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The nuclear envelope is an amazing piece of engineering. On one hand it is built like a mediaeval
fortress with filament systems reinforcing its membrane walls and its double membrane structure
forming a lumen like a castle moat. On the other hand its structure can adapt while maintaining its
integrity like a reed bending in a river. Like a fortress it has guarded drawbridges in the nuclear pore
complexes, but also has other mechanical means of communication. All this is enabled largely
because of the LINC complex, a multi-protein structure that connects the intermediate filament
nucleoskeleton across the lumen of the double membrane nuclear envelope to multiple cytoplasmic
filament systems that themselves could act simultaneously both like mediaeval buttresses and like
lines on a suspension bridge. Although many details of the greater LINC structure remain to be dis-
cerned, a number of recent findings are giving clues as to how its structural organization can yield
such striking dynamic yet stable properties. Combining double- and triple-helical coiled-coils,
intrinsic disorder and order, tissue-specific components, and intermediate filaments enables these
unique properties.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cellular architecture is largely organized by the cytoskeletal
network, which provides connections all the way from the extra-
cellular matrix to the genome. This cytoskeletal network consists
of three principle filament systems defined by size that work
together to achieve cell shape and stability: microfilaments, inter-
mediate filaments and microtubules. The cytoskeleton also
anchors and connects different cellular organelles that are delim-
ited by lipid membranes and often their membranes are stabilized
by some kind of ‘scaffolding’ protein. The nucleus stands out from
other organelles in two major ways architecturally: (1) it is the
only organelle membrane stabilized/reinforced by one of the three
major cytoskeletal filament types – the intermediate filaments, and
(2) it has a uniformly spaced moat-like double membrane.

The nuclear envelope (NE) is this double membrane system com-
plete with a variety of transmembrane proteins, the nucleoskeleton
lamins, and the nuclear pore complexes (NPCs) that are the gate-
keepers directing molecular trafficking in and out of the nucleus.
The outer nuclear membrane (ONM) is continuous with the ER and
contains NE transmembrane proteins (NETs) that interact with cyto-
plasmic filament systems. The inner nuclear membrane (INM) is
lined by the intermediate filament lamin polymer and both lamins
and INM NETs interact with chromatin. Both ONM and INM connect
where the NPCs are inserted [1]. In mammalian cells ONM and INM
are separated by a roughly 50 nm wide lumen [2]. A subset of NETs
from both the ONM and INM interact to connect the nucleus and the
lamin nucleoskeleton to the cytoplasmic filament systems. Central

to these connections are proteins of the LINC (linker of nucleo- and

cytoskeleton) complex (Fig. 1) [3].
This complex is thought to provide a direct connection from the

intermediate filament lamin polymer and its nuclear connections
to the cytoplasmic filament systems and through these all the
way to the extracellular matrix and adjacent cell connections. As
such, in addition to its obvious mechanical stability role, this com-
plex can be involved in signal mechanotransduction from extracel-
lular signals to the genome [4]. It also maintains the spacing of the
double membrane, at least in cells experiencing forces [3,5].
Although the knowledge about the structure, connections and role
in human disease of the LINC complex is growing fast, there are
still many open questions regarding its structural organization
and mechanics as well as its tissue specific compositions/struc-
tures that may result in additional functions.

2. What the LINC complex connects

To understand the role of the LINC complex it is first necessary
to understand the properties of what it connects — the nucleus and
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Fig. 1. Schematic representation of a LINC complex. ONM: outer nuclear mem-
brane, INM: inner nuclear membrane. The core LINC complex consists of certain
nesprin isoforms in the ONM and SUN proteins in the INM. LINC is also supported
by additional proteins in the INM such as short nesprin isoforms (blue), emerin
(yellow), LUMA (red) and NET5 (orange).
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nuclear contents on one side and the cytoplasmic filaments and
their myriad connections all the way to the extracellular matrix
on the other side. On its outer face, the principle cytoplasmic fila-
ment systems are defined by size: microfilaments (7 nm), interme-
diate filaments (10 nm) and microtubules (25 nm). All three work
together to largely define cell shape and stability, but also have a
variety of more specific functions such as cytokinesis, pinocytosis
and phagocytosis, intracellular transport, signaling pathways and
cell migration [6]. Some functions and structures are highly
tissue-specific such as the Z-bands of muscle, immune synapses,
actin in the acrosomes of spermatozoa (in lower organisms), cilia
and flagella and many others [6,7]. Microfilaments are built of
oligomerized actin forming two strands wrapping around one
another in a right-handed spiral whereas microtubules are built
of a- and b-tubulin heterodimers that form linear protofilaments
which can also interact laterally to form a sheet that circularizes
into a 25 nm diameter hollow tube [6]. Intermediate filament are
also assembled with the starting point of dimers, but they have
very different properties from the other skeletal systems both by
being insoluble due to their coiled-coil rod domain and by assem-
bling into head-to-tail linear arrays that further layer to eventually
form the roughly 10 nm diameter filaments with about 32 mole-
cules in cross section [8,9]. Intermediate filaments also differ from
other cytoskeletal systems in their dynamics e.g. actin and tubulin
dynamically assemble and disassemble, are stabilized by tension
and are highly polarized to support directional movement by
motor proteins whereas intermediate filaments are much less
dynamic, resist tension and have no polarity [6]. Each filament sys-
tem connects to different plasma membrane protein assemblies
that in turn connect it to the extracellular matrix.

On the inner face of the LINC complex it connects to the nucle-
oskeleton that is formed principally by a polymer of type-V inter-
mediate filament lamins. Lamins differ from cytoplasmic
intermediate filaments by having a longer coiled-coil region
[10,11], a nuclear localization sequence [12,13], and a C-terminal
CaaX box that is farnesylated [14,15]. All of these properties con-
tribute to the translocation of lamins into the nucleus [16,17].
Mammals have three genes encoding lamins: LMNA, LMNB1 and
LMNB2. Alternative splicing of these genes gives rise to different
isoforms [18,19], some of which are tissue specific. Examples are
the spermatocyte-specific isoforms lamin C2 and B3 [20,21]. The
full-length splice forms of LMNA, LMNB1 and LMNB2 are all
post-translationally farnesylated. In the case of lamin A the last
18 amino acids containing the farnesyl moiety are cleaved during
subsequent lamin A processing so that the farnesyl moiety only
remains in the B-type lamins, potentially allowing an assembly
closer to the INM due to the farnesyl integration into the mem-
brane lipid bilayer. This predicts the formation of different lamin
sublayers at the INM, which is beginning to gain experimental sup-
port [22]. In contrast to B-type lamins, that are present in all nucle-
ated somatic cells, the expression of A-type lamins seems to be
correlated with terminal differentiation; however, different tissues
have distinct characteristic patterns for the relative expression of
the different lamin subtypes [23]. Lamins directly interact with a
variety of NETs and chromatin. Accordingly they have been impli-
cated in DNA replication, chromatin organization, mechanical sta-
bilization of the nucleus, positioning of nuclear pores and
anchoring of nuclear membrane components [24]. Intriguingly,
by being comprised of just intermediate filaments, this nucle-
oskeleton should be far more elastic, deformable, and capable of
withstanding strong compression or stretch/tension forces com-
pared to the combined cytoplasmic filament systems. These prop-
erties might be structurally necessary because of the interaction
with DNA/chromosomes, the largest individual molecules in the
cell with enormous force bearing and generating potential.

3. Building blocks of the LINC complex

The LINC complex itself can be subdivided into the core com-
plex and other associated proteins that can give it greater speci-
ficity of function. The core complex consists of an INM SUN

(Sad1/UNC84 homology) domain protein and an ONM KASH

(Klarsicht/ANC-1/Syne homology) domain protein. The actual
SUN and KASH domains within these proteins interact with one
another in the lumen of the NE [25,26]. Some SUN proteins have
been shown to oligomerize [3,26,27] and the variety of both
SUN- and KASH-domain proteins enables some functional speci-
ficity even without its associated proteins.

So far five SUN proteins have been identified in human –
encoded by the genes SUN1, SUN2, SUN3, SPAG4 and SUN5. Of these
five SUN domain-containing proteins only SUN1 and SUN2 seem to
be widely expressed [26,28,29], whereas the expression of SUN3,
SPAG4 and SUN5 seems to be restricted in a tissue specific manner,
mostly testis-specific [30,31]. SUN1 and SUN2 are quite distinct by
sequence and have some differences in identified partners, but for
their main mechanical LINC complex function they appear to be
largely redundant because individual knockout mice exhibited
minimal phenotypes [32] and because it required a double
SUN1/SUN2 knockdown to have any effect on the 50 nm spacing
of the NE [3]. Their functional redundancy must necessarily reflect
what they share and both proteins have an N-terminal lamin A
binding domain in common, a coiled-coil dimer region just after
the transmembrane span(s) in the lumen (Fig. 2B), bind short
nesprin 1 and 2 isoforms, and interact with LINC-associated pro-
tein emerin [33]. For SUN1 a meiosis specific isoform, SUN1g,
has been described that lacks the emerin- and short
nesprin-binding domains [34].

Five human KASH domain-containing proteins associated with
the LINC complex have been identified to date: nesprins 1–4

(nuclear envelope spectrin repeat proteins) and KASH5 (encoded
by SYNE1, SYNE2, SYNE3, SYNE4 and CCDC155 respectively). All of
these proteins have a short luminal C-terminal KASH domain and
on the other side of the membrane nesprins contain a number of



Fig. 2. Prediction of secondary structure, coiled-coils, transmembrane domains and protein disorder for (A) KASH-domain proteins, (B) SUN-domain proteins and (C) other
LINC associated proteins. Top line: Jpred4 (http://www.compbio.dundee.ac.uk/jpred/index.html) was used to predict alpha helices (red) and beta sheets (green). Line 2: coiled
coils as predicted using Jpred4 (blue). Line 3: transmembrane domains (violet) were predicted using THMM (http://www.cbs.dtu.dk/services/TMHMM) and – in case of
known domains that failed to predicted – TMPred (http://www.ch.embnet.org/software/TMPRED_form.html). Disorder prediction: GeneSilico Metadisorder service (http://
iimcb.genesilico.pl/metadisorder/FKYa138760caq/) was used to predict intrinsic disorder using 4 different algorithms (METADISORDERMD2 – blue; METADISORDER3D – red;
METADISORDER – green; METADISORDERMD – violet). Values below 0.5 are predicted as ordered, above as disordered. Areas of predicted disorder that are not entirely
contradicted by the structure prediction are displayed in a yellow field.

2516 P. Meinke, E.C. Schirmer / FEBS Letters 589 (2015) 2514–2521

http://www.compbio.dundee.ac.uk/jpred/index.html
http://www.cbs.dtu.dk/services/TMHMM
http://www.ch.embnet.org/software/TMPRED_form.html
http://iimcb.genesilico.pl/metadisorder/FKYa138760caq/
http://iimcb.genesilico.pl/metadisorder/FKYa138760caq/


P. Meinke, E.C. Schirmer / FEBS Letters 589 (2015) 2514–2521 2517
spectrin repeats [35–38] whereas KASH5 has a large coiled-coil
region (Fig. 2A). Individual nesprin genes also have a wide range
of splice variants that can have very many or very few spectrin
repeats as well as lack the KASH domain [39]. All nesprins can
interact with cytoplasmic filament systems via their N-terminal
domain. This is generally cytoplasmic as most nesprin isoforms
are too big to enter the nucleus through the peripheral channels
of the NPCs; however, it could also be nucleoplasmic for the very
short nesprin isoforms [40,41]. In fact, small tissue-specific iso-
forms of nesprin 1a and nesprin 2a have been described in muscle
[41] that interact in the nucleoplasm with lamin A, emerin and
SUN1 [25,42]. The cytoplasmic regions of the larger nesprin 1
and 2 giant isoforms interact directly with actin, but both can also
bind the motor protein kinesin through which it is thought that
they can also tether microtubules to the NE. The kinesin interaction
occurs via a conserved LEWD motif that is essential for nuclear dis-
tribution in myotubes [43]. Interestingly the LEWD motif is also
present in the shorter nesprin 1a and nesprin 2a isoforms, though
whether this indicates a mitotic role or that these proteins have
both INM and ONM roles remains to be clarified. Nesprin 4 also
interacts with kinesin [36] whereas KASH5, which is germ-cell
specific, interacts with the dynein-dynactin complex providing
yet another mechanism for linking to the cytoplasmic microtubule
network [44]. Nesprin 3 by contrast interacts with plectin, which is
best known for connecting intermediate filaments but can act as a
link to all three major cytoplasmic filament systems [45]. Thus,
between the different KASH-domain proteins the LINC complex
can connect to all three major cytoplasmic filament systems; how-
ever, because different gene products have different properties and
preferences for particular filaments, their relative expression could
confer unique properties to NE-cytoplasmic filament interactions.

The LINC core can be supplemented with additional proteins to
contribute further unique properties to the complex. Emerin, NET5
(Samp1) and LUMA (TMEM43) are all NETs that have been shown
to interact with some LINC cores in some cell types. Emerin,
encoded by the EMD gene, is located principally in the INM [46],
but has also been reported in the ONM, ER, plasma membrane,
and at intercalated discs [47–52]. Thus it is hard to distinguish
which population may be responsible for its reported roles in
nuclear structural integrity, cellular susceptibility to mechanical
stress damage, alterations in gene expression, cell proliferation
and differentiation [53]. Nonetheless, emerin has been shown to
interact with lamin A, SUN1 and nesprins (through interaction
with spectrin repeats [42]) and some of these reported roles could
reflect its influence on LINC function and with having been found
also in the ONM it could potentially contribute from both sides
of the membrane. LUMA, which is encoded by TMEM43, is another
NET that has been shown to interact with lamins A and B as well as
emerin [29] and SUN2 [54] and is suggested to function as a mem-
brane organizer [29]. However, like emerin it has been found not
only in the INM but also in the ONM and ER [29] and as such it
could also potentially impact on LINC function from either end of
the core complex. Finally, NET5 (Samp1, encoded by TMEM201) is
also associated with LINC complexes. Not only does NET5 interact
with SUN1 [55] and lamin A [56], but a more direct function with
LINC has been described in contributing to a more specialized LINC
complex associated with TAN-lines [57]. TAN-lines serve as tracks
for nuclear migration and positioning within the cell, particularly
to keep the nucleus following the leading edge during fibroblast
movements [58].

At least one pair of LINC core SUN- and KASH-domain proteins
is found in all higher eukaryotes and, though homologs are not
always readily apparent in lower eukaryotes, they have been found
where a focused search has been undertaken [59]. During evolu-
tion multicellular eukaryotes have amplified both core compo-
nents, but not necessarily in a linear fashion. For example,
mammals tend to have 4–6 SUN-domain containing and 4–6
KASH-domain containing proteins whereas fish have twice this
number of KASH-domain nesprins but only half as many SUN pro-
teins and chickens have increased the number of SUN protein
genes by 3–4-fold. This together with both the identified and prob-
ably many as yet unidentified LINC associated proteins yields a
manifold of possible interactions that could support LINC complex
functionalities specific for different tissues, developmental stages
and organisms [60]. Indeed, during mouse sperm development,
the existence of distinctive LINC complexes has been shown.
They consist either of spermatogenesis-specific SUN3 and nesprin
1 or SUN1g and nesprin 3. These two LINC complexes can con-
tribute distinct functional specificities even within the same cells,
localizing to opposite poles of the spermatid [34].

4. Form and function

Many of the functions of LINC complex proteins such as in
nuclear positioning, cell division and the organization of the
cytoskeleton [60] are likely indirect effects reflecting its core func-
tion in connecting the genome and nucleoskeleton to cytoplasmic
filaments and the extracellular matrix. For this core function the
molecular structure of the SUN–KASH interface would have to be
designed for both extreme load bearing and tension forces to be
buffered within the NE lumen while maintaining a tight binding
interface impervious to disruption. The design would also need
to provide a counter force to prevent the complex being pulled
out of the membrane on either end.

Moreover, LINC complex components have been shown to be
important for specific functions such as telomere positioning [61]
and for association of the centrosome with the nuclear membrane
[49]. Both of these more specific functions represent the tethering
of an enormous mass. The telomere tethering is thought to hold an
entire chromosome — the largest individual molecule in a cell — in
place while lining it up with its sister for meiotic recombination.
The centrosome tethering not only reflects the mass of this large
complex, but also the entire microtubule network that reaches
out from it. Thus the molecular structure for these specialized
interactions likely includes even more stabilizing forces and part-
ner proteins. Another specific function is the positioning of nuclei
in muscle fibers. Nesprin 1 and nesprin 2 double knockout mice fail
to recruit synaptic nuclei to the neuromuscular junction in skeletal
muscle [62] while SUN1 and SUN2 double knockout mice have
abnormal synaptic nuclei [32].

Finally, it appears that some LINC complexes take the principal
structural function while others are more specialized for transduc-
ing mechanical signals to the nucleus and thus activating
mechano-sensitive genes [63]. Those involved in mechanotrans-
duction would require a design that would prevent any small pres-
sures on the nucleus from activating them or else the dynamically
active cell would be constantly activating mechanosensitive genes.

5. LINC molecular structure

Although there are many distinct SUN- and KASH-domain con-
taining proteins, there is only high resolution structural informa-
tion for part of the most common LINC core of SUN2 and nesprin
1. In early 2012 the crystal structure of the SUN-domain of SUN2
was solved. The SUN domain forms a trimer resembling a clover-
leaf sitting on a stem (Fig. 3C and D) instead of a dimer as had been
previously assumed because of the coiled-coil dimer prediction
after the transmembrane region [64]. A trimer would greatly
enhance stability and also provides in this cloverleaf interface a
potential grabbing/locking mechanism if the KASH domain of
nesprins could somehow insert within the trimer. However, the
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authors noted that algorithms predicting the oligomerization [65]
strongly predicted the first coiled-coil (Fig. 2) to be dimeric while
the second coiled-coil had only a modest probability to be trimeric,
raising the possibility that the trimer could be a crystallization
artefact. Nonetheless, evidence for this structure was greatly
strengthened when later in 2012 the structure of the SUN2
SUN-domain in complex with the nesprin KASH-domain was
solved showing a hexameric complex of three SUN protomers
and three KASH peptides with a disulfide bond covalently linking
SUN and KASH [66]. The binding interface comprises two antipar-
allel beta-sheets from SUN2, named as KASH-lid, sticking out from
the body of the SUN domain that lay over a beta sheet from the
KASH domain of nesprin 1 as well as nesprin 2 (Fig. 3A and B).

Interestingly, the KASH-lid region is unstructured in the mono-
meric form of the SUN domain without the KASH peptide in the
original Zhou et al. 2012 structure, but incorporates an alpha helix
in the later Sosa et al. 2012 study [66] (Fig. 3A). Thus the KASH-lid
appears to be quite dynamic until binding to KASH, which could
facilitate the insertion of the KASH domain into the SUN domain
trimer. Moreover the ability to achieve distinct conformations in
the different structures might reflect the ability to form connec-
tions to other proteins in the ONM besides KASH-domain proteins.
All in all the combined structure resembles a locking mechanism
whereby turning one protein trimer in relation to the other cap-
tures projections of the one protein under a solid physical projec-
tion from the other so that forces pulling the two apart would meet
maximum resistance. Sedimentation equilibrium of a SUN2 frag-
ment containing both predicted coiled-coils led to the conclusion
that the trimeric form is the physiologically relevant oligomeriza-
tion state of human SUN2 [66]. Moreover, it has been shown in sev-
eral studies that the second predicted coiled-coil domain that
forms the triple helical coiled-coil in the trimer is necessary to
achieve a SUN–KASH interaction [3,26,67].
BA

C D

KASH-lid

Fig. 3. Overview of the human SUN domain of SUN2, a SUN2–KASH domain complex an
apo-SUN form published in Sosa et al. [66] (PDB entry 4DXT) is shown as ribbon diagram
SUN2–KASH1 complex (4DXR; Sosa et al. [66]) is indicated with the SUN-domain shown
KASH1 interaction trimer complex (4DXR; Sosa et al. [66]) are shown as trimers with th
were modified using the PyMOL Molecular Graphics System, version 1.3 (Schrödinger, L
While the locking mechanism seems clear, the rest of the
molecular structure resides in the realm of speculation. Going out-
wards from the NE the KASH domain is at the C-terminus of all
KASH-domain proteins and follows almost immediately the single
transmembrane spanning segment of this protein family (Fig. 1).
Thus this lock occurs almost immediately under the ONM and
the insertion of three KASH-domain proteins together in the mem-
brane and then spanning out just under the membrane should fur-
ther stabilize the structure by including the membrane itself in its
force bearing function. On the outside of the ONM the nesprins
have many spectrin repeats and groups of spectrin repeats are
interspersed with short regions containing many prolines, which
would enable considerable bending within these regions. Thus, just
as the KASH domains would spread outwards in the NE lumen, the
longer regions in the cytoplasm could also spread outwards. This
makes particular sense for nesprins because there are no indica-
tions that any of the spectrin repeat domains interact to form
dimers or trimers. In the case of KASH5, its coiled-coil region might
dimerize to achieve a different type of interface with cytoplasmic
filaments, although, again, no evidence has been presented regard-
ing whether this might form a coiled-coil interface for two or three
KASH5 molecules or an interface with another protein.
Interestingly, all KASH-domain containing proteins also have mul-
tiple short regions of predicted intrinsic disorder throughout the
long cytoplasmic region; however, in the case of nesprins these
tend to overlap with regions also strongly predicted as alpha heli-
cal (Fig. 2A) so that the structure remains unclear. Nonetheless,
between the likely bending properties and the possible intrinsic
disorder, we predict that these regions can be stretched by pulling
forces or collapse upon compression forces so that they would buf-
fer a considerable amount of the forces from the cytoplasmic fila-
ments. This should considerably reduce the force taken at the
SUN–KASH interface just under the ONM.
KASH
pep de

d the human SUN–KASH interaction trimer complex. (A) The structural views of the
in blue. The KASH-lid is indicated by a red circle. (B) The structure of the human

in blue and the KASH peptide in red. (C) Top view and (D) side view of the SUN2–
e SUN-domains colored in blue and the KASH peptides in red. The structural views
LC).
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Going in the other direction from the SUN–KASH interface, the
SUN proteins tend to have considerable beta sheet prediction in
the SUN domain consistent with the crystal structure, but the rest
of the luminal region tends to strongly predict for alpha helical
structure with poor if any intrinsic disorder prediction (Fig. 2B).
In all cases this region also contains 1–3 short predicted
coiled-coils. If these structural predictions are accurate they raise
one extremely critical question about the entire LINC complex as
currently envisioned. LINC is thought to span from SUN proteins
embedded in the INM all the way across to the interface just under
the ONM; however, with 1=3 to ½ of the luminal mass forming the
trimeric globular SUN domain for the SUN–KASH interface it is
hard to envision physically the SUN protein spanning the entire
50 nm luminal space without highly stretchable intrinsic disor-
dered regions. After all, the linear lamin coiled-coil dimer rod
domain is 52 nm and it is more than 100 amino acids longer than
the luminal length of SUN2 apart from the globular SUN domain
and as a trimer the SUN protein would be much shorter due to
the larger wrapping diameter for a triple-helical coiled-coil. Thus
either (1) despite the lack of prediction there are intrinsically dis-
ordered regions, or (2) the alpha helices after the one just under
the SUN domain do not form a triple helical coiled-coil and are
extremely stretched and under considerable tension, or (3) one
SUN protein is embedded in the ONM to interact with KASH and
another SUN protein in the INM dimerizes with the ONM SUN pro-
tein either directly through the predicted coiled-coil dimer or con-
nects indirectly via this predicted coiled-coil to an as yet
unidentified LINC component in the lumen. Though the latter pos-
sibility may be viewed as unlikely and heretical, the physical dis-
tance and lack of clarity of the remaining SUN protein molecular
structure highlights the importance of focusing efforts on clarifying
this question. Regardless, the fact that what is known does not fit
with typical known structures indicates that the molecular archi-
tecture of this unique interface will be new and intriguing.

Interestingly, on the other side of the INM in the nucleoplasm
the remaining SUN protein mass contains very strongly predicted
regions of intrinsic disorder (Fig. 2B). This may enable its snaking
through the lamin polymer with which it also interacts to facilitate
interactions with chromatin and, similar to the disorder or bending
predicted for KASH protein mass in the cytoplasm, provide a buffer
for forces coming from chromatin on the other side. Although
specific chromatin partners have not been specified for SUN pro-
teins, their functional importance in tethering telomeres to the
NE in meiosis [68,69] together with the fact that their binding part-
ners including lamins, emerin and NET5 all bind chromatin pro-
teins [70–74] indicate that they contribute to a physical
connection of LINC with the genome. As the long DNA strands at
the core of chromosomes are the largest individual molecules in
the cell, they have the potential to also contribute to buffering
forces exerted on the nucleus while at the same time being highly
deformable, like the innards of a pillow [75–77]. Thus, just as the
large chromosome mass can stabilize the microtubule spindle in
mitosis [78] they could contribute to stabilizing forces from the
cytoskeleton on the nucleus in interphase. This idea also may shed
light on the logic of the protein nucleoskeleton persisting almost
exclusively from intermediate filaments and associated NETs. The
extreme elasticity and tensile strength of the intermediate filament
lamin polymer enables it to stretch under considerable force with-
out breaking while the many individual connections between NETs
and lamins on the one hand and NETs and chromatin on the other
hand provide an overall strong and distributed connection
between the membrane and the chromatin from which LINC can
itself exert its functions. Not surprisingly, after observations of
structured and unstructured regions of SUN proteins, the associ-
ated proteins known to function with LINC — emerin, NET5,
LUMA and lamin A — exhibit a mixture of characteristics with
some fully structured and others largely intrinsically disordered
(Fig. 2C). This mixture of properties could add to the buffering
capacity of the INM to forces from either side.

6. Implications and directions

That the LINC complex has a principally structural role is sup-
ported from its strong involvement in Emery-Dreifuss muscular
dystrophy (EDMD), a rare, genetically heterogeneous neuromuscu-
lar disorder characterized by progressive skeletal muscle wasting
and weakness, early contractures and cardiac arrhythmia that
can evolve to cardiomyopathy [79]. Mutations in LMNA [80] and
the LINC complex components EMD [81], SYNE1, SYNE2, SUN1
and SUN2 can all cause EDMD [41,82]. Mutations in lamin A and
point mutations in emerin perturb interactions with SUN1 and
SUN2 [33]. Point mutations in nesprins 1 and 2 result in nuclear
morphology changes and mislocalization of SUN2 and emerin
[41]. Mutations in SUN and nesprin proteins can act as modifiers
resulting in a more severe phenotype [82–84] and altered NE elas-
ticity is typical in cells from EDMD patients [85]. All of these
defects point to a weakening of the LINC complex in EDMD patho-
physiology. Furthermore, truncating mutations in SYNE4 cause
autosomal recessive deafness. The mutant protein lacked the
KASH domain and failed to localize at the NE. In a mouse model
for this disease nuclei of outer hair cells in SYNE4 and also in
SUN1 knockout mice failed to maintain the basal position they
occupy in wild type cells [86]. Finally, SYNE1 nonsense mutations
resulting in a loss of the KASH domain cause autosomal recessive
cerebellar ataxia, a disease characterized by impaired walking
and a lack of coordination of gait and limbs. Nuclei at neuromuscu-
lar junctions in patients appeared to be displaced to the periphery
[87]. In all cases, disease pathology appears to be caused by defects
in the structural integrity of the LINC complex and its connections.

These disease links further indicate the importance of deter-
mining all molecular details of LINC complex structure and finding
all remaining partner proteins, particularly the tissue-specific ones
that could contribute to the focusing of pathology in particular tis-
sues. Indeed, finding both testis and muscle specific isoforms of
nesprins already demonstrates that tissue-specific LINC complexes
exist. That nesprin mutations also cause a cerebellar ataxia [87]
argues for at least additional neuron-specific forms. The recent dis-
covery of many SUN-related and SUN-associated proteins in plants
that were not evident by a straightforward BLAST analysis [88] also
indicates that there are many other proteins likely contributing to
LINC yet to be discovered. Perhaps these additional proteins will be
able to explain how LINC mediates the regular uniform spacing of
the NE lumen and the biggest mystery: how this spacing can be
maintained at 50 nm between human and Xenopus despite signif-
icant differences in SUN protein length and differ by 20 nm
between human and yeast despite that the SUN proteins are closer
in length. Clearly there is much more to be discovered about how
the cell has engineered the critically important force bearing and
transmitting interface of LINC.
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