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Some Hermite Polynomial Identities and Their 
Combinatorics 

DOMINIQUE FOATA 

D$artement de Mathknatique, Universitk Louis-Pasteur de Strasbourg F 67084 
Strasbourg France 

The multilinear extensions of the Mehler formula found by Kibble, Slepian and 
Louck are shown to be equivalent. They can all be proved by using the combina- 
torial set-up of involutionary graphs, and so thus the classical Doetsch identity. 

1. INTRODUCTION 

Let (H,(x)) (m 2 1) denote the Hermite polynomials defined by the 
identity 

1 + x (um/m!)H,(x) = exp(ux - u2/2), 
m2zl 

(14 

or, in an equivalent manner, by 

H,(x) = x (- l)kX”-2k 
(2!)%! (l!)Z&t - 2k)! 

(m 2 1). 
012kSm 

(1.2) 

(In classical books on orthogonal polynomials, Rainville [6], Szegii [8], 
another normalization for the Hermite polynomials is used. Formula (1.1) is 
then replaced by 

1 + x (um/m!)H,(x) = exp(2ux - 24’). 
m?l 

However, the notation (1.1) will kept in the whole paper and, accordingly, 
the classical identities translated with this normalization.) 

From (1.2) we get 

m! 
4uo = (- l)m’2 2”,2(m,2)! (m even) 

= 0 Cm odd), (1.3) 
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and it will not be surprising that Hermite polynomial identities containing 
negative powers of 2, as in Lou&s identity (see (2.3) below), or factorials 
[(m/2)]!, as in the Doetsch formula (see (4.1) below) be specializations of 
formulas involving higher products of Hermite polynomials. The purpose of 
this paper is to explore those specializations. More precisely, remember that 
the bilinear extension of (1. l), namely, 

=(I - U2)-'/2 
exp((lP)( y2 - (Y - 40 - u2)% - 4)), 

(14 
known as the Mehler formula (see, e.g., [l, p. 16; 6, p. 198; 8, p. 380; 9]), has 
been generalized to the multilinear case by Kibble [4] (as was noted by 
Askey [2]) and Sfepian [7]. Recently, Louck [5] proposed another extension. 
The purpose of this note is to show that those multilinear extensions are in 
fact equivalent. As a combinatorial proof of the now called Kibble-Slepian 
identity was given in [3] by means of the involutionary graph set-up, the 
combinatorial interpretations of those multilinear extensions are also de- 
rived in the paper. Finally, the Doetsch formula is proved by using the same 
combinatorial techniques. 

2. THE MULTILINEAR EXTENSIONS 

Let (sij) (i 2 1, j 2 1) be an infinite sequence of indeterminates with the 
property that 

s,j = sji and sii = 0 

for all i and j. For each n 2 1 denote by S, the (symmetric) n X n matrix 

S, =(sij) (1 Ii,jln) 

and by I, the identity matrix of order n. Now with n being fixed let 
Yf = (Yl, yz, * *. 9 v,) be a (row) vector with n variables and y be the 
corresponding column vector. Finally, let N = (vii) (1 I i, j I n) designate 
a symmetric n X n matrix with nonnegative integral entries and a,, b, denote 
the sums 

a, = vi1 + vi2 + * * . +v. tn 
b; = vii + a, (1 I i 5 n). (2.1) 
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In the first identity (2.2) the summation is over all symmetric n X n 
matrices N = (vij) with diagonal entries vii equal to zero. It reads 

with 1 _( i < j 5 n and 1 5 i 5 n in the above two products. 
In the next two identities (2.2) and (2.3) the matrix N = (vii) runs over all 

symmetric n X n matrices. Furthermore, D,, = diag(d,, d,, . . . , d,) is a diag- 
onal matrix, the entries di (1 5 i 5 n) being indeterminates and t’ = 
(z,, z*,..., 2”) is an n-variable (row) vector. They read 

= (det(I, + D, + S,))-“2 exp( (l/2)( Y’Y - Y’(& + 4 + WY)) 

and 
(2.3) 

= (det(l, - 0,’ + S,))-“* exp( (l/2)( y’u - (Y - 4~)’ 

x(4 - 0,’ + s,r’(Yn - 44)). (2.4) 

Identity (2.2) was obtained by Kibble [4] and Slepian [7] and (2.3) is due to 
Louck (51. Note that for n = 2 (resp. for n = 1 and D,, = 0) formula (2.2) 
(resp. (2.4)) reduces to Mehler’s formula (1.4). 

PROPOSITION 1. The identities (2.2) and (2.3) and (2.4) are equiualent. 

Proof. Clearly (2.3) implies (2.2) by making all the di’s equal to 0. 
Show next that (2.4) implies (2.3). Let L(S,, D,,, y, z) be the left-hand 

side of (2.4) and for convenience replace the running matrix N = (vii) by 
A4 = (pLij) so that, 

with 

From (1.3) we get 
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with M = (pii) extended over all matrices with /Jii even (1 5 i 5 n)- Let 
N = (vii) be defined by 

vij = pij fori#j, 

vii = Pii/ foralli, (2.5) 

so that 

a, = pi, + pi* + -** +~,i, = Vii + (Vi, + Vi* + ” ’ +Vin) = bi. 

Then 

L(S,, D,,, Y,O) = z IIj(S$/Vij!)* ~((-dz)““/Vii!)Hb~Yi)“-T’N 

Hence, with t = 0 identity (2.4) becomes 

: $S~j"/Vij!)' n((-d2)Yii/vii!)Hb,(Yi)'2-TrN 
i 

= (det(I” - 0,’ + S,,))-“2 exp((l/2)( Y’Y - Y’(4 - 0,” + &J-‘Y)). 

Thus with z = 0 and -0,’ replaced by D,, identity (2.4) yields (2.3). 
Show finally that (2.2) implies (2.4). Rewrite (2.2) with n replaced by 2n 

andfori= 1,2,..., n each Y,,, replaced by zi. Then 

= (det( Izn + S,.))-“’ exp(W)((y~ z)‘(Y, 4 

- (Y, 4Y4” + L-‘(YT 4)). 

Now map each entry of S,, onto the corresponding entry of the matrix 

In other words, leave all the sij with 1 I i, j I n unchanged, put all the 
other entries of S,, equal to 0 except the entries qn+i and s,+~,~ that 
become equal to di (1 I i 5 n). The above identity is then transformed into 

= (det( I, + T,,))-“* exP((l/2)(Y> Z>‘(Y, 2) 

- (Y, z)‘G, + T,,)-‘(Y, Z>)> (2.7) 
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where the summation is extended over all sequences (v,~) (1 5 i, j I 2n) 
with either Ili<j<n or Ili~n and j=n+i. By elementary 
manipulations on determinants 

det 1, + sn Z,, + S,, - 0,” D,, 
D 

” 0 1” 

so that 

det( I,, + T,) = det( Z, + S, - 0:). 

Furthermore, let A = I, - 0,’ + S, and A be the 2n X 2n matrix 

Then the argument of exp in (2.4) may be written 

wNY> 4’4Y9 49 

while the corresponding term in (2.7) is equal to 

ww~ z)‘(L - u,, + T,,)-‘)(Y, 4. 

To show that 

A =Z2,, - (4, + TzJ’* 

it suffices to prove that 

(4” - A)&” + G”) = 4”. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

But this is a straightforward calculation that follows from the definitions of 
Tzn and A (in (2.6) and (2.9)). 

Now replace v,, “+ i by v,~ (1 I i I n) in (2.7) and take (2.8) (2.10), (2.11) 
and (2.12) into account. We then conclude that (2.7) is nothing but a 
rewriting of (2.4). Q.E.D. 

3. COMBINATORIAL INTERPRETATIONS 

In [3] a combinatorial proof of the Kibble-Slepian identity was given. By 
an n-inuolutionary m-graph there was meant an undirected graph with m 
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vertices labeled 1,2,. . . , m and edges and loops colored in such a way that 

(i) the colors are taken from the set { 1,2, . . . , n} ; 
(ii) each vertex has valency 2; 
(iii) each vertex is incident to two different colors. 

Let G be such a graph. For i < j denote by Y,~ the number of its vertices 
incident to colors i and j. Let t, (resp. 1;) be the number of edges (resp. of 
loops) colored i. Then, define 

P(G) = ,r&,y n (- 1)‘~~;. I (3.1) 

The combinatorial proof of (2.2) was made in two steps. First, it was shown 
that the left-hand side is equal to the generating function for n-involutionary 
graphs by p, i.e., 

z i!j(s:I'/vij!)* lJHa,(Y,) = m~o(l/m!)Ze(c), (3.2) 

the last summation being over all n-involutionary m-graphs. Second, the 
right-hand side member was shown to be the exponential of the generating 
function for the connected n-involutionary graphs by the same cc. Identity 
(2.2) was simply derived from the exponential formula 

2 (l/m!)&(G) = exp x (l/m!)&(G), (3.3) 
m>O m>l 

the last summation being over all the connected n-involutionary m-graphs. 
Also recall that there are two kinds of connected n-involutionary graphs 

as shown in Fig. 1, the cycles, and the paths ending with two loops. 
The right-hand side of (2.2) is the exponential of the sum of 

and 

wwog l det( I,, + S,) (3.4) 

(l/2)( Y’Y - Y’k + WY). (3.5) 

It was then shown that (3.4) and (3.5) were the generating functions for the 
n-involutionary cycles, and for the n-involutionary paths, respectively, by cc. 

Now examine the combinatorial meanings of (2.3) and (2.4). Identity 
(2.7), which is equivalent to (2.4), will now involve Zn-involutionary graphs 
but not all of them. The left-hand side of (2.7) is again 

2 (Vm!)%W9 (3.6) 
mZ0 
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(path) 

FIGURE 1 

but because of the structure of Tzn (given in (2.6)), a 2n-involutionary 
m-graph G occurs in the latter summation if and only if each of its vertices 
is incident to two different colors i and j with either 1 15 i < j % n, or 
l<iln and j=n+i. Call 2n-bivolutionary m-graph each 2n- 
involutionary m-graph with the latter property. Furthermore, as each vari- 
able JJ,,+~ was replaced by zi (1 I i 5 n), the monomial p(G) is to be 
replaced by 

with vii denoting the number of vertices of G incident to colors i and n + i 
(1 5 i 5 n). Thus, the left-hand side of (2.4) is the generating function for 
2n-bivolutionary graphs by p with ~1 given in (3.7). 

Now remember that (2.3) is obtained from (2.4) by putting z = 0 and 
replacing - 0,’ by 0,. Therefore, the left-hand side of (2.3) is the generating 
function for a subclass of 2n-bivolutionary graphs and is also of the form 
(3.6). As z = 0, a 2n-bivolutionary m-graph occurs in the last summation of 
(3.6) if and only if it has no loop colored n + i (1 I i I n). As each edge 
colored n + i is necessarily adjacent with two edges or loops colored i, each 
integer vii is eoen. Because of the substitution of - 0,” by D, the monomial 
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p(G) is now 

Cc(G) = Jyjsn,j- ,~~~~(-di)‘ii’2(-1)“y~(-l)r’“+‘. (3.8) 

Thus, the left-hand side of (2.3) is the generating function for the 2n- 
bivolutionary graphs with no loops colored n + i (1 I i I n) by p with p given 
in (3.8). 

4. THE DOETSCH IDENTITY 

Written with notation (1.1) the Doetsch identity [8, p. 3801 reads 

z W/b/2lW,(Y) 
WI20 

= (1 + 2~*)-~‘*(1 + uy + 2u*)exp( u*y*(l + 2~~)~‘). (4.1) 

Let D = (1 + 2~~). Clearly identity (4.1) is the sum of the two identities 

2" = D-‘/*exp( u*y*D-‘) (4.2) 

Ix b 
Pm + w 

2m+1/(2m + 1)9H,m+dY)- pm, 
*2” 

m?O 

= uyD-‘.D-‘/* exp( u*y*D-‘). (4.3) 

As it is known and readily verified, both identities (4.2) and (4.3) are 
consequences of Mehler’s formula (1.4). Putting z = 0, using (1.3) and 
replacing u by. (- 2)‘/* u in (1.4) yield (4.2). To obtain (4.3) it suffices to 
take the partial derivative of (1.4) with respect to z, then put z = 0, divide 
by u, replace u by (- 2)‘/*u and finally multiply both members by u. Hence, 
the combinatorial proof of (4.1) can be derived from that of Mehler’s 
formula (1.4) (that is the particular case of (2.2) for n = 2.) 

With n = 2 and y12, s,*, y,, y, replaced by m, u, y, z, respectively, (3.2) 
becomes 

(4.4) 

with 

p(G) = u”( - 1)” yfl( - l)‘*zfz 



258 DOMINIQUE FOATA 

if G has m vertices. When z is put equal to 0 and u replaced by (- 2)‘/’ u the 
left-hand side of (4.4) is transformed into the left-hand side of (4.2). 4s for 
the right-hand side, it becomes 

2 (V (2m)!) x P’(G) 
ffl?O 

with the last summation extended over all Doetsch 2m-graphs, i.e., the 
2-involutionary 2m-graphs having no loops colored 2, and 

p’(G) = (( -2)“2~)2m( - l)“#l( - 1)“. 

But if there is no loop colored 2, the number t, of edges colored 2 is 
necessarily equal to m. Therefore 

In the same manner, when deriving (4.3) from (1.4) as it was mentioned, 
the left-hand side of (4.4) is transformed into that of (4.2). The right-hand 
side becomes 

with the last summation extended over all Doetsch (2m + l)-graphs, i.e., the 
2-involutionary (2m + l)-graphs having a single loop colored 1, and $ 
given this time by 

p’(G) = u((-2)“2u)2”(-l)“yf~(-1)“. 

Again, t2 = m, so that 

P’(G) = U2m+‘(- 1)‘yq2~ 

Thus, the left-hand side of the Doetsch identity (4.1) is the generating function 
for the Doetsch graphs, i.e., the 2-involutionary graphs having at most one loop 
colored 2, by p’, with $ given by 

if G has m vertices. 

p’(G) = u”( - l)“yf12~2, (4.5) 

As (4.2) was directly derived from Mehler’s formula, as it was explained, 
the above comment, de facto, provides a combinatorial proof of it. In 
particular, 

u2y2D-’ = u2y2(1 + 2u2)-‘, 
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the argument of exp in (4.2), is the generating function for the 2-involutionary 
paths ending with two loops colored 1, by p’. It follows from this and the 
definition of $ (in (4.5)) that the generating function for the 2-involutionary 
paths ending with two loops colored 1 and 2, by $, is equal to 

UYD -’ = uy(1 + 2u2)-‘. 

But among the connected components of each Doetsch (2m + I)-graph G 
there is one and only one path that ends with two loops colored 1 and 2. If 
this path is deleted from G, the remaining graph is a Doetsch 2m’-graph 
with 0 I 2m’ 5 2m. Therefore, the generating function for the Doetsch 
graphs with an odd number of vertices is equal to the product of the 
generating function for the 2-involutionary paths ending with two loops 
colored 1 and 2, by the generating function for the Doetsch graphs with an 
even number of vertices. Thus 

2 (l/ (2m + l>!)%@) = UYD-’ 2 (V@m)!)%‘(G) 
HI20 IPZ~O 

= uyD-‘-D-‘/2exp(u2y2 0-l). 

This completes the combinatorial proof of the Doetsch identity. 
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