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Abstract

Ghost condensation has been recently proposed as a mechanism inducing the spontaneous breaking of Lorentz symmetry
Corrections to the Newton potential generated by a static source have been computed: they yieldZaJih@t MeV on
the symmetry breaking scale, and—if the limit is saturated—they are maximal at a digtand®00 km from the source.
However, these corrections propagate at a tiny velogity, 10712 m/s, many orders of magnitude smaller than the velocity of
any plausible source. We compute the gravitational potential taking the motion of the source into account: the standard Newton
law is recovered in this case, with nedlip corrections for any distance from tBeurce up to astrophysical scales. Still, the
vacuum of the theory is unstable, and requiring stability over the lifetime of the Universe imposes a Idhivbicth is not too
far from the one given above. In the absence of a direct coupling of the ghost to matter, signatures of this model will have to be
searched in the form of exotic astrophysical events.
0 2004 Elsevier B.V. Open access under CCBY license

1. Introduction

The whole interpretation of the currently available cosmological data strongly depends upon the hypothesis
that the behavior of field theories—and, in particular, of gravity—at cosmological distances is the same one
that we observe at local scales. It is hard to check dlality of such a theoretical assumptions by means of
sufficiently prior-independent observations. It is therefore important to explore the possibility to modify gravity
at large distanceis a theoretically consistent way. Such goal is far from being trivially achievable. The simplest
way to modify gravity in the infrared probably resides in the introduction of a tiny mass term for the graviton. The
introduction of a hard mass term, however, leads to a series of problems, which show some similarity with the ones
encountered when introducing a mass term for a spingange boson. Consistency of the theory requires the mass
term to be of the Fierz—Pauli tyd&], and the propagator for the graviton is affected by the van Dam—Veltman—
Zakharov discontinuity2], related to the different number of polzaitions between the massive and the massless
case. In addition, due to the specific form of the kinetic term for the longitudinal component, the perturbative
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description of gravity breaks down at macroscopic lengths, that are probed in everyd8y.lifaese properties
can be nicely understood with the techniqu@df where the gravitational counterpart of the Goldstone description
of massive gauge theories was constructed.

The recent years have witnessed a wide debate abeuntdifications of gravity at large scales in higher-
dimensional models, in which the four-dimensional gi@v emerges as a resonance, and the higher-dimensional
theory shows up at large distances as well as at short [&iheB1 these scenarios, four-dimensional covariance
is preserved both for the theory and for its vacuum state. If we instead restrict the attention to four-dimensional
scenarios, and in view of the analogies of general retgtivith flat space gauge theories, it is natural to expect
that a Higgs phenomenon could be a simple way to give consistently a mass to the graviton. Indeed, spontaneous
breaking of Lorentz symmetry has been studied by several authors (see, for in@fnoethe past years, with a
main interest in the quantum gravitatial origin of this phenomenon. Recentlyiuather progress in this direction
has been made [i7], where the spontaneous breaking of (part of) the Lorentz group is achieved by giving a (time-
like) expectation value to the gradient of a scalar figliWhen close to its Lorentz invariant unstable equilibrium
state, this field behaves as a ghost. For this reason, this mechanism has beeghwstroeddensation. The scale
of the transition to the broken phase is sgtatfundamental dimemanful parameted. At energy larger tha,
the theory needs a UV completion that should presumably describe the emergence of a symmetric phase. At scales
below M, Lorentz symmetry is broken. The proposa[ df has the virtue of being clearly treatable by perturbative
methods all the way up to the symmetry breaking sédlbe breaking of Lorentz symmetry is associated to some
very unusual features, the most striking of which is probably the nonrelativistic dispersion reldtion® /M2
for the fluctuations 0.

When the ghost is coupled to gravity, its dispersion relation is modified: the system develops a (Jeans-like)
instability in the IR. Such effect can be used to set model indepefdennds on the scal#, that fixes the time
and the length scales of the gravitational instability of the model. Indeed, in the Newtoniamfirit k2, the
dispersion relation of the scalar degree of freedom of the system reads

4 2
0’ = % — %—gk? (1)
For sufficiently smalk, o turns out to be imaginary. The correspamglinstability is maximal for wavenumbers
k ~m = M?/M, and frequenciegw| ~ I = M3/M2. Going to real space, the instability is thus expected to
develop on timescales ~ '~ and on lengthscales ~ m~1. Notice that, due to the breaking of Lorentz
invariance, the typical space- and time-scales for the instability can be very different: dlssslose to the
Planck scalet will be much larger thard.

For the reasons we mentioned, the propospik very interesting, and it is worth to subject it to close scrutiny.

In order to set constraints on the parameter space of the model, it is crucial to establish the observables over which
the instability will leave its strongesmprint. A natural candidate is the gfigational force between two masses.
Indeed, the computatiof7] of the gravitational potential generated by a static source shows, in addition to the
standard Newton potential, a correction which is growing with time. In agreement with the above discussion, the
growth occurs on a timescate In order to make sure that the new term has not yet grown to an observable size,
one can conservatively require this time to be greater than the age of the Urfildnisgesults in a rather stringent

1 The work[7] was accompanied K], which studied inflation in this theory. The primortiferturbations generateduring inflation were
found to have distinctive signatures with respto the standard results of slow roll inflation.

2 This is due to the fact that has a well behaving kinetic term in itsamd state in the absence of gravity.

3 Direct couplings of the ghost to matter are expected to emerge atheasgh loop effects. Such couplings have to be strongly suppressed
in order not lead to disagreement with observation, and depend on tlie déthe theory. In order to stick only to the minimal features of the
scenario, we will not consider these couplings here.

4 In this analysis, the effects related to the expansion of the Uniageseeglected. Due to the magnitude of the scales in consideration, we
do not expect these effects to change significantly the present discussion.
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upper bound on the scale of the condensate; 10 MeV. However, after a time, the exponential growth will

have occurred only at a distanceS L from the sourcd7]. For such a value o#, one findsL >~ 1000 km. At

these scales, an oscillating modulation of the Newtoniaermi@l around a static source would be a distinctive
signature of the mechanism. In the present Letter we will discuss how this picture is changed in the case in which
the sources are in motion.

The mechanism df7] breaks only a part of Lorentz symmetry. For a time-ljRg¢), we can choose a frame
in which only (3;¢) is nonvanishing. We call this coordinate system the rest frame of the ghost. The presence of a
privileged system allows to speak about absolute motlemediated interactions between particles will depend on
their velocity (even if constant) with respect to the ghost rest-frame. The standard Newtonian interaction propagates
instantaneously (the whole computation is performed in the nonrelativistic regime). However, the unstable modes
of the ghost condensate propagate with an extremely low velogiys we remarked, foM ~ 10 MeV, it takes a
time comparable to the age of the Universe for the modified interaction to propagate at a disid@@iekm from
the source. This givess ~ M/M, ~ 10~12m/s. Even if we do not know which the rest-frame of the condensate
is, the typical velocity of celestial bodies is of the order of 10-100Q &nThis is the case, for instance, both for
the motion of the Earth around the Sun, and of the Earth in the frame in which the cosmic microwave background
(CMB) radiation shows no dipole. As a consequence, any realistic source will be moving with respect to the ghost
rest frame with a velocity that exceedsby many orders of magnitude.

We compute the gravitational potential for a source moving with velacity vs in the next section. As ifi7],
we assume that the source has been created (fonoestdy gravitational collapse) at some finite time: 0.

We then specify the general expression to two simplifying situatibns.(12)describes the potential measured

by a (late time) observer at rest with respect to the source. This obgkesnot see an exponentially growing
correction to the Newton potential. Both the source and the observer are moving too fast with respect to the rest
frame of the condensate, and thenediated interactions will not be observable.

The situation is different if the gravitational potential is computed at late times in the vicinity of the place
where the source was created. In this case, the nonstandard term is indeed growing exponentially. Perhaps mos
surprisingly, the exponential growth is taking place even if the source has in the meantime moved to very faraway
distances! This shows that the growth of the potential is not really due to the presence of a nearby source at all
times, but rather to the instability of the theory. The source is simply triggering the initial instability, and a time
t 2 t is then needed for the iratility to grow at exponentially large values. The massive source is required to start
this growth, since the calculation performed here isgilzal. Most probably, quantum effects will also trigger the
instability, even in the case in which classical sources were absent.

Although we do not expect signatures in the form of adified Newton law, the instability of the vacuum will
lead to potentially observable effects, if the scale of the instability is not too far from to the present age of the
Universe (that isM ~ 10 MeV). Unstable regions will presumably collapse to a strong gravity regime, and one
may expect formation of compact objects, possibly leading to exotic astrophysical events. Such structures could
be located in regions which are not correlated to any visible matter (since the source has in the meantime moved
away) and hence they would be hard to explain in more conventional scenarios.

2. Modification of the gravitational potential

As in [7], we compute the gravitational potential generated by a source of mauscleated” at a given time
tin = 0 at the positiom = 0. We assume that, after it is nucleated, the source moves with a constant veladity
rest-frame of the condensate. This extends the computatia@ih pérformed forv = 0. The gravitational potential

generated by the source is, at a generic positiand at the time > 0,

G : I : I
V=Va+AV = % / d3r' dt’ d*k dw e~ =K =g (1 s3(r — v\, 2)
TT
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whereG = 1/(87rM§) is the Newton constantl is the propagator (in Fourier space) of the scalar perturbations
of the metric[7]

1 a’m?/ M?
N=— G+ S T 2 4 )
ke o +am®/M[(k/m)= — (k/m)*]
which is valid in the nonrelativistic limitv <« k. The parameted is the scale of the ghost condensate, while

M2
V2M,

Finally, « is model dependent parameter of order one (in the following we simply set).

Let us defind =r — vt to be the position of a given point in the rest frame of the source. The first tef8) in
gives rise to the standard Newtonian poteniial= —G /||, dependent on the (instantane®)udistance from the
source only. To compute the second term, we first perform the teividlintegration,

m=

2
~3x100cev( 2L ) (4)
GeV

oo
Gmpu // 3 / —iW(T—T")+iu-R—iu- VT’ 1
AV = dT" | d°u | dWe —_—, 5
43 / W2 +u2 —ut ©)
0
where we have introduced the following dimensional quantities
k w M N[ r
=—, W=M—, R=mr=15| — — |,
- m? " (GeV) (km)
Mv GeV v M3 M \3/1t
=—=33x10"°( — )| o T=-—1=62x10"(— ) (—
V=" x ( M )(1&%)’ 2M2 x Gev) \1o)’
R=mi=m(r —vt) =R — VT, (6)

wherec is the speed of light, while) ~ 15 billion years is the age of the Universe.
To proceed further, we integrate over complex frequeneiegith a given prescription for the contour. This
term is analogous to the propagator of a tachyonic field: for small momenrta, in our case) the frequency has
imaginary poles, which are related to tlaehyonic instability of the vacuum; high momerita m balance this
effect, and these modes are stable. Causality arguments prescribe the use of the retarded propagateri€)
for these modes. For low momentum modes the choice of the contour is instead more ambiguous. We deform the
contour so that it never crosses the poles, whenikaecreases—they go from real toaginary. Mathematically,
the casek < m becomes the analytic continuationiof m. Physically, different contours correspond to different
initial conditions, and the one we choose giveg = 0 at the initial timer = 0. Taking this into account, we find

AV Gmu{ e gUR u1—u2Qp+iu-Vsinhuv/1—u?T)

- u
27T2 u«/l—uz M2(1—u2)+(U'V+i€)2
ug
n / 22U UR yVu2 — 190 +iu-Vsinuvu?2 —1T) @
uvu?—1 u?W? —1) — (u-V+ie)? 7
u>1
where we have defined
Q1=e""YT —coshuv'1—u?T), Qr=e"VT —coquvu?—1T), (8)

and where: = |ul.

5 In the nonrelativistic approximation that we are here consigetihe Newtonian interactiorr@pagates instantaneously.



M. Peloso, L. Sorbo / Physics Letters B 593 (2004) 25-32 29

Already at this stage we can appreciate the effect @filocity of the source. In the rescaled units, the speed
of propagation ofAV (see the previous section) correspond¥da- 1. Sources which move much faster than
will have V > 1. In this case, we then expect thedependent terms to be important(if).

The angular integration can be performed exactly wheand v are parallel, that is when the potential is
computed along the line of motion of the source. The following explicit computation is restricted to this case;
however, the arguments presented above and our conclusions do not depend on this assumption. The angula
integrals then give

_ Gmpu

1
Y {0/\/%[

du
2 _

u

coshbuR) A + sinhbuR)B] + / [cosbuR)C + sin(buR)D] }
1

i

A=[ro(R) +iCl(uR(1+ib)) —i Cl(uR(1—ib))] - [R — R,
B=[-SIuRA+ib)) — SI(uRL—ib)] - [R — R],
C=[-in0(b — 1o (R) — Cl(uRQ+b) +i€) +Cl(uR(L—b) +i€)] — [R — RI,
D =[-SIuRA+b)) — SIuRA—b))] ~ [R — R],

ViL=u?|

bET, )

whereo (x) is the sign ofx , while Sl and CI denote, respectivelyethine and cosine integral, defined @k

oo oo

5|(x)z_/d¢¥, C|(x)5_/dz$. (10)

X X

At the initial time, R = R and, as we notedAV = 0. In addition, one can verify th®) reproduces the
analogous expression pf] as the velocity) is sent to zero. The first line ¢9) describes the tachyonic modes,
and we will focus only on the calcuian of this piece (we denote it b V1) in the remaining of the section. The
second line describes the stable modes, and indeed it does not contain any term which grows exponentially with
time. For this reason, it is not responsible for the effect we are considering, and, as déhena can simply
ignore it. The expressiof®) is still exact® To proceed further, we can approximate the integrandfgs 1 (we
recall thaty = 1 corresponds to = vs).

2Gmpu

1
AV ~ / du
1= % 5 «/1—1,{2

x {b[[cos(u|R|) +u|R| SI(u|R|)] cosi{ub(R — R)) — cos{u|R|) — u|R| SI(u|R|)]
— o (R) SI(u|R) sinh(u(R — R) b) + x sinub|R|)o (R)[0(—R) — 9(—R)]]. (11)
This result holds fob = +/1 — u2/V « 1, but arbitraryb| R| andb|R|. Much simpler expressions can be obtained

in the limits of very small or larg&®, R. In particular, we can distinguish two relevant cases, which we have already
discussed in the previous section.

6 More precisely, it holds in the nonrelativistic limit <« k. For AVq, the poles are gw| ~ |k|m/M. Hence, the nonrelativistic limit is
correct as long asf < M.
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(1) VT > 1,|R| <V, R> T, R> 1. Inthis case we find

2Gum D
SV IR| <1,
AV1= Guzlv o B COSR ot (12)
b [RO(—R) =295 ], IRI> 1

This computation applies for a &time observer at a fixed distangetaken to be small, on cosmological scales)
from the source. As we explained in the previous sectioVi,does not grow exponentially in this case. To clarify
why this happens, let us compute in more detailg; for R = 0, that is at the exact location of the (moving)
source. Starting fron(®), and expanding Cl and SI for large argument, we get

1
i /1 _ ;2
AVA(R = 0) = 2:;”2’* / du[cos(uVTu) S'lmf’;z ; w'D _ 1} n o(%). (13)

This expression contains the function simk/1 — u2 T), which is growing exponentially with time. However, it

is multiplied by the much faster oscillating function ¢@¥ 7). SinceV > 1, positive and negative part of the
integrand average to a very small value, which doeggnatv with time. This suppression effect can be explicitly
seen to be at work already at the leveks. (9), unlessR is small (that is, close to the point where the source was
nucleated, see below). The first term(8) cannot be computed exactly. We obtain an approximate primitive by
noticing that, fory > 1,

couVT)sinhu~/1—u?T) _d [sin(uVT) sinh(uv/1 — u? T)]

uv/1—u? du VTuv1— u?

(in practice, we simply use the primitive of the most rapidly oscillating function; we have verified numerically that
this approximation is accuraté)jnsertingq. (14)into (13) we recover the first line fL2).

The resul(12) has a few other features which is worth noting. First, it is time independent. This was expected,
since the potential close to the source resents only negligibly of the previous history of the source, due to the fact
that both the source and the observer are moving much faster than the speed at which the signal is prpagating.
Finally, we also note that, for & |R| < V, the potential is greater at negatife This is easily understood by
remembering that negative describe points where the source has already passed, and where the instability has
started to develop, although the growth is still in the linear regime. Pogttive instead points at which the source
has yet to come.

(2) The second interesting regime for the computatiof®fs |R| < V, |R| ~ VT >> V. In this case we get

(14)

GmuJw T/2
WIT e’ |RIK1,

~ T e 2[28(R) +O(})]. L<IRI<T.

This computation applies for a late time observer which is at rest in the rest-frame of the condensate, and close to
where the source was originally nucleated. In this casé,is growing exponentially with time. The exponential
growth is related to the instability of the vacuum triggeby the source when it was passing through these points,

as discussed in the previous sectfon.

AV~ (15)

7 Alternatively, one can proceed as [i], by substituting sinfu+/1— 2 T), with a Gaussian, and by extending the integration from
0<u <1to—oo0 <u < +oo. This approximation is valid only in the limi « 1, and would give a resutk exp(422 1/8).

8 Strictly speaking, this is not true in the transight« 1 regime, since in this case one cannot neglect the fact that the source was nucleated
at the finite timeT’ = 0.

9 The growth visible in(15) is analogous to the one computed Tt for a static source, with the difference of the strong suppression factor
1/v.
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3. Conclusions

Effects associated to the breaking of Lorentz symmetry will in general depend upon the motion of the observer
with respect to the preferred frame of the theory. Intipaftar, a phenomenologically very interesting aspect of
ghost condensation is the presence of long waggleinstabilities that evolve at a very low spegd~ M /M ,,
and that will be triggered by classical sources (and, it is natural to expect, by quantum fluctuations). An observer at
rest with respect to the preferred frame will see the growth of the instability that, after a sufficiently long time, will
show up as a measurable modification of Newtonian gravity. An observer in motion, however, will not have the
time to see the development of the instability. As an analogy, we can think of a overheated liquid, which, similarly
to the ghost condensate, is in a metastable state. A small perturbation of the liquid—such as the introduction of
a particle—will lead to the generation of a bubble, which will then expand at the speed of sound in the liquid. In
this picture, the motion of a celestial body in the ghost condensate is analogous to the motion of a particle quickly
traveling through this bubble chamber. Regions of modified gravity will be nucleated where the source passes, but
will then expand at the much smaller velocity An observer sitting on the particle will not have time to see the
growth of the bubbles.

In the absence of observability of effects in tests of gravity, we expect the signatures of the scenario to be
associated to astrophysical or cosmological effects. While in conventional gravity every source is associated to a
potential well, in this scenario every source will leave behind itself a potential furrow, that will keep growing even
when the source is far away. Depending on the value of the paravetsuch unstable region will either be still
in its linear regime or will have evolved to a nonlinear stage. In the latter case, it is possible to speculate about the
existence of exotic compact objects whose position would not be manifestly correlated with the present distribution
of matter. Even if the furrows are still in their linear regime, they could manifest themselves as irregularities in the
gravitational potential. These irregularities could be felt by systems (such as the one formed by the Earth and a
satellite) that go across them. The possibility to detestrtthrough irregular motiorsf celestial bodies, or maybe
also through lensing effects, should be presumably studied statistically.

Note added

After the completion of the present mawtipt, we became aware of the related wfitQ]. The analysis and the
conclusions of10] are in agreement with thesults presented here.
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