Guide-
lines recommend, in which situation patients undergoing immu-
nosuppressive therapy should receive prophylactic treatment
against HBV-reactivation with a nucleoside analogue [31].

Currently, neither rapamycin nor rapalogs have gained
approval for HCC treatment. However, several clinical trials are
ongoing or have recently been completed using rapamycin/rapa-
logs for the treatment of advanced HCC and as adjuvant therapy
after transarterial chemoembolization (TACE) or after liver trans-
plantation of HCC patients. Furthermore, several studies suggest
that mTOR inhibition may even prevent HCC development in
patients at risk. The application of mTOR inhibitors in these dif-
ferent settings will be discussed in more detail.

Prevention of liver cancer by mTOR inhibition

Several studies indicate that mTOR activation is involved in the
initiation of liver cancer and plays a role in the malignant transi-
tion of hepatocytes to HCC. A gradual activation of the AKT/mTOR
pathway was progressively induced from non-tumorous liver tis-
sue toward the HCC thus supporting this concept [15]. Interest-
ingly, increased mTOR activity conferred a preneoplastic
phenotype to HepaRG, considered a terminally differentiated
hepatic cell line [32]. Also, treatment with mTOR inhibitor everol-
imus prevented proliferation of hepatocytes suffering DNA dam-
age in the fumarylacetoacetate hydrolase-deficient mouse model
of chronic liver injury and HCC development [33]. In transgenic
mice, mTOR activation by itself was shown to be sufficient for
HCC development. Two independent studies analyzed liver-spe-
cific knockout of TSC1 and the resulting chronic activation of
mTOR [34,35]. Both studies demonstrated the development of
liver tumors, however, only one was associated with inflammation
[34]. Likewise constant activation of mTOR in PTEN-deficient mice
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induced steatohepatitis and development of liver tumors [36].
mTOR inhibitors may also prevent HCC indirectly by reducing liver
fibrosis, a risk factor for the development of HCC. Studies in rats
have demonstrated that sirolimus and everolimus attenuated pro-
gression of fibrosis, in contrast to cyclosporine A and tacrolimus,
two other immunosuppressive drugs [37,38].

Randomized prospective clinical trials have not been con-
ducted to address the question if mTOR inhibitors prevent HCC.
The evidence suggesting a potential HCC prevention is solely
derived from epidemiological studies with metformin, a widely
used anti-diabetic drug that reduces mTOR activity but impor-
tantly also ameliorates hyperinsulinemia, which is a risk factor
for HCC [39]. Metformin activates AMPK, which in turn sup-
presses the mTORC1 pathway (Fig. 2) [40]. A recent study showed
that metformin controlled gene expression at the level of mRNA
translation to an extent comparable to that of canonical mTOR
inhibitors and down regulated mRNAs, which encode for prolifer-
ation and tumor-promoting proteins via the mTORC1/4E-BP
pathway [41]. In addition, it was shown that metformin inhibited
mTORC1 signaling independently of AMPK by suppressing Rag
GTPase or activating REDD1 [42,43]. A meta-analysis, including
5 clinical studies with more than 100,000 type 2 diabetes patients
has been performed lately [44]. This study showed an overall
estimated 62% reduction in the risk of liver cancer if metformin
was used as an anti-diabetic treatment instead of non-metformin
treatment (e.g., sulfonylurea or insulin). Although there was con-
siderable heterogeneity between the studies, the results are
encouraging. Preventive clinical trials with metformin are already
underway for different cancer types such as breast cancer, colon
cancer, and esophagus cancer, however, for HCC they are lacking.
Information of the potential preventive mechanism(s) of metfor-
min on liver cancer is also limited. Recently, it was shown in vitro
and in vivo, that metformin inhibited HCC cell growth through
AMPK and LKB1 [45,46]. Further elucidation of this mechanism(s)
and defining criteria that identify individuals which are likely to
benefit are therefore needed. Nevertheless, it has to be kept in
mind that a few studies have shown that metformin can have
tumor-promoting effects. Metformin enhanced growth of BRAF-
mutant melanoma cells and ER-alpha negative breast cancer cell
lines in vivo [47,48]. Likewise, migration and invasion abilities of
human pulmonary adenocarcinoma A549 cell lines increased
under metformin treatment in vitro [49].

Prevention of HCC by metformin and mTOR inhibitors may also
involve autophagy, an important homeostatic cellular recycling
mechanism, which has a dual role in carcinogenesis. Autophagy
is important in limiting DNA damage caused by the accumulation
of reactive oxygen species and damaged organelles through
removal of dysfunctional proteins and organelles [50]. Especially
in the context of HCC development, which arises in 80% of the cases
in the background of a chronic liver inflammation with constant
DNA damage, induction of autophagy by mTOR inhibitors may pre-
vent HCC development and recurrence. In contrast, increased
autophagy may promote tumor growth, especially once tumor is
established, as autophagy is also a pro-survival mechanism to cel-
lular stress and further enhances chemoresistance [50,51].

Adjuvant therapy with mTOR inhibitors after liver transplantation or
TACE

For patients with non-resectable HCC and early stage disease,
liver transplantation is recognized as the treatment of choice,
4 vol. 60 j 855–865 857
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with disease-free survival of 60–80% at 5 years [52]. Immuno-
suppressants, such as cyclosporine A, tacrolimus, and rapamycin
are crucial for the prevention of graft rejection after transplan-
tation. However, cyclosporine A and tacrolimus are known to
induce tumor growth in preclinical studies [53,54]. On the con-
trary, rapamycin has additional anticancer function. Accordingly,
a meta-analysis of 5 studies with a total of almost 3000 patients
indicated that survival is significantly prolonged after liver
transplantation of HCC patients if sirolimus is administered
instead of non-sirolimus immunosuppressives [55]. Although
these results indicate that sirolimus should be used as treat-
ment of choice after liver transplantation of HCC patients, it
has to be noted that none of the clinical studies conducted so
far were randomized. Additional information regarding the effi-
cacy of sirolimus to improve survival and prevent recurrence
should be provided by three ongoing randomized controlled
studies (Table 1). The largest trial is a multicenter, phase III
study with over 500 patients (SiLVER) comparing sirolimus-
based vs. sirolimus-free immunosuppression in patients under-
going liver transplantation for HCC. However, results are not
expected before 2014.
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TACE is the treatment of choice for intermediate HCC patients
[52]. Following TACE treatment the levels of vascular endothelial
growth factor (VEGF) have been shown to increase. VEGF pro-
motes angiogenesis and is associated with bad prognosis. There-
fore, TACE has been combined in clinical trials with other drugs
that inhibit angiogenesis such as sorafenib, brivanib, or orantinib.
Interestingly, everolimus has also been shown to reduce vessel
formation in preclinical HCC models [56] and two ongoing clini-
cal trials are evaluating the effect of TACE in combination with
everolimus (Table 1).

mTOR inhibition in advanced HCC

Sorafenib is the only approved drug for HCC treatment [57,58].
However, the treatment effects are small, only selected patients
are eligible for therapy, and side effects often limit applicability.
Therefore, developing novel and effective therapies are urgently
needed. Rapalogs have been shown to inhibit liver tumor
growth in a large number of in vitro and in vivo pre-clinical
studies [59] and have encouraged clinical trials in HCC patients
(Table 1, information retrieved form www.clinicaltrials.gov).
4 vol. 60 j 855–865
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Table 1. Summary of completed and ongoing clinical trials with first generation mTOR inhibitors in HCC.
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(NCT00355862, SiLVER)
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220 Exceeding 
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III n.a. R Recruiting 
(NCT00554125)
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Sirolimus 21 I to IV (TNM) Pilot A, B, C NR Completed [63]. 1 PR. Dose determined by 
plasma level. Median dose = 1 mg/d 

Sirolimus 18 B, C, D 
(BCLC)

Pilot A, B, C NR Completed [62]. No objective response. 
Administration twice daily. Dose determined by 
plasma level. 

Sirolimus 25 B or C 
(BCLC)

II A, B NR Completed [64]. 1 CR and 1 PR. 
Dose = 30 mg/wk 

Temsirolimus 50 Advanced II B NR Terminated: toxic events
(NCT01079767)
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Everolimus 28 B or C 
(BCLC)

I/II A, B NR Completed [60]. 1 PR. MTD = 10 mg/d 

Everolimus 39 C (BCLC) I/II A, B R Completed [61]. 1 PR. MTD = 7.5 mg/d or 70 
mg/wk. DLT not reached for weekly schedule 
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Everolimus 546 Advanced III A R Completed, not yet published, failed to 
demonstrate efficacy compared to placebo
(NCT01035229, EVOLVE)

Temsirolimus 50 Advanced I/II A NR Active, not recruiting (NCT01251458)

Temsirolimus 25 Advanced II A, B (≤9) NR Recruiting (NCT01567930)
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Sorafenib and 
temsirolimus 25 III, IV (TNM) I A, B (≤7) NR Completed [70]. 2 PR; MTD = temsirolimus 

10 mg/wk + sorafenib 200 mg twice daily 
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Sorafenib ± 
everolimus

130 Advanced I/II A NR Terminated: everolimus MTD too low
(NCT00828594)

Sorafenib ± 
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(BCLC) II A, B (≤7) R Active, not recruiting (NCT01005199)

Sorafenib and 
everolimus 25 III, IV (TNM) I A, B (≤7) NR Active, not recruiting (NCT01013519)
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(TNM) II A, B (≤7) NR Recruiting (NCT01687673)
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Everolimus + 
bevacizumab 33 B or C 

(BCLC) I/II A, B NR Completed. Not yet published (NCT00775073)

Sirolimus + 
bevacizumab 24 B or C 

(BCLC) I A, B NR Completed [69] 1 CR and 2 PR. MTD = 4 mg/d 

Sorafenib and 
everolimus 18 Advanced I/II A, B (≤8) NR Unknown (NCT01335074)

Everolimus 
and pasire-
otide

30 C (BCLC) II A NR Recruiting (NCT01488487)
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Two phase I/II dose-finding studies of 39 and 28 patients have
been completed, using everolimus as a first and second line sin-
gle agent and resulted in dose recommendations of 7.5 mg/day
and 10 mg/day respectively [60,61]. In both studies, complete
response was not observed, however, one HCC patient in each
study showed a partial response, and stable disease was
observed for a short time in 71.4% and 40% of the patients.
Three earlier clinical studies with 18 to 25 patients using rapa-
mycin as a first line single agent provided interesting results
with partial responses and even one complete response; how-
ever, the differences in treatment schedule prevent any firm
conclusions [62–64]. Overall, these preliminary results using
rapamycin/rapalogs are encouraging; however, further studies
with more patients are needed. Besides, one study using temsi-
rolimus as a first line agent had to be terminated due to toxic
events. The recent negative outcome of a multicenter random-
ized, double blind, phase III study dashed the hope to use mTOR
inhibitors as a second line therapy for advanced HCC patients
(press release). This study investigated the effect of everolimus
or placebo in 546 patients with Child-Pugh A cirrhosis, whose
disease progressed after treatment with or who were intolerant
to sorafenib. It will be interesting to see if two other phase I/II
studies using temsirolimus as a second line single agent obtain
similar negative results.

Because of resistance and compensatory activation of other
signaling pathways the effect of rapalogs can be diminished.
For example, after treatment with everolimus, an upregulation
of MAPK was shown in tumor samples from breast cancer
patients [65]. As anticipated, combination of mTOR inhibition
with a MAPK inhibitor (sorafenib) showed enhanced anti-
tumoral effect in vitro and in vivo in cancer models including
HCC [65–68]. A combinatorial approach is currently performed
in 9 clinical trials (Table 1). Rapalogs or rapamycin is comple-
mented with multikinase inhibitor sorafenib, with VEGF inhibitor
bevacizumab or with pasireotide, a somatostatin analog, which
has been shown to inhibit tumor growth. Two phase I combina-
tion studies have been published recently [69,70]. A combination
of temsirolimus with sorafenib at the maximal tolerated dose
(MTD; temsirolimus 10 mg weekly and sorafenib 200 mg twice
daily), showed a partial response in 8% of the patients and a sta-
ble disease in 60% [70]. Although these results in 25 patients are
promising, the median progression free survival was only
5.65 months, which is similar to outcomes from single agent
sorafenib in the SHARP trial, though superior to outcomes
observed in an Asia-Pacific clinical trial [57,58]. In addition, a
phase I study with rapamycin and bevacizumab of 24 patients
at MTD (rapamycin 4 mg/day and bevacizumab 5 mg/kg every
14 days), reported a remarkable complete response in one patient
that lasted 4.5 months, partial response in two patients, and sta-
ble disease in 14 patients [69]. The ongoing clinical trials in phase
I or II will reveal if a combinatorial approach improves efficacy in
HCC treatment. The combination of drugs is certainly attractive,
however, one drawback is that toxicities may increase, especially
in cirrhotic patients and prevent that an efficacious dose can be
applied. It is therefore important to perform pharmacokinetic
Recruiting: The study is currently recruiting participants.
Active not recruiting: The study is ongoing but potential participants are not currently
Completed: The study has ended normally, and participants are no longer being examin
Terminated: The study has stopped recruiting participants early and will not start again
PR, partial response; CR, complete response; n.a., not available; R, randomized; NR, not
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studies in future clinical trials with dose escalation of both drugs
(e.g., sorafenib and rapalogs), especially in cirrhotic patients.
Second generation mTOR inhibitors

We are currently awaiting the results of several clinical trials
using rapalogs in HCC treatment; however, the success of rapa-
logs in cancer therapy in general has not been as impressive as
initially hoped. Several possible reasons may account for the lim-
ited action of rapalogs. First, mTORC1 inhibition abrogates the
negative feedback loop, which in turn activates PI3K-AKT with
MAPK and RAS signaling and therefore may actually increase
growth of cancer cells [65]. Second, blocking of mTORC1 primar-
ily leads to inhibition of cell growth and not cell death. Third,
mTOR inhibition by rapalogs mainly results in inhibition of S6K,
however, the second key substrate, 4E-BP1, is only insufficiently
blocked [71]. Finally, rapalogs do not inhibit mTORC2, which is
often activated as part of the PI3K-mTORC2-AKT signaling axis
[2]. In order to overcome the shortcomings and resistance of rap-
alogs a second generation of mTOR inhibitors has been developed
that functions as ATP-competitive inhibitors of mTOR and has
several advantages over rapalogs. Unlike rapalogs, which inhibit
only mTORC1, the ATP analogues block the phosphorylation of
all known downstream targets of mTORC1 and mTORC2. Further-
more, because of the similarity between the kinase domains of
mTOR and PI3Ks, some of these new compounds additionally
inhibit PI3K, leading to a broad inhibitory action with blocking
of the feedback activation of PI3K-AKT signaling described before.
Second generation mTOR inhibitors can therefore be divided into
mTORC1/2 inhibitors and mTOR/PI3K inhibitors (Fig. 2). In addi-
tion, a series of compounds have been developed that block
upstream of the mTOR pathway such as AKT inhibitors and
PI3K inhibitors.

Translational genomics and development of second generation mTOR
inhibitors

Translational genomic analyses have been used to investigate the
resistance to rapamycin. Jimenez et al. [72] investigated rapamy-
cin sensitivity or resistance in 13 HCC cell lines using
drug-induced growth inhibition as the end point. The authors
concluded that promoting or even maintaining effective drug
sensitivity might be challenging, because of the molecular heter-
ogeneity observed in the genomic profiles introduced in response
to rapamycin, as well as determining (a) specific mechanism(s) of
drug resistance. Furthermore, although the sensitivity to rapamy-
cin was variable in all cell lines, the drug inhibited the phosphor-
ylation of RPS6 and 4E-BP1, indicating that S6 and 4E-BP1
phosphorylation is not a useful marker for the antiproliferative
effect of mTOR inhibitors. Interestingly, in an attempt to identify
rapamycin sensitive genes a later study determined that many of
the genes whose expression is altered by rapamycin are E-box
containing and their regulation via mTOR was c-MYC indepen-
dent [73]. Since the mTOR pathway is constitutively activated
recruited.
ed or treated.
.
randomized; MTD, maximal tolerated dose; DLT, dose limiting toxicity.
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in a majority of diffuse large B-cell lymphoma this is an interest-
ing disease model to study resistance mechanisms to mTOR
inhibitors and to identify drugs, which may compliment the
action of rapamycin [74]. The authors compared the genomic sig-
natures of 4 rapamycin sensitive and 4 resistant cell lines, and
found that the central mechanism involved in the resistance to
rapamycin was controlled by AKT. Using the genomic signatures
to explore the Connectivity Map database to identify drugs which
may reverse drug resistance, PI3K/AKT and HDAC inhibitors were
the most likely candidates to synergize with an mTOR inhibitor.
Resistance mechanisms to rapamycin and its derivates also
include epigenome based reprogramming (e.g., miRs). Long-term
rapamycin treatment results in an increase of the miR-17-92
cluster and inhibition of this change restored the drug sensitivity
[75]. Likewise, in HCC the miR-216a/217 cluster is frequently
upregulated, resulted in activation of the PI3K/AKT pathway
and importantly resistance to sorafenib [76].

Preclinical studies of second mTOR, AKT, and PI3K inhibitors in HCC

Several preclinical studies with second generation mTOR, AKT, and
PI3K inhibitors were performed in HCC cell lines [77–79], HCC
xenograft mouse model [77,79], DEN-mouse HCC model [80] and
in a diabetic rat model of HCC [81]. These studies have demon-
strated that the second generation inhibitors were able to control
HCC proliferation better than everolimus or sirolimus. It has also
been demonstrated that combination of a PI3K inhibitor
(BKM120) with cisplatin [77] or a PI3K/mTOR dual inhibitor
(BEZ235) with everolimus [80] could act synergistically with
strong antitumor activity. The two drugs, everolimus and BEZ235
exerted tumor regression via inhibition of mTORC1 and mTORC2.
This combined drug-effect was associated with an increase in
autophagy independent of 4E-BP1. At low doses both drugs tar-
geted mTORC1, however, inhibition of mTORC2 was enhanced by
the drug combination. The cooperative drug-effect was further evi-
dent from the microarray analysis identifying a distinct set of
genes, suggesting a phenotypic reversal similar to placebo-treated
livers. Also, only the drug combination achieved significant inhibi-
tion of genes involved in cell cycle. These results have prompted a
dose finding and a safety clinical trial of BEZ235 in combination
with everolimus in patients with advanced solid tumors.

Moreover, promising results may be expected from the com-
bination of second generation mTOR, AKT or PI3K inhibitors with
other drugs. This may be particularly important in cases of
sorafenib resistance, which was recently demonstrated in a can-
cer stem cell subpopulation of HCC cells (i.e., label-retaining can-
cer cells), demonstrating sustained AKT and MAPK activation
[82]. Also, in a study comparing the HCC cell line HuH7 and
sorafenib resistance HuH7 derivatives, the molecular alteration
related to the acquired drug resistance included upregulation
and activation of PI3K/AKT signaling [83]. The sorafenib
resistance was overcome by either silencing AKT using RNAi or
targeting the pathway using the novel allosteric AKT inhibitor
(MK-2206). In agreement, the PI3K/mTOR inhibitors (PI103 and
PKI-587) also augment the effect of sorafenib [84,85]. Similarly,
a recent study suggested that second-generation inhibitors (e.g.,
mTOR (AZD-8055), PI3K (BKM-120) or mTOR/PI3K (BEZ-235
and GDC-0980)) may be effective in sorafenib resistant HCC
[86]. It should be noted that this study unfortunately was per-
formed in SK-HEP1 and its drug-resistant derivative (SK-Sora),
which are derived from an HCC patient with ascites but are of
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endothelial origin. The combination of everolimus together with
an AKT inhibitor (MK-2206), mTOR/PI3K inhibitor (BEZ235) or
PI3K inhibitor (BKM120) showed improved anti-tumoral activity
[77,78,80]. Further, improved efficacy was also achieved in vitro
and in vivo with novel ATP-competitive mTOR kinase inhibitors
together with histone deacetylase inhibitors [87].

First results of clinical trials with new mTOR pathway inhibitors

The results of several phase 1 clinical trials in advanced cancer
(all types) are now available with this new generation of mTOR
inhibitors. A phase 1 clinical trial with patients suffering from
solid tumors and lymphoma using pan-mTOR inhibitor
AZD8055 [88], demonstrated dose limiting toxicities (DLT) of
grade 3 with an increase in transaminases and no RECIST objec-
tive response [88]. Accordingly, AZD8055 will not be further
tested. It is interesting to note that altered liver function was
not described with mTOR inhibitors such as temsirolimus or
everolimus. It will be important to see if other pan-mTOR inhib-
itors such as OSI-027, AZD2014, INK128 or CC223 also alter liver
function.

Likewise, several dual mTOR-PI3K inhibitors are under evalua-
tion and for 2 of them the phase 1 trial results have already been
published. The first, BGT226 induced grade 3 diarrhea in 46% of
patients at 125 mg, however, limiting the dose to 100 mg three
times weekly resulted in insufficient inhibition of the PI3K path-
way [89]. Modeling based on pharmacokinetic data predicted that
BGT226 dose of >4000 mg/day would be required to achieve effi-
cacious plasma exposure, exceeding the safety dose range. The
second, SF1126 is composed of the pan-PI3K and mTOR inhibitor
LY294002 conjugated to an RGDS-targeting peptide to increase
binding to integrins expressed on the tumor vasculature. In phase
1, SF1126 did not reach the maximum tolerated dose with a single
dose limiting toxicity grade 3 diarrhea, reduced p-AKT and
increased apoptosis [90]. Further studies are planned in combina-
tion with rituximab in CD20+ B-cell malignancies. Other com-
pounds such as BEZ235, XL765 (also known as SAR245409),
GDC-0980, PF-04691502, and PF-05212384 (also known as PKI-
587) have completed phase 1 trials but data are not yet published.

Several new compounds have been designed to selectively inhi-
bit PI3K with pan-PI3K targeting all class IA PI3Ks (BKM120, PX-
866, XL147, GDC-0941, BAY80-6946, GSK2126458, CH5132799
and ATU027) or PI3K isoform-specific inhibitors (CAL101,
BYL719, GSK2636771, and AZD6482). The phase 1 study with
BKM120 [91] has shown hyperglycemia, skin rash, and mood alter-
ation as drug limiting toxicities. Once mood alterations were iden-
tified, selective serotonin reuptake inhibitors were prescribed, and
no further mood alteration greater than grade 1 was seen. In the
expansion study with the MTD (100 mg/d), most frequent grade
3/4 adverse effects (AEs) were increase transaminase (9.1%), asthe-
nia (7.6%), and rash (6.1%). Anti-tumor activity is encouraging with
3 RECIST partial responses. A phase 1 study has also been
completed for another compound (PX-866 [92]) showing that dose
limiting toxicities consisted of grade 3 diarrhea and elevated AST.
No RECIST response was seen in this trial. New trials in association
with other drugs are currently ongoing.

Finally, some compounds directly inhibit AKT with different
mechanisms of action (plasma membrane disrupting agent,
ATP-competitive and allosteric AKT inhibitors). Perifosine, a
plasma membrane disrupting agent, has been extensively studied
in phase I, II, and even phase III trials [93,94]. Despite promising
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first results with good tolerance and interesting anti-tumor activ-
ity, the latest phase III trial in metastatic refractory colorectal
cancer was disappointing with no difference of overall survival
or progression-free survival for perifosine plus capecitabine com-
pared to capecitabine alone. In a small phase 1 trial with patient
selection based on p-AKT positive tumor, triciribine phosphate
monohydrate [95] has shown no dose-limiting toxicities but a
modest decrease of p-AKT after treatment. Response rates were
not reported. Finally MK-2206, an allosteric AKT inhibitor,
recently showed DLTs as mainly grade 3/4 skin rash [96]. In this
trial no objective response was seen, however, tumor shrinkage
was noted without reaching the level of the RECIST partial
response. Of note, 9 patients have had paired tumor biopsy at
baseline and at day 15. All of them demonstrated a decrease of
p-AKT. Multiple drug combination and weekly schedule are
now being tested to increase anti-tumor activity and minimize
drug toxicity. Other compounds such as GSK690693, RX0201
(AKT antisense), PBI-05204, GSK2110183, GSK2141795,
RG7440, GDC0068, and AZD5363 are under investigation or have
completed phase 1 trials but the results are not yet published.

Perspective on mTOR inhibitors in HCC therapy

HCC is a very complex and heterogenous disease and progress in
treatment of advanced HCC will likely occur slowly. One of the
advantages of the first generation inhibitors (rapalogs) is the high
specificity, the clinical approval and the comparatively few side-
effects. Even if single agent therapies do not show the expected
efficacy as has been revealed by the recent results from the
EVOLVE study, rapalogs are still very attractive for use with other
drugs. Moreover, sirolimus will most likely become first line
treatment for HCC patients after liver transplantation.

With regard to current available second generation mTOR
inhibitors we can anticipate limitations in their use in HCC
patients, although they are more effective than first generation
inhibitors in preclinical studies. First, for patients with impaired
liver function, the increase in transaminase is troublesome, as
observed in several clinical trials with the mTOR inhibitor
AZD8055 but also with PI3K/mTOR dual inhibitor BGT226. Sec-
ond, the performed phase 1 clinical trials demonstrated modest
monotherapy efficacy, which was related to adverse events limit-
ing dose escalation, but also related to a cytostatic effect more
than a cytolytic effect of these drugs. Therefore, improved effi-
cacy may mainly be reached in combination with other drugs.
Third, new generation mTOR inhibitors may stimulate autophagy
more than first generation inhibitors, and may consequently
cause tumor cell protection against chemotherapy-induced
death.

A strong focus should also be directed towards the discovery
and validation of biomarkers, which predict tumor-response after
therapy. Biomarkers for mTOR inhibitor efficacy have been eval-
uated in preclinical, but also in clinical studies [97,98]. Among
others, these biomarkers include inactivation of PTEN, activating
mutations of PI3KCA, expression levels of pS6, pS6K, S6K, and
pAkt. Interestingly, a study demonstrated that human cancer cell
lines carrying PI3KCA mutations were responsive to everolimus,
except when KRAS mutations occurred concomitantly [99]. Sim-
ilar results were obtained in a study with colon cancer cell lines
[100], and mTOR resistance was also shown in ovarian cancer cell
lines, which overexpressed the apoptosis-inhibitory protein Bcl2
[101]. Novel technologies such as next-generation sequencing
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may further path the way for the identification of new biomark-
ers, as has been shown in a recent study with bladder cancer
patients, in which response to everolimus was clearly more effec-
tive in patients with a somatic mutation in the TSC1 complex
[102]. However, none of these markers have been confirmed in
clinical trials. It is thus currently difficult to recommend any of
these biomarkers for patient selection in clinical trials. In addi-
tion, it has to be emphasized, that substantial progress in the
identification of biomarkers for HCC treatment is unlikely to
occur, if tumor tissue is not taken before and after chemotherapy
by means of a liver biopsy. Acquiring tumor tissue should there-
fore be mandatory for any phase II or phase III clinical study and
will further help to develop novel therapies.

In spite of these drawbacks, mTOR inhibitors together with
AKT and PI3K inhibitors still remain an attractive and promising
therapeutic option for the treatment of HCC and ongoing as well
as future clinical studies will reveal if they can be used for the
therapy of this devastating disease.

Key Points

• The mTOR pathway is upregulated in 40-50% of HCC 
cases, is related to bad prognosis, and contributes to 
sorafenib resistance in HCC. Preclinical in vitro and in 
vivo studies showed a reduction of HCC tumor growth 
by mTOR inhibitors

• Rapamycin and first generation mTOR inhibitors 
(rapalogs) are used in clinical trials for advanced HCC 
but also for adjuvant therapy in HCC patients after 
transplantation and TACE

• Preclinical studies in HCC have shown that second 
generation mTOR inhibitors are more efficacious than 
first generation mTOR inhibitors and could synergize 
with them

• Phase 1 clinical trials with second generation mTOR 
inhibitors in various solid cancers revealed dose 
limiting toxicities such as diarrhea, skin rash, and 
increase of transaminase

• Predictive biomarkers for efficacy of mTOR inhibitors 
have been identified in preclinical studies but not yet 
confirmed in clinic studies
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