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Abstract

Ghost condensation has been recently proposed as a mechanism inducing the spontaneous breaking of Lorentz
Corrections to the Newton potential generated by a static source have been computed: they yield a limitM � 10 MeV on
the symmetry breaking scale, and—if the limit is saturated—they are maximal at a distanceL ∼ 1000 km from the source
However, these corrections propagate at a tiny velocity,vs ∼ 10−12 m/s, many orders of magnitude smaller than the velocity
any plausible source. We compute the gravitational potential taking the motion of the source into account: the standar
law is recovered in this case, with negligible corrections for any distance from thesource up to astrophysical scales. Still, t
vacuum of the theory is unstable, and requiring stability over the lifetime of the Universe imposes a limit onM which is not too
far from the one given above. In the absence of a direct coupling of the ghost to matter, signatures of this model will ha
searched in the form of exotic astrophysical events.
 2004 Elsevier B.V.

1. Introduction

The whole interpretation of the currently available cosmological data strongly depends upon the hyp
that the behavior of field theories—and, in particular, of gravity—at cosmological distances is the sam
that we observe at local scales. It is hard to check the validity of such a theoretical assumptions by means
sufficiently prior-independent observations. It is therefore important to explore the possibility to modify g
at large distancesin a theoretically consistent way. Such goal is far from being trivially achievable. The simpl
way to modify gravity in the infrared probably resides in the introduction of a tiny mass term for the gravito
introduction of a hard mass term, however, leads to a series of problems, which show some similarity with
encountered when introducing a mass term for a spin-onegauge boson. Consistency of the theory requires the m
term to be of the Fierz–Pauli type[1], and the propagator for the graviton is affected by the van Dam–Veltm
Zakharov discontinuity[2], related to the different number of polarizations between the massive and the mass
case. In addition, due to the specific form of the kinetic term for the longitudinal component, the pertu
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description of gravity breaks down at macroscopic lengths, that are probed in everyday life[3]. These propertie
can be nicely understood with the technique of[4], where the gravitational counterpart of the Goldstone descrip
of massive gauge theories was constructed.

The recent years have witnessed a wide debate about the modifications of gravity at large scales in high
dimensional models, in which the four-dimensional graviton emerges as a resonance, and the higher-dimens
theory shows up at large distances as well as at short ones[5]. In these scenarios, four-dimensional covaria
is preserved both for the theory and for its vacuum state. If we instead restrict the attention to four-dime
scenarios, and in view of the analogies of general relativity with flat space gauge theories, it is natural to exp
that a Higgs phenomenon could be a simple way to give consistently a mass to the graviton. Indeed, spo
breaking of Lorentz symmetry has been studied by several authors (see, for instance,[6]) in the past years, with
main interest in the quantum gravitational origin of this phenomenon. Recently, afurther progress in this directio
has been made in[7], where the spontaneous breaking of (part of) the Lorentz group is achieved by giving a
like) expectation value to the gradient of a scalar fieldφ.1 When close to its Lorentz invariant unstable equilibriu
state, this field behaves as a ghost. For this reason, this mechanism has been namedghost condensation. The scale
of the transition to the broken phase is set by a fundamental dimensionful parameterM. At energy larger thanM,
the theory needs a UV completion that should presumably describe the emergence of a symmetric phase.
belowM, Lorentz symmetry is broken. The proposal of[7] has the virtue of being clearly treatable by perturba
methods all the way up to the symmetry breaking scale.2 The breaking of Lorentz symmetry is associated to so
very unusual features, the most striking of which is probably the nonrelativistic dispersion relationω2 = k4/M2

for the fluctuations ofφ.
When the ghost is coupled to gravity, its dispersion relation is modified: the system develops a (Jea

instability in the IR. Such effect can be used to set model independent3 bounds on the scaleM, that fixes the time
and the length scales of the gravitational instability of the model. Indeed, in the Newtonian limitω2 � k2, the
dispersion relation of the scalar degree of freedom of the system reads

(1)ω2 = k4

M2 − M2

M2
p

k2.

For sufficiently smallk, ω turns out to be imaginary. The corresponding instability is maximal for wavenumbe
k ∼ m ≡ M2/Mp and frequencies|ω| ∼ Γ ≡ M3/M2

p . Going to real space, the instability is thus expected

develop on timescalesτ ∼ Γ −1 and on lengthscalesL ∼ m−1. Notice that, due to the breaking of Loren
invariance, the typical space- and time-scales for the instability can be very different: unlessM is close to the
Planck scale,τ will be much larger thanL.

For the reasons we mentioned, the proposal of[7] is very interesting, and it is worth to subject it to close scrut
In order to set constraints on the parameter space of the model, it is crucial to establish the observables o
the instability will leave its strongestimprint. A natural candidate is the gravitational force between two masse
Indeed, the computation[7] of the gravitational potential generated by a static source shows, in addition
standard Newton potential, a correction which is growing with time. In agreement with the above discuss
growth occurs on a timescaleτ . In order to make sure that the new term has not yet grown to an observabl
one can conservatively require this time to be greater than the age of the Universe.4 This results in a rather stringe

1 The work[7] was accompanied by[8], which studied inflation in this theory. The primordial perturbations generated during inflation were
found to have distinctive signatures with respect to the standard results of slow roll inflation.

2 This is due to the fact thatφ has a well behaving kinetic term in its ground state in the absence of gravity.
3 Direct couplings of the ghost to matter are expected to emerge at least through loop effects. Such couplings have to be strongly suppre

in order not lead to disagreement with observation, and depend on the details of the theory. In order to stick only to the minimal features of
scenario, we will not consider these couplings here.

4 In this analysis, the effects related to the expansion of the Universeare neglected. Due to the magnitude of the scales in consideratio
do not expect these effects to change significantly the present discussion.
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upper bound on the scale of the condensate,M � 10 MeV. However, after a timeτ , the exponential growth wil
have occurred only at a distancer � L from the source[7]. For such a value ofM, one findsL � 1000 km. At
these scales, an oscillating modulation of the Newtonian potential around a static source would be a distinc
signature of the mechanism. In the present Letter we will discuss how this picture is changed in the case
the sources are in motion.

The mechanism of[7] breaks only a part of Lorentz symmetry. For a time-like〈∂µφ〉, we can choose a fram
in which only〈∂tφ〉 is nonvanishing. We call this coordinate system the rest frame of the ghost. The presen
privileged system allows to speak about absolute motion:φ-mediated interactions between particles will depend
their velocity (even if constant) with respect to the ghost rest-frame. The standard Newtonian interaction pro
instantaneously (the whole computation is performed in the nonrelativistic regime). However, the unstable
of the ghost condensate propagate with an extremely low velocityvs. As we remarked, forM ∼ 10 MeV, it takes a
time comparable to the age of the Universe for the modified interaction to propagate at a distance∼ 1000 km from
the source. This givesvs ∼ M/Mp ∼ 10−12 m/s. Even if we do not know which the rest-frame of the conden
is, the typical velocity of celestial bodies is of the order of 10–100 km/s. This is the case, for instance, both
the motion of the Earth around the Sun, and of the Earth in the frame in which the cosmic microwave back
(CMB) radiation shows no dipole. As a consequence, any realistic source will be moving with respect to th
rest frame with a velocity that exceedsvs by many orders of magnitude.

We compute the gravitational potential for a source moving with velocityv � vs in the next section. As in[7],
we assume that the source has been created (for instance, by gravitational collapse) at some finite timet = 0.
We then specify the general expression to two simplifying situations.Eq. (12)describes the potential measur
by a (late time) observer at rest with respect to the source. This observerdoes not see an exponentially growin
correction to the Newton potential. Both the source and the observer are moving too fast with respect to
frame of the condensate, and theφ-mediated interactions will not be observable.

The situation is different if the gravitational potential is computed at late times in the vicinity of the
where the source was created. In this case, the nonstandard term is indeed growing exponentially. Perh
surprisingly, the exponential growth is taking place even if the source has in the meantime moved to very
distances! This shows that the growth of the potential is not really due to the presence of a nearby sou
times, but rather to the instability of the theory. The source is simply triggering the initial instability, and a
t � τ is then needed for the instability to grow at exponentially large values. The massive source is required to
this growth, since the calculation performed here is classical. Most probably, quantum effects will also trigger
instability, even in the case in which classical sources were absent.

Although we do not expect signatures in the form of a modified Newton law, the instability of the vacuum w
lead to potentially observable effects, if the scale of the instability is not too far from to the present age
Universe (that is,M ∼ 10 MeV). Unstable regions will presumably collapse to a strong gravity regime, an
may expect formation of compact objects, possibly leading to exotic astrophysical events. Such structur
be located in regions which are not correlated to any visible matter (since the source has in the meantim
away) and hence they would be hard to explain in more conventional scenarios.

2. Modification of the gravitational potential

As in [7], we compute the gravitational potential generated by a source of massµ “nucleated” at a given time
tin = 0 at the positionr = 0. We assume that, after it is nucleated, the source moves with a constant velocityv in the
rest-frame of the condensate. This extends the computation of[7] performed forv = 0. The gravitational potentia
generated by the source is, at a generic positionr and at the timet > 0,

(2)V ≡ Vn + �V = µG

4π3

∫
d3r′ dt ′ d3kdωe−iω(t−t ′)+ik·(r−r′)θ(t ′)δ3(r′ − vt ′)Π,
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whereG = 1/(8πM2
p) is the Newton constant.Π is the propagator (in Fourier space) of the scalar perturba

of the metric[7]

(3)Π ≡ − 1

k2 + α2m2/M2

ω2 + α2m4/M2[(k/m)2 − (k/m)4] ,
which is valid in the nonrelativistic limitω � k. The parameterM is the scale of the ghost condensate, while

(4)m ≡ M2

√
2Mp

� 3× 10−19 GeV

(
M

GeV

)2

.

Finally, α is model dependent parameter of order one (in the following we simply setα = 1).
Let us definẽr ≡ r − vt to be the position of a given point in the rest frame of the source. The first term(3)

gives rise to the standard Newtonian potentialVn = −Gµ/|r̃|, dependent on the (instantaneous5) distance from the
source only. To compute the second term, we first perform the triviald3r′ integration,

(5)�V = Gmµ

4π3

∞∫
0

dT ′
∫

d3u
∫

dW e−iW(T −T ′)+iu·R−iu·VT ′ 1

W2 + u2 − u4 ,

where we have introduced the following dimensional quantities

u ≡ k

m
, W ≡ M

ω

m2 , R ≡ mr = 1.5

(
M

GeV

)2(
r

km

)
,

V ≡ Mv

m
= 3.3× 1015

(
GeV

M

)(
v

10−3c

)
, T ≡ M3

2M2
p

t = 6.2× 104
(

M

GeV

)3( t

t0

)
,

(6)R̃ ≡ mr̃ = m(r − vt) = R − VT ,

wherec is the speed of light, whilet0 � 15 billion years is the age of the Universe.
To proceed further, we integrate over complex frequenciesω with a given prescription for the contour. Th

term is analogous to the propagator of a tachyonic field: for small momenta (k < m, in our case) the frequency h
imaginary poles, which are related to the tachyonic instability of the vacuum; high momentak > m balance this
effect, and these modes are stable. Causality arguments prescribe the use of the retarded propagator (ω → ω + iε)
for these modes. For low momentum modes the choice of the contour is instead more ambiguous. We de
contour so that it never crosses the poles, when—ask decreases—they go from real to imaginary. Mathematically
the casek < m becomes the analytic continuation ofk > m. Physically, different contours correspond to differe
initial conditions, and the one we choose gives�V = 0 at the initial timet = 0. Taking this into account, we find

�V = −Gmµ

2π2

{ ∫
u�1

d3u
eiu·R

u
√

1− u2

u
√

1− u2Q1 + iu · V sinh(u
√

1− u2 T )

u2(1− u2) + (u · V + iε)2

(7)+
∫

u�1

d3u
eiu·R

u
√

u2 − 1

u
√

u2 − 1Q2 + iu · V sin(u
√

u2 − 1T )

u2(u2 − 1) − (u · V + iε)2

}
,

where we have defined

(8)Q1 ≡ e−iu·VT − cosh
(
u
√

1− u2 T
)
, Q2 ≡ e−iu·VT − cos

(
u
√

u2 − 1T
)
,

and whereu ≡ |u|.

5 In the nonrelativistic approximation that we are here considering, the Newtonian interaction propagates instantaneously.
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Already at this stage we can appreciate the effect of the velocity of the source. In the rescaled units, the sp
of propagation of�V (see the previous section) corresponds toVs � 1. Sources which move much faster thanvs
will haveV � 1. In this case, we then expect theV-dependent terms to be important in(7).

The angular integration can be performed exactly whenr̃ and v are parallel, that is when the potential
computed along the line of motion of the source. The following explicit computation is restricted to this
however, the arguments presented above and our conclusions do not depend on this assumption. Th
integrals then give

�V = Gmµ

πV

{ 1∫
0

du√
1− u2

[
cosh(buR̃)A+ sinh(buR̃)B

] +
∞∫

1

du√
u2 − 1

[
cos(buR̃)C + sin(buR̃)D

]}
,

A≡ [
πσ(R̃) + i CI

(
uR̃(1+ ib)

) − i CI
(
uR̃(1− ib)

)] − [R̃ → R],
B ≡ [−SI

(
uR̃(1+ ib)

) − SI
(
uR̃(1− ib)

)] − [R̃ → R],
C ≡ [−iπθ(b − 1)σ (R̃) − CI

(
uR̃(1+ b) + iε

) + CI
(
uR̃(1− b) + iε

)] − [R̃ → R],
D ≡ [−SI

(
uR̃(1+ b)

) − SI
(
uR̃(1− b)

)] − [R̃ → R],

(9)b ≡
√|1− u2|

V ,

whereσ(x) is the sign ofx , while SI and CI denote, respectively, the sine and cosine integral, defined as[9]

(10)SI(x) ≡ −
∞∫

x

dt
sint

t
, CI(x) ≡ −

∞∫
x

dt
cost

t
.

At the initial time, R = R̃ and, as we noted,�V = 0. In addition, one can verify that(9) reproduces the
analogous expression of[7] as the velocityV is sent to zero. The first line of(9) describes the tachyonic mode
and we will focus only on the calculation of this piece (we denote it by�V1) in the remaining of the section. Th
second line describes the stable modes, and indeed it does not contain any term which grows exponent
time. For this reason, it is not responsible for the effect we are considering, and, as done in[7], we can simply
ignore it. The expression(9) is still exact.6 To proceed further, we can approximate the integrand forV � 1 (we
recall thatV = 1 corresponds tov = vs).

�V1 � 2Gmµ

πV

1∫
0

du√
1− u2

×
{
b
[[

cos
(
u|R|) + u|R|SI

(
u|R|)]cosh

(
ub(R − R̃)

) − cos
(
u|R̃|) − u|R̃|SI

(
u|R̃|)]

(11)− σ(R)SI
(
u|R|)sinh

(
u(R − R̃) b

) + π sinh
(
ub|R̃|)σ(R̃)

[
θ(−R̃) − θ(−R)

]}
.

This result holds forb ≡ √
1− u2/V � 1, but arbitraryb|R| andb|R̃|. Much simpler expressions can be obtain

in the limits of very small or largeR, R̃. In particular, we can distinguish two relevant cases, which we have alr
discussed in the previous section.

6 More precisely, it holds in the nonrelativistic limitω � k. For �V1, the poles are at|ω| ∼ |k|m/M . Hence, the nonrelativistic limit is
correct as long asM � Mp .
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(1) VT � 1, |R̃| � V , R � T , R � 1. In this case we find

(12)�V1 �



−2Gµm

πV2 , |R̃| � 1,

Gµm

V2

[
R̃θ(−R̃) − 2cosR̃

R̃2

]
, |R̃| � 1.

This computation applies for a late time observer at a fixed distanceR̃ (taken to be small, on cosmological scale
from the source. As we explained in the previous section,�V does not grow exponentially in this case. To clarif
why this happens, let us compute in more details�V1 for R̃ = 0, that is at the exact location of the (movin
source. Starting from(9), and expanding CI and SI for large argument, we get

(13)�V1(R̃ = 0) = 2Gmµ

πV2

1∫
0

du

[
cos(uVT )sinh(u

√
1− u2 T )

u
√

1− u2 T
− 1

]
+ O

(
1

V3

)
.

This expression contains the function sinh(u
√

1− u2 T ), which is growing exponentially with time. However,
is multiplied by the much faster oscillating function cos(uV T ). SinceV � 1, positive and negative part of th
integrand average to a very small value, which does notgrow with time. This suppression effect can be explic
seen to be at work already at the level ofEq. (9), unlessR is small (that is, close to the point where the source
nucleated, see below). The first term of(13) cannot be computed exactly. We obtain an approximate primitiv
noticing that, forV � 1,

(14)
cos(uVT )sinh(u

√
1− u2 T )

u
√

1− u2
� d

du

[
sin(uVT )sinh(u

√
1− u2 T )

VT u
√

1− u2

]
(in practice, we simply use the primitive of the most rapidly oscillating function; we have verified numerical
this approximation is accurate).7 InsertingEq. (14)into (13)we recover the first line of(12).

The result(12)has a few other features which is worth noting. First, it is time independent. This was exp
since the potential close to the source resents only negligibly of the previous history of the source, due to
that both the source and the observer are moving much faster than the speed at which the signal is prop8

Finally, we also note that, for 1� |R̃| � V , the potential is greater at negativẽR. This is easily understood b
remembering that negativẽR describe points where the source has already passed, and where the instab
started to develop, although the growth is still in the linear regime. PositiveR̃ are instead points at which the sour
has yet to come.

(2) The second interesting regime for the computation of(9) is |R| � V , |R̃| � VT � V . In this case we get

(15)�V1 �



−Gmµ
√

π

2V
√

T
eT/2, |R| � 1,

−Gmµ
√

π

2V
√

T
eT/2

[
2θ(R) + O

( 1
R

)]
, 1 � |R| � T .

This computation applies for a late time observer which is at rest in the rest-frame of the condensate, and
where the source was originally nucleated. In this case,�V is growing exponentially with time. The exponent
growth is related to the instability of the vacuum triggered by the source when it was passing through these po
as discussed in the previous section.9

7 Alternatively, one can proceed as in[7], by substituting sinh(u
√

1− u2 T ), with a Gaussian, and by extending the integration fr

0< u < 1 to −∞ < u < +∞. This approximation is valid only in the limitV � 1, and would give a result∝ exp(−V2T /8).
8 Strictly speaking, this is not true in the transientT � 1 regime, since in this case one cannot neglect the fact that the source was nu

at the finite timeT = 0.
9 The growth visible in(15) is analogous to the one computed in[7] for a static source, with the difference of the strong suppression fa

1/V .
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3. Conclusions

Effects associated to the breaking of Lorentz symmetry will in general depend upon the motion of the o
with respect to the preferred frame of the theory. In particular, a phenomenologically very interesting aspec
ghost condensation is the presence of long wavelength instabilities that evolve at a very low speedvs � M/Mp ,
and that will be triggered by classical sources (and, it is natural to expect, by quantum fluctuations). An obs
rest with respect to the preferred frame will see the growth of the instability that, after a sufficiently long tim
show up as a measurable modification of Newtonian gravity. An observer in motion, however, will not ha
time to see the development of the instability. As an analogy, we can think of a overheated liquid, which, s
to the ghost condensate, is in a metastable state. A small perturbation of the liquid—such as the introdu
a particle—will lead to the generation of a bubble, which will then expand at the speed of sound in the liq
this picture, the motion of a celestial body in the ghost condensate is analogous to the motion of a particle
traveling through this bubble chamber. Regions of modified gravity will be nucleated where the source pas
will then expand at the much smaller velocityvs. An observer sitting on the particle will not have time to see
growth of the bubbles.

In the absence of observability of effects in tests of gravity, we expect the signatures of the scenar
associated to astrophysical or cosmological effects. While in conventional gravity every source is associa
potential well, in this scenario every source will leave behind itself a potential furrow, that will keep growing
when the source is far away. Depending on the value of the parameterM, such unstable region will either be st
in its linear regime or will have evolved to a nonlinear stage. In the latter case, it is possible to speculate a
existence of exotic compact objects whose position would not be manifestly correlated with the present dis
of matter. Even if the furrows are still in their linear regime, they could manifest themselves as irregularitie
gravitational potential. These irregularities could be felt by systems (such as the one formed by the Ear
satellite) that go across them. The possibility to detect them through irregular motionsof celestial bodies, or mayb
also through lensing effects, should be presumably studied statistically.

Note added

After the completion of the present manuscript, we became aware of the related work[10]. The analysis and th
conclusions of[10] are in agreement with the results presented here.
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